1
|
Zhu Z, Hu X, Wei Y, Pan J, Lu Z. Probing Single-Particle Electrocatalytic Stability: Electrogenerated Chemiluminescence Imaging of Nanoparticle Array. J Phys Chem Lett 2024; 15:12228-12233. [PMID: 39632687 DOI: 10.1021/acs.jpclett.4c03226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Understanding the stability of single nanoparticles is crucial for optimizing their performance in various applications, including catalysis. In this study, we employed electrochemiluminescence (ECL) imaging to investigate the temporal stability of individual Au and Pt nanoparticles within precisely engineered arrays. Our results reveal significant differences in the stability of Au and Pt NPs. While both exhibit initial decay due to diffusion limitations, Au NPs undergo more rapid degradation, attributed to surface oxidation and detachment. In contrast, Pt NPs demonstrate much better stability with little surface oxidation. This study provides valuable insights into the fundamental behavior of single-NP electrocatalysis and highlights the potential of ECL imaging as a powerful tool for unraveling the complex dynamics of nanoscale systems.
Collapse
Affiliation(s)
- Zhouzhou Zhu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xiangfu Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Ying Wei
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Jiahao Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Nie W, Wang Y, Hu C, Wei X, Cui H. In situ growth of L012-reduced gold nanoparticles-loaded graphitic carbon nitride nanocomposite for potential-resolved ratiometric electrochemiluminescence analysis. Anal Chim Acta 2024; 1332:343379. [PMID: 39580182 DOI: 10.1016/j.aca.2024.343379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Most electrochemiluminescence (ECL) analytical methods involve only changes in one single signal, which greatly limits their high sensitivity and stability for applied research. Potential-resolved electrochemiluminescence (PRECL), which provides calibrated analysis by self-correcting signal responses from dual channels, has attracted great interest in recent years. However, research on PRECL nanomaterials is still at an early stage. It is critical to develop a novel PRECL nanocomposite with high intensity in light emission, high resolution in potential separation, and reduced complexity in reaction systems for accurate detection. RESULTS Here, a novel PRECL nanocomposite, L012-Au/g-C3N4, was synthesized by in situ growth of L012-reduced gold nanoparticles (L012-Au) on the surface of graphitic carbon nitride (g-C3N4) nanosheets. The g-C3N4 nanosheets served as effective carriers for L012 molecules and L012-Au, as well as efficient cathodic ECL emitters. With the addition of a single co-reactant (K2S2O8), two fully separated ECL peaks were observed around -1.3 V (ECL-1) and +0.6 V (ECL-2) at neutral conditions. The catalytic character of the incorporated gold nanoparticles accelerated the anodic ECL reaction and greatly enhanced the ECL intensity. Furthermore, an ECL mechanism based on the competitive relationship between K2S2O8 and dissolved oxygen was proposed. When dopamine (DA) was introduced into the PRECL reaction system, ECL-1 remained essentially unchanged, while ECL-2 intensity was significantly reduced. By analyzing the intensity ratio of ECL-2 to ECL-1 (I2/I1) to the detecting target, a ratiometric DA sensor with high sensitivity and stability was successfully constructed. SIGNIFICANCE A nanocomposite L012-Au/g-C3N4 that can induce high-intensity ECL with two separated potentials in each polarity has been prepared by a simple synthetic method. The developed ratiometric sensor can eliminate systematic errors and improve accuracy. In addition, the multifunctionality of the nanocomposite and the necessity of only one co-reactant for neutral-condition ECL greatly reduced the reaction complexity. Our work offers new PRECL solutions to design highly sensitive and stable multi-response detection systems for in vitro diagnostics.
Collapse
Affiliation(s)
- Wei Nie
- Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yisha Wang
- Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Chao Hu
- Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Xi Wei
- Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Hua Cui
- Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
3
|
Li T, Ding J, Wang Y, Su B. Regulating the work function and surface hydrophobicity of an indium tin oxide electrode for enhanced electrochemiluminescence analysis. Chem Commun (Camb) 2024; 60:15007-15010. [PMID: 39600298 DOI: 10.1039/d4cc05532b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The electrochemical properties of the indium tin oxide (ITO) electrode were improved significantly by surface modification with ethephon and an ultrathin polydimethylsiloxane (PDMS) layer to regulate the work function and surface hydrophobicity of ITO. Based on this strategy, the electrochemiluminescence (ECL) intensity of tris(2,2'-bipyridyl)ruthenium (Ru(bpy)32+) and tri-n-propylamine (TPrA) in solution and on a microbead surface can be enhanced by 110 and 2 times, respectively. When using the modified electrode to detect nicotinamide adenine dinucleotide (NADH), the linear range (5-1000 μM) was increased dramatically in comparison with a bare ITO electrode, with a limit of detection of 1.65 μM. The modified electrode with improved electrochemical properties holds great potential for applications in ECL bioassays and imaging analysis.
Collapse
Affiliation(s)
- Tengyu Li
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Jialian Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Yafeng Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Bin Su
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
4
|
Yan Y, Ding L, Ding J, Zhou P, Su B. Recent Advances in Electrochemiluminescence Visual Biosensing and Bioimaging. Chembiochem 2024; 25:e202400389. [PMID: 38899794 DOI: 10.1002/cbic.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
Electrochemiluminescence (ECL) is one of the most powerful techniques that meet the needs of analysis and detection in a variety of scenarios, because of its highly analytical sensitivity and excellent spatiotemporal controllability. ECL combined with microscopy (ECLM) offers a promising approach for quantifying and mapping a wide range of analytes. To date, ECLM has been widely used to image biological entities and processes, such as cells, subcellular structures, proteins and membrane transport properties. In this review, we first introduced the mechanisms of several classic ECL systems, then highlighted the progress of visual biosensing and bioimaging by ECLM in the last decade. Finally, the characteristics of ECLM were summarized, as well as some of the current challenges. The future research interests and potential directions for the application of ECLM were also outlooked.
Collapse
Affiliation(s)
- Yajuan Yan
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Lurong Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jialian Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Ben Trad F, Carré B, Delacotte J, Lemaître F, Guille-Collignon M, Arbault S, Sojic N, Labbé E, Buriez O. Electrochemiluminescent imaging of a NADH-based enzymatic reaction confined within giant liposomes. Anal Bioanal Chem 2024; 416:7385-7394. [PMID: 38227016 DOI: 10.1007/s00216-024-05133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Herein, transient releases either from NADH-loaded liposomes or enzymatic reactions confined in giant liposomes were imaged by electrochemiluminescence (ECL). NADH was first encapsulated with the [Ru(bpy)3]2+ luminophore inside giant liposomes (around 100 µm in diameter) made of DOPC/DOPG phospholipids (i.e., 1,2-dioleolyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycerol-3-phospho-(1'-rac-glycerol) sodium salt) on their inner- and outer-leaflet, respectively. Then, membrane permeabilization triggered upon contact between the liposome and a polarized ITO electrode surface and ECL was locally generated. Combination of amperometry, photoluminescence, and ECL provided a comprehensive monitoring of a single liposome opening and content release. In a second part, the work is focused on the ECL characterization of NADH produced by glucose dehydrogenase (GDH)-catalyzed oxidation of glucose in the confined environment delimited by the liposome membrane. This was achieved by encapsulating both the ECL and catalytic reagents (i.e., the GDH, glucose, NAD+, and [Ru(bpy)3]2+) in the liposome. In accordance with the results obtained, NADH can be used as a biologically compatible ECL co-reactant to image membrane permeabilization events of giant liposomes. Under these conditions, the ECL signal duration was rather long (around 10 s). Since many enzymatic reactions involve the NADH/NAD+ redox couple, this work opens up interesting prospects for the characterization of enzymatic reactions taking place notably in artificial cells and in confined environments.
Collapse
Affiliation(s)
- Fatma Ben Trad
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Bixente Carré
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Jérôme Delacotte
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Frédéric Lemaître
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Manon Guille-Collignon
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Stéphane Arbault
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600, Pessac, France
| | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 CNRS, 33400, Talence, France.
| | - Eric Labbé
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Olivier Buriez
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
6
|
Zhang L, Meng Y, Zhou W, Qi H, Du M, Liu F. A study of electrochemiluminescence mechanism of Rubrene/TPrA system in an aqueous solution via stochastic collision electrochemistry in an emulsion reactor. Anal Chim Acta 2024; 1330:343258. [PMID: 39489983 DOI: 10.1016/j.aca.2024.343258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Accepted: 09/17/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Electrochemiluminescence (ECL) is an electrochemically induced process in which radicals generated at the electrode surface undergo exergonic electron transfer reaction to form excited states and luminesce. ECL, with high sensitivity and superior spatiotemporal control, has been widely applied in bioanalysis and light-emitting devices. The ECL signal of rubrene (Rub) was observed in Rub/TPrA oil-in-water (o/w) emulsions, which was inconsistent with the theory of ion-transfer coupled electron-transfer in Rub emulsion droplets, and the conventional ECL mechanism in Rub/TPrA system couldn't explain this phenomenon. RESULTS Choosing the toluene oil-in-water emulsion droplets as reactors, we put forward and verified a new ECL mechanism of Rub in aqueous solution on the basis of cyclic voltammograms, single-entity electrochemistry, ECL detection techniques and COMSOL finite element simulation. The new mechanism involved that Rub was reduced to Rub•- by the highly reducing species TPrA•, Rub•- was then oxidized to the excited state Rub∗ by the stable intermediate TPrA•+, and finally Rub∗ was inactivated by emitting photons. In simulation, the standard oxidation rate constant of TPrA in the emulsion droplets was deduced as 1.5 × 10-4 cm/s, and the deprotonation rate of TPrA•+ was about 200 s-1. Besides, emulsion droplets colliding on Au ultramicroelectrode (UME) were found to be able to amplify ECL signals. SIGNIFICANCE The newly proposed ECL mechanism of Rub/TPrA emulsion reactors broke the solubility problem of Rub in an aqueous, promoting the research and application of the organic luminophore Rub in bioanalysis. With the ECL signals amplification capability, the o/w emulsion reactors are promising to future design of ECL biosensors with higher sensitivity.
Collapse
Affiliation(s)
- Lizhu Zhang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, PR China; Chongqing Science and Technology Innovation Center of NPU, Chongqing, 400799, PR China
| | - Yao Meng
- Shaanxi Huaqin New Energy Technology Co., Ltd, Xi'an, Shaanxi, 710119, PR China
| | - Wenshuai Zhou
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710072, PR China
| | - Honglan Qi
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710072, PR China
| | - Minshu Du
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, PR China; Chongqing Science and Technology Innovation Center of NPU, Chongqing, 400799, PR China.
| | - Feng Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, PR China; Analytical and Testing Center, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, PR China
| |
Collapse
|
7
|
Han Z, Ding H, Jiang D. Recent Advances in Luminophores for Enhanced Electrochemiluminescence Analysis. Molecules 2024; 29:4857. [PMID: 39459225 PMCID: PMC11510724 DOI: 10.3390/molecules29204857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Electrochemiluminescence (ECL) detection is widely applied in many fields, including chemical measurement, biological analysis, and clinic tests, due to its high sensitivity. Currently, the fast development of many new electrochemical luminophores is continuously improving the ECL-based detection ability. Besides the enhancement of luminescence emission for a high detection sensitivity, minimizing the effect of co-reactants on ECL detection and achieving multiple analysis in one sample are also the main directions in this field. This review focuses on a summary of recently prepared new luminophores to achieve the three aims mentioned above. Especially, the review is composed by three parts, focusing on the luminophores or materials with high ECL efficiency, self-enhancing properties, and multi-color ECL luminophores. The fabrication of biosensors using these molecules is also reviewed to exhibit the advances in biological applications.
Collapse
Affiliation(s)
| | - Hao Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China;
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China;
| |
Collapse
|
8
|
Liu X, Zheng X. Microfluidic-Based Electrical Operation and Measurement Methods in Single-Cell Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:6359. [PMID: 39409403 PMCID: PMC11478560 DOI: 10.3390/s24196359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024]
Abstract
Cellular heterogeneity plays a significant role in understanding biological processes, such as cell cycle and disease progression. Microfluidics has emerged as a versatile tool for manipulating single cells and analyzing their heterogeneity with the merits of precise fluid control, small sample consumption, easy integration, and high throughput. Specifically, integrating microfluidics with electrical techniques provides a rapid, label-free, and non-invasive way to investigate cellular heterogeneity at the single-cell level. Here, we review the recent development of microfluidic-based electrical strategies for single-cell manipulation and analysis, including dielectrophoresis- and electroporation-based single-cell manipulation, impedance- and AC electrokinetic-based methods, and electrochemical-based single-cell detection methods. Finally, the challenges and future perspectives of the microfluidic-based electrical techniques for single-cell analysis are proposed.
Collapse
Affiliation(s)
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
9
|
Knežević S, Totoricaguena-Gorriño J, Gajjala RKR, Hermenegildo B, Ruiz-Rubio L, Vilas-Vilela JL, Lanceros-Méndez S, Sojic N, Del Campo FJ. Enhanced Electrochemiluminescence at the Gas/Liquid Interface of Bubbles Propelled into Solution. J Am Chem Soc 2024; 146:22724-22735. [PMID: 39090816 DOI: 10.1021/jacs.4c07566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Electrochemiluminescence (ECL) is typically confined to a micrometric region from the electrode surface. This study demonstrates that ECL emission can extend up to several millimeters away from the electrode employing electrogenerated chlorine bubbles. The mechanism behind this bubble-enhanced ECL was investigated using an Au microelectrode in chloride-containing and chloride-free electrolyte solutions. We discovered that ECL emission at the gas/solution interface is driven by two parallel effects. First, the bubble corona effect facilitates the generation of hydroxyl radicals capable of oxidizing luminol while the bubble is attached to the surface. Second, hypochlorite generated from chlorine sustains luminol emission for over 200 s and extends the emission range up to 5 mm into the solution, following bubble detachment. The new approach can increase the emission intensity of luminol-based assays 5-fold compared to the conventional method. This is demonstrated through a glucose bioassay, using a midrange mobile phone camera for detection. These findings significantly expand the potential applications of ECL by extending its effective range in time and space.
Collapse
Affiliation(s)
- Sara Knežević
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, Pessac 33607, France
| | - Joseba Totoricaguena-Gorriño
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
| | - Rajendra Kumar Reddy Gajjala
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
| | - Bruno Hermenegildo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
| | - Leire Ruiz-Rubio
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
- Grupo de Química Macromolecular, Universidad del País Vasco, UPV-EHU, Campus de Leioa, Vizcaya 48940, Spain
| | - José Luis Vilas-Vilela
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
- Grupo de Química Macromolecular, Universidad del País Vasco, UPV-EHU, Campus de Leioa, Vizcaya 48940, Spain
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, Pessac 33607, France
| | - Francisco Javier Del Campo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
10
|
Zhang SY, Zhou XY, Chen HY, Deng LY, Li DW, Lv J, Qian RC. Real time imaging of cell-permeable nanoreactor with SERS for insight into cellular processes. Talanta 2024; 274:126010. [PMID: 38569372 DOI: 10.1016/j.talanta.2024.126010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Intracellular glucose detection is crucial due to its pivotal role in metabolism and various physiological processes. Precise glucose monitoring holds significance in diabetes management, metabolic studies, and biotechnological applications. In this study, we developed an innovative and expedient cell-permeable nanoreactor for intracellular glucose based on surface-enhanced Raman scattering (SERS). The nanoreactor was designed with gold nanoparticles (AuNPs), which were engineered with glucose oxide (GOx) and a H2O2-responsive Raman reporter 2-mercaptohydroquinone (2-MHQ). The interaction between 2-MHQ and H2O2 generated by glucose and GOx could simultaneously induce the appearance in the peak at 985 cm-1. Our results showed excellent performance in detecting glucose within the concentration range from 0.1 μM to 10 mM, with a low detection limitation of 14.72 nM. In addition, the glucose distribution in single HeLa cells was evaluated by real time SERS mapping. By combining noble metal particles and natural oxidases, the nanoreactor possesses both Raman activity and enzymatic functionality, thus enables sensitive glucose detection and facilitates imaging at a single cell level, which offers an insightful monitoring of cellular processes.
Collapse
Affiliation(s)
- Shi-Yi Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xin-Yue Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hua-Ying Chen
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Li-Yuan Deng
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Jian Lv
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
11
|
Ben Trad F, Delacotte J, Lemaître F, Guille-Collignon M, Arbault S, Sojic N, Labbé E, Buriez O. Shadow electrochemiluminescence imaging of giant liposomes opening at polarized electrodes. Analyst 2024; 149:3317-3324. [PMID: 38742381 DOI: 10.1039/d4an00470a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
In this work, the release of giant liposome (∼100 μm in diameter) content was imaged by shadow electrochemiluminescence (ECL) microscopy. Giant unilamellar liposomes were pre-loaded with a sucrose solution and allowed to sediment at an ITO electrode surface immersed in a solution containing a luminophore ([Ru(bpy)3]2+) and a sacrificial co-reactant (tri-n-propylamine). Upon polarization, the electrode exhibited illumination over its entire surface thanks to the oxidation of ECL reagents. However, as soon as liposomes reached the electrode surface, dark spots appeared and then spread over time on the surface. This observation reflected a blockage of the electrode surface at the contact point between the liposome and the electrode surface, followed by the dilution of ECL reagents after the rupture of the liposome membrane and release of its internal ECL-inactive solution. Interestingly, ECL reappeared in areas where it initially faded, indicating back-diffusion of ECL reagents towards the previously diluted area and thus confirming liposome permeabilization. The whole process was analyzed qualitatively and quantitatively within the defined region of interest. Two mass transport regimes were identified: a gravity-driven spreading process when the liposome releases its content leading to ECL vanishing and a diffusive regime when ECL recovers. The reported shadow ECL microscopy should find promising applications for the imaging of transient events such as molecular species released by artificial or biological vesicles.
Collapse
Affiliation(s)
- Fatma Ben Trad
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Jérôme Delacotte
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Frédéric Lemaître
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Manon Guille-Collignon
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Stéphane Arbault
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 CNRS, 33400 Talence, France.
| | - Eric Labbé
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Olivier Buriez
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
12
|
Meng X, Pang X, Yang J, Zhang X, Dong H. Recent Advances in Electrochemiluminescence Biosensors for MicroRNA Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307701. [PMID: 38152970 DOI: 10.1002/smll.202307701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Electrochemiluminescence (ECL) as an analytical technology with a perfect combination of electrochemistry and spectroscopy has received considerable attention in bioanalysis due to its high sensitivity and broad dynamic range. Given the selectivity of bio-recognition elements and the high sensitivity of the ECL analysis technique, ECL biosensors are powerful platforms for the sensitive detection of biomarkers, achieving the accurate prognosis and diagnosis of diseases. MicroRNAs (miRNAs) are crucial biomarkers involved in a variety of physiological and pathological processes, whose aberrant expression is often related to serious diseases, especially cancers. ECL biosensors can fulfill the highly sensitive and selective requirements for accurate miRNA detection, prompting this review. The ECL mechanisms are initially introduced and subsequently categorize the ECL biosensors for miRNA detection in terms of the quenching agents. Furthermore, the work highlights the signal amplification strategies for enhancing ECL signal to improve the sensitivity of miRNA detection and finally concludes by looking at the challenges and opportunities in ECL biosensors for miRNA detection.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Xuejiao Pang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Junyan Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, P. R. China
| |
Collapse
|
13
|
Li C, Feng M, Stanković D, Bouffier L, Zhang F, Wang Z, Sojic N. Wireless rotating bipolar electrochemiluminescence for enzymatic detection. Analyst 2024; 149:2756-2761. [PMID: 38563766 DOI: 10.1039/d4an00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
New dynamic, wireless and cost-effective analytical devices are developing rapidly in biochemical analysis. Here, we report on a remotely-controlled rotating electrochemiluminescence (ECL) sensing system for enzymatic detection of a model analyte, glucose, on both polarized sides of an iron wire acting as a bipolar electrode. The iron wire is controlled by double contactless mode, involving remote electric field polarization, and magnetic field-induced rotational motion. The former triggers the interfacial polarization of both extremities of the wire by bipolar electrochemistry, which generates ECL emission of the luminol derivative (L-012) with the enzymatically produced hydrogen peroxide in presence of glucose, at both anodic and cathodic poles, simultaneously. The latter generates a convective flow, leading to an increase in mass transfer and amplifying the corresponding ECL signals. Quantitative glucose detection in human serum samples is achieved. The ECL signals were found to be a linear function of the glucose concentration within the range of 10-1000 μM and with a limit of detection of 10 μM. The dynamic bipolar ECL system simultaneously generates light emissions at both anodic and cathodic poles for glucose detection, which can be further applied to biosensing and imaging in autonomous devices.
Collapse
Affiliation(s)
- Chunguang Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Minghui Feng
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Dalibor Stanković
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Laurent Bouffier
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, 33607 Pessac, France.
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, 33607 Pessac, France.
| |
Collapse
|
14
|
Zhang H, Jiang H, Liu X, Wang X. A review of innovative electrochemical strategies for bioactive molecule detection and cell imaging: Current advances and challenges. Anal Chim Acta 2024; 1285:341920. [PMID: 38057043 DOI: 10.1016/j.aca.2023.341920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 12/08/2023]
Abstract
Cellular heterogeneity poses a major challenge for tumor theranostics, requiring high-resolution intercellular bioanalysis strategies. Over the past decades, the advantages of electrochemical analysis, such as high sensitivity, good spatio-temporal resolution, and ease of use, have made it the preferred method to uncover cellular differences. To inspire more creative research, herein, we highlight seminal works in electrochemical techniques for biomolecule analysis and bioimaging. Specifically, micro/nano-electrode-based electrochemical techniques enable real-time quantitative analysis of electroactive substances relevant to life processes in the micro-nanostructure of cells and tissues. Nanopore-based technique plays a vital role in biosensing by utilizing nanoscale pores to achieve high-precision detection and analysis of biomolecules with exceptional sensitivity and single-molecule resolution. Electrochemiluminescence (ECL) technology is utilized for real-time monitoring of the behavior and features of individual cancer cells, enabling observation of their dynamic processes due to its capability of providing high-resolution and highly sensitive bioimaging of cells. Particularly, scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM) which are widely used in real-time observation of cell surface biological processes and three-dimensional imaging of micro-nano structures, such as metabolic activity, ion channel activity, and cell morphology are introduced in this review. Furthermore, the expansion of the scope of cellular electrochemistry research by innovative functionalized electrodes and electrochemical imaging models and strategies to address future challenges and potential applications is also discussed in this review.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
15
|
Ino K, Utagawa Y, Shiku H. Microarray-Based Electrochemical Biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:317-338. [PMID: 37306698 DOI: 10.1007/10_2023_229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microarrays are widely utilized in bioanalysis. Electrochemical biosensing techniques are often applied in microarray-based assays because of their simplicity, low cost, and high sensitivity. In such systems, the electrodes and sensing elements are arranged in arrays, and the target analytes are detected electrochemically. These sensors can be utilized for high-throughput bioanalysis and the electrochemical imaging of biosamples, including proteins, oligonucleotides, and cells. In this chapter, we summarize recent progress on these topics. We categorize electrochemical biosensing techniques for array detection into four groups: scanning electrochemical microscopy, electrode arrays, electrochemiluminescence, and bipolar electrodes. For each technique, we summarize the key principles and discuss the advantages, disadvantages, and bioanalysis applications. Finally, we present conclusions and perspectives about future directions in this field.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
| | - Yoshinobu Utagawa
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
16
|
Huang K, Wang YH, Zhang H, Wang TY, Liu XH, Liu L, Jiang H, Wang XM. Application and outlook of electrochemical technology in single-cell analysis. Biosens Bioelectron 2023; 242:115741. [PMID: 37816284 DOI: 10.1016/j.bios.2023.115741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Cellular heterogeneity, especially in some important diseased cells like tumor cells, acts as an invisible driver for disease development like cancer progression in the tumor ecosystem, contributing to differences in the macroscopic and microscopic detection of disease lesions like tumors. Traditional analysis techniques choose group information masked by the mean as the analysis sample, making it difficult to achieve precise diagnosis and target treatment, on which could be shed light via the single-cell level determination/bioanalysis. Hence, in this article we have reviewed the special characteristic differences among various kinds of typical single-cell bioanalysis strategies and electrochemical techniques, and then focused on the recent advance and special bio-applications of electrochemiluminescence and micro-nano electrochemical sensing mediated in single-cell bioimaging & bioanalysis. Especially, we have summarized the relevant research exploration of the possibility to establish the in-situ single-cell electrochemical methods to detect cell heterogeneity through determination of specific biomolecules and bioimaging of some important biological processes. Eventually, this review has explored some important advances of electrochemical single-cell detection techniques for the real-time cellular bioimaging and diagnostics of some disease lesions like tumors. It raises the possibility to provide the specific in-situ platform to exploit the versatile, sensitive, and high-resolution electrochemical single-cell analysis for the promising biomedical applications like rapid tracing of some disease lesions or in vivo bioimaging for precise cancer theranostics.
Collapse
Affiliation(s)
- Ke Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yi Han Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hao Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ting Ya Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiao Hui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Xue Mei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
17
|
Yan Y, Zhou P, Ding L, Hu W, Chen W, Su B. T Cell Antigen Recognition and Discrimination by Electrochemiluminescence Imaging. Angew Chem Int Ed Engl 2023; 62:e202314588. [PMID: 37903724 DOI: 10.1002/anie.202314588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Adoptive T lymphocyte (T cell) transfer and tumour-specific peptide vaccines are innovative cancer therapies. An accurate assessment of the specific reactivity of T cell receptors (TCRs) to tumour antigens is required because of the high heterogeneity of tumour cells and the immunosuppressive tumour microenvironment. In this study, we report a label-free electrochemiluminescence (ECL) imaging approach for recognising and discriminating between TCRs and tumour-specific antigens by imaging the immune synapses of T cells. Various T cell stimuli, including agonistic antibodies, auxiliary molecules, and tumour-specific antigens, were modified on the electrode's surface to allow for their interaction with T cells bearing different TCRs. The formation of immune synapses activated by specific stimuli produced a negative (shadow) ECL image, from which T cell antigen recognition and discrimination were evaluated by analysing the spreading area and the recognition intensity of T cells. This approach provides an easy way to assess TCR-antigen specificity and screen both of them for immunotherapies.
Collapse
Affiliation(s)
- Yajuan Yan
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Lurong Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei Hu
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wei Chen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Education Frontier Science Center for Brain Science & Brain-machine Integration, State Key Laboratory for Modern Optical Instrumentation, Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310012, China
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
18
|
Yu P, Chen W, Ge L, Fang J, Huang X, Tong H, Chen Z, Ding C, Huang Y. Logic gate-driven dual-index balanced visualization strategy for tumor metastasis diagnosis. Biosens Bioelectron 2023; 237:115556. [PMID: 37536227 DOI: 10.1016/j.bios.2023.115556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Exfoliated tumor cells are integral to malignant tumors diagnosis. The process of clinical cytology of exfoliation involves several complex steps that require at least two days of preparation. Here, we develop a balanced-etching visual kit based on concentration differences of Glutathione/Glucose (GSH/Glu) to distinguish normal from exfoliated tumor cells rapidly and accurately. The balanced-etching visualization kit can be used to obtain color cards and screen exfoliated tumor cells initially (within 10 min). Furthermore, by utilizing logic gates and machine learning algorithms for RGB extraction of the color card obtained from the kit, accurate screening of exfoliated tumor cells is achieved. Finally, a series of clinical tumor samples, such as urine, pleural fluids, ascites, and gastric fluids, have been validated. With effective experimental methods, accurate disease information, and appropriate therapeutic programs, the novel diagnostic strategy is expected to promote precision medicine.
Collapse
Affiliation(s)
- Pengfei Yu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Department of Gastric Surgery, Hangzhou, Zhejiang, 310022, China
| | - Weiwei Chen
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou, Zhejiang, 311121, China
| | - Li Ge
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou, Zhejiang, 311121, China; Zhengjiang Zhongwei Medical Research Center, Department of Research and Development, Hangzhou, Zhejiang, 310020, China.
| | - Jingquan Fang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Department of Gastric Surgery, Hangzhou, Zhejiang, 310022, China
| | - Xingmao Huang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Department of Gastric Surgery, Hangzhou, Zhejiang, 310022, China
| | - Hui Tong
- Zhengjiang Zhongwei Medical Research Center, Department of Research and Development, Hangzhou, Zhejiang, 310020, China
| | - Zikang Chen
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou, Zhejiang, 311121, China
| | - Caiping Ding
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou, Zhejiang, 311121, China.
| | - Youju Huang
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
19
|
Ma T, Ren S, Wang Y, Yu H, Li L, Li X, Zhang L, Yu J, Zhang Y. Paper-based bipolar electrode electrochemiluminescence sensors for point-of-care testing. Biosens Bioelectron 2023; 235:115384. [PMID: 37244092 DOI: 10.1016/j.bios.2023.115384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
In the past few years, point-of-care testing (POCT) technology has crossed the boundaries of laboratory determination and entered the stage of practical applications. Herein, the latest advances and principal issues in the design and fabrication of paper-based bipolar electrode electrochemiluminescence (BPE-ECL) sensors, which are widely used in the POCT field, are highlighted. After introducing the attractive physical and chemical properties of cellulose paper, various approaches aimed at enhancing the functions of the paper, and their underlying principles are described. The materials typically employed for fabricating paper-based BPE are also discussed in detail. Subsequently, the universal method of enhancing BPE-ECL signal and improving detection accuracy is put forward, and the ECL detector widely used is introduced. Furthermore, the application of paper-based BPE-ECL sensors in biomedical, food, environmental and other fields are displayed. Finally, future opportunities and the remaining challenges are analyzed. It is expected that more design concepts and working principles for paper-based BPE-ECL sensors will be developed in the near future, paving the way for the development and application of paper-based BPE-ECL sensors in the POCT field and providing certain guarantee for the development of human health.
Collapse
Affiliation(s)
- Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Suyue Ren
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Luqing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
20
|
Ding H, Su B, Jiang D. Recent Advances in Single Cell Analysis by Electrochemiluminescence. ChemistryOpen 2023; 12:e202200113. [PMID: 35880657 PMCID: PMC10152889 DOI: 10.1002/open.202200113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Indexed: 11/07/2022] Open
Abstract
Understanding biological mechanisms operating in cells is one of the major goals of biology. Since heterogeneity is the fundamental property of cellular systems, single cell measurements can provide more accurate information about the composition, dynamics, and regulatory circuits of cells than population-averaged assays. Electrochemiluminescence (ECL), the light emission triggered by electrochemical reactions, is an emerging approach for single cell analysis. Numerous analytes, ranging from small biomolecules such as glucose and cholesterol, proteins and nucleic acids to subcellular structures, have been determined in single cells by ECL, which yields new insights into cellular functions. This review aims to provide an overview of research progress on ECL principles and systems for single cell analysis in recent years. The ECL reaction mechanisms are briefly introduced, and then the advances and representative works in ECL single cell analysis are summarized. Finally, outlooks and challenges in this field are addressed.
Collapse
Affiliation(s)
- Hao Ding
- State Key Laboratory of Analytical Chemistry for Life ScienceChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Bin Su
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310058China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life ScienceChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
21
|
He Y, Wang T, Cao J, Zhao F, Zeng B. Molecular imprinting electrochemiluminescence sensor based on nitrogen-doped carbon quantum dots /Ru(bpy) 3@SiO 2 for the determination of citrinin. Mikrochim Acta 2023; 190:155. [PMID: 36964303 DOI: 10.1007/s00604-023-05735-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/07/2023] [Indexed: 03/26/2023]
Abstract
An electrochemiluminescence (ECL) sensor based on molecular imprinting polymer and SiO2 nanoparticles loaded Ru(bpy)3 and nitrogen-doped carbon quantum dots (NCQDs) is constructed for citrinin detection. The Ru(bpy)3 acts as ECL emitter, and the NCQDs cooperate with tri-n-propylamine (TPA) in solution as a coreactant to facilitate the luminescence. The citrinin imprinted poly(p-aminothiophenol) film is deposited on the surface of the luminophore by electrochemical method, which can immobilize the luminophore besides recognizing the target. The obtained ECL sensor exhibits high sensitivity, stability, and reproducibility. The change of ECL intensity and the logarithm of citrinin concentration display a good linear relationship in the range 1.0 to 100 pg mL-1, and the detection limit is 5 fg mL-1. When it is applied to the detection of citrinin contents in food sample (i.e., rice and millet) solutions, the RSD is less than 6.1%, and the recoveries for spiked standards range from 95.5 to 102.0%. Hence, this work provides a promising alternative for citrinin detection.
Collapse
Affiliation(s)
- Yifei He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People's Republic of China
| | - Tingting Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People's Republic of China
| | - Jiangping Cao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People's Republic of China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People's Republic of China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People's Republic of China.
| |
Collapse
|
22
|
Hyun Choi J, Hui Lee D, Lee WY. Enhanced cathodic electrogenerated chemiluminescence of luminol at a MXene–Nafion composite-modified electrode in neutral aqueous solution. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
23
|
Wu K, Zheng Y, Chen R, Zhou Z, Liu S, Shen Y, Zhang Y. Advances in electrochemiluminescence luminophores based on small organic molecules for biosensing. Biosens Bioelectron 2023; 223:115031. [PMID: 36571992 DOI: 10.1016/j.bios.2022.115031] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Electrochemiluminescence (ECL) has several advantages, such as a near-zero background signal, high sensitivity, wide dynamic range, simplicity, and is widely used for sensing, imaging, and single cell analysis. ECL luminophores are the key factors in the performance of various applications. Among various luminophores, small organic luminophores exhibit many intriguing features including good biocompatibility, facile modification, well-defined molecular structure, and sustainable raw materials, making small organic luminophores attractive for the use in the ECL field. Although many great achievements have been made in the synthesis of new small organic luminophores, solving various challenges, and expanding new applications, there are almost no comprehensive reviews on small organic ECL luminophores. In this review, we briefly introduce the advantages and emission mechanisms of small organic ECL luminophores, summarize the main types, molecular characteristics, and ECL properties of most existing small organic ECL luminophores, and present the important applications and design principles in sensors, imaging, single cell analysis, sterilization, and other fields. Finally, the challenges and outlook of organic ECL luminophores to be popularized in biosensing applications are also discussed.
Collapse
Affiliation(s)
- Kaiqing Wu
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Yongjun Zheng
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Ran Chen
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Zhixin Zhou
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China.
| | - Songqin Liu
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
24
|
Zhou P, Ding L, Yan Y, Wang Y, Su B. Recent advances in label-free imaging of cell-matrix adhesions. Chem Commun (Camb) 2023; 59:2341-2351. [PMID: 36744880 DOI: 10.1039/d2cc06499e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell-matrix adhesions play an essential role in mediating and regulating many biological processes. The adhesion receptors, typically transmembrane integrins, provide dynamic correlations between intracellular environments and extracellular matrixes (ECMs) by bi-directional signaling. In-depth investigations of cell-matrix adhesion and integrin-mediated cell adhesive force are of great significance in biology and medicine. The emergence of advanced imaging techniques and principles has facilitated the understanding of the molecular composition and structure dynamics of cell-matrix adhesions, especially the label-free imaging methods that can be used to study living cell dynamics without immunofluorescence staining. This highlight article aims to give an overview of recent developments in imaging cell-matrix adhesions in a label-free manner. Electrochemiluminescence microscopy (ECLM) and surface plasmon resonance microscopy (SPRM) are briefly introduced and their applications in imaging analysis of cell-matrix adhesions are summarized. Then we highlight the advances in mapping cell-matrix adhesion force based on molecular tension probes and fluorescence microscopy (collectively termed as MTFM). The biomaterials including polyethylene glycol (PEG), peptides and DNA for constructing tension probes in MTFM are summarized. Finally, the outlook and perspectives on the further developments of cell-matrix adhesion imaging are presented.
Collapse
Affiliation(s)
- Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Lurong Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Yajuan Yan
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Yafeng Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Wang Y, Ding J, Zhou P, Liu J, Qiao Z, Yu K, Jiang J, Su B. Electrochemiluminescence Distance and Reactivity of Coreactants Determine the Sensitivity of Bead-Based Immunoassays. Angew Chem Int Ed Engl 2023; 62:e202216525. [PMID: 36812044 DOI: 10.1002/anie.202216525] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Herein we report the study of electrochemiluminescence (ECL) generation by tris(2,2'-bipyridyl)ruthenium (Ru(bpy)3 2+ ) and five tertiary amine coreactants. The ECL distance and lifetime of coreactant radical cations were measured by ECL self-interference spectroscopy. And the reactivity of coreactants was quantitatively evaluated in terms of integrated ECL intensity. By statistical analysis of ECL images of single Ru(bpy)3 2+ -labeled microbeads, we propose that ECL distance and reactivity of coreactant codetermine the emission intensity and thus the sensitivity of immunoassay. 2,2-bis(hydroxymethyl)-2,2',2''-nitrilotriethanol (BIS-TRIS) can well balance ECL distance-reactivity trade-off and enhance the sensitivity by 236 % compared with tri-n-propylamine (TPrA) in the bead-based immunoassay of carcinoembryonic antigen. The study brings an insightful understanding of ECL generation in bead-based immunoassay and a way of maximizing the analytical sensitivity from the aspect of coreactant.
Collapse
Affiliation(s)
- Yafeng Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jialian Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jilin Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhiyuan Qiao
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology, Weihai, 150090, China
| | - Kai Yu
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology, Weihai, 150090, China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.,School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology, Weihai, 150090, China.,State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
26
|
Baljinnyam B, Ronzetti M, Simeonov A. Advances in luminescence-based technologies for drug discovery. Expert Opin Drug Discov 2023; 18:25-35. [PMID: 36562206 PMCID: PMC9892298 DOI: 10.1080/17460441.2023.2160441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Luminescence-based technologies, specifically bioluminescence and chemiluminescence, are powerful tools with extensive use in drug discovery. Production of light during chemiluminescence and bioluminescence, unlike fluorescence, doesn't require an excitation light source, resulting in high signal-to-noise ratio, less background interference, and no issues from phototoxicity and photobleaching. These characteristics of luminescence technologies offer unique advantages for experimental designs, allowing for greater flexibility to target a wide range of proteins and biological processes for drug discovery at different stages. AREAS COVERED This review provides a basic overview of luciferase-based technologies and details recent advances and use cases of luciferase and luciferin variations and their applicability in the drug discovery toolset. The authors expand upon specific applications of luciferase technologies, including chemiluminescent and bioluminescent-based microscopy. Finally, the authors lay out forward-looking statements on the field of luminescence and how it may shape the translational scientists' work moving forward. EXPERT OPINION The demand for improved luciferase and luciferin pairs correlates strongly with efforts to improve the sensitivity and robustness of high-throughput assays. As luminescent reporter systems improve, so will the expansion of use cases for luminescence-based technologies in early-stage drug discovery. With the synthesis of novel, non-enzymatic chemiluminescence-based probes, which previously were restrained to only basic research applications, they may now be readily implemented in drug discovery campaigns.
Collapse
Affiliation(s)
- Bolormaa Baljinnyam
- Staff Scientist, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Michael Ronzetti
- Predoctoral IRTA Fellow, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Anton Simeonov
- Group Leader, Scientific Director, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
27
|
Yang Q, Huang X, Gao B, Gao L, Yu F, Wang F. Advances in electrochemiluminescence for single-cell analysis. Analyst 2022; 148:9-25. [PMID: 36475529 DOI: 10.1039/d2an01159j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent years have witnessed the emergence of innovative analytical methods with high sensitivity and spatiotemporal resolution that allowed qualitative and quantitative analysis to be carried out at single-cell and subcellular levels. Electrochemiluminescence (ECL) is a unique chemiluminescence of high-energy electron transfer triggered by electrical excitation. The ingenious combination of electrochemistry and chemiluminescence results in the distinct advantages of high sensitivity, a wide dynamic range and good reproducibility. Specifically, single-cell ECL (SCECL) analysis with excellent spatiotemporal resolution has emerged as a promising toolbox in bioanalysis for revealing individual cells' heterogeneity and stochastic processes. This review focuses on advances in SCECL analysis and bioimaging. The history and recent advances in ECL probes and strategies for system design are briefly reviewed. Subsequently, the latest advances in representative SCECL analysis techniques for bioassays, bioimaging and therapeutics are also highlighted. Then, the current challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Qian Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. .,Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Xiaoyu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Beibei Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lu Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Fu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
28
|
Zhai T, Xue Y, Li Y, Zhu J, Li J, Wang E. Hot electron-induced electrochemiluminescence of polystyrene modified electrode for rutin determination. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Ma G, Zhang P, Zhou X, Wan Z, Wang S. Label-Free Single-Molecule Pulldown for the Detection of Released Cellular Protein Complexes. ACS CENTRAL SCIENCE 2022; 8:1272-1281. [PMID: 36188347 PMCID: PMC9523780 DOI: 10.1021/acscentsci.2c00602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 06/16/2023]
Abstract
Precise and sensitive detection of intracellular proteins and complexes is key to the understanding of signaling pathways and cell functions. Here, we present a label-free single-molecule pulldown (LFSMP) technique for the imaging of released cellular protein and protein complexes with single-molecule sensitivity and low sample consumption down to a few cells per mm2. LFSMP is based on plasmonic scattering imaging and thus can directly image the surface-captured molecules without labels and quantify the binding kinetics. In this paper, we demonstrate the detection principle for LFSMP, study the phosphorylation of protein complexes involved in a signaling pathway, and investigate how kinetic analysis can be used to improve the pulldown specificity. We wish our technique can contribute to uncovering the molecular mechanisms in cells with single-molecule resolution.
Collapse
Affiliation(s)
- Guangzhong Ma
- Biodesign
Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
| | - Pengfei Zhang
- Biodesign
Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
| | - Xinyu Zhou
- Biodesign
Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Zijian Wan
- Biodesign
Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
- School
of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Biodesign
Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
30
|
Chen MM, Xu CH, Zhao W, Chen HY, Xu JJ. Single Cell Imaging of Electrochemiluminescence-Driven Photodynamic Therapy. Angew Chem Int Ed Engl 2022; 61:e202117401. [PMID: 35165987 DOI: 10.1002/anie.202117401] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 01/06/2023]
Abstract
We report a photodynamic therapy driven by electrochemiluminescence (ECL). The luminescence generated by Ru(bpy)3 2+ and co-reactant tripropylamine (TPA) pair acts as both optical readout for ECL imaging, and light source for the excitation of photosensitizer to produce reactive oxygen species (ROS) in photodynamic therapy (PDT) system. The ECL-driven PDT (ECL-PDT) relies on the effective energy transfer from ECL emission to photosensitizer chlorin e6 (Ce6), which sensitizes the surrounding O2 into ROS. The dynamic process of gradual morphological changes, the variation of cell-matrix adhesions, as well as the increase of cell membrane permeability in the process of ECL-PDT were monitored under ECL microscopy (ECLM) with good spatiotemporal resolution. Combining real-time imaging with ECL-PDT, this new strategy provides not only new insights into dynamic cellular processes, but also promising potential of ECL in clinical applications.
Collapse
Affiliation(s)
- Ming-Ming Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cong-Hui Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
31
|
The Effect of Ionic Strength on the Electrochemiluminescence Generation by Tris(2,2′-bipyridyl)ruthenium(II)/Tri-n-propylamine. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Chen M, Xu C, Zhao W, Chen H, Xu J. Single Cell Imaging of Electrochemiluminescence‐Driven Photodynamic Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming‐Ming Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Cong‐Hui Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- Institute of Nanochemistry and Nanobiology School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- Institute of Nanochemistry and Nanobiology School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
33
|
Ben Trad F, Wieczny V, Delacotte J, Morel M, Guille-Collignon M, Arbault S, Lemaître F, Sojic N, Labbé E, Buriez O. Dynamic Electrochemiluminescence Imaging of Single Giant Liposome Opening at Polarized Electrodes. Anal Chem 2022; 94:1686-1696. [DOI: 10.1021/acs.analchem.1c04238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fatma Ben Trad
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Vincent Wieczny
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Jérôme Delacotte
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Mathieu Morel
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Manon Guille-Collignon
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Stéphane Arbault
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248 CNRS, F-33600 Pessac, France
| | - Frédéric Lemaître
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Neso Sojic
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| | - Eric Labbé
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Olivier Buriez
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
34
|
Confined electrochemiluminescence imaging microarray for high-throughput biosensing of single cell-released dopamine. Biosens Bioelectron 2022; 201:113959. [PMID: 34999521 DOI: 10.1016/j.bios.2021.113959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
The quantitative detection of single cell secretions is always limited by their accurate collection and the heterogeneity of different cells. In this work, a confined electrochemiluminescence (ECL) imaging microarray (CEIM) chip was designed to capture single or a few cells in each cylindrical microwell for high-throughput quantitation of cell-secreted dopamine (DA). The ITO surface at the bottom of microwells was functionalized with the film of DA aptamer modified coreactant-embedded polymer dots (Pdots), which endowed the chip with the abilities to both in situ recognize the target DA secreted from the cells and emit the ECL signal for responding the secreted target without need of any additional coreactant. At the applied potential of +1.4 V, the Pdots in the film emitted strong ECL signal, which could be quenched by the electrochemical oxidation product of DA in individual microwell for sensitive detection of single cell-released DA. The practicability of the proposed CEIM chip along with the ECL imaging and biosensing strategy was demonstrated by evaluating the amounts of single cell-released DA in different microwells under hypoxia stimulation. This protocol revealed the heterogeneity of cell secretion, and could be extended for quantitation of other secretions from different kinds of single cells.
Collapse
|
35
|
Ding H, Guo W, Ding L, Su B. Confined Electrochemiluminescence at Microtube Electrode Ensembles for Local Sensing of Single Cells
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hao Ding
- Institute of Analytical Chemistry, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310058 China
| | - Weiliang Guo
- School of Chemistry and Materials Science Nanjing Normal University Nanjing Jiangsu 210023 China
| | - Lurong Ding
- Institute of Analytical Chemistry, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310058 China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310058 China
| |
Collapse
|
36
|
|
37
|
Abstract
Electrochemistry represents an important analytical technique used to acquire and assess chemical information in detail, which can aid fundamental investigations in various fields, such as biological studies. For example, electrochemistry can be used as simple and cost-effective means for bio-marker tracing in applications, such as health monitoring and food security screening. In combination with light, powerful spatially-resolved applications in both the investigation and manipulation of biochemical reactions begin to unfold. In this article, we focus primarily on light-addressable electrochemistry based on semiconductor materials and light-readable electrochemistry enabled by electrochemiluminescence (ECL). In addition, the emergence of multiplexed and imaging applications will also be introduced.
Collapse
|
38
|
Jian X, Xu J, Wang Y, Zhao C, Gao Z, Song YY. Deployment of MIL-88B(Fe)/TiO 2 Nanotube-Supported Ti Wires as Reusable Electrochemiluminescence Microelectrodes for Noninvasive Sensing of H 2O 2 from Single Cancer Cells. Anal Chem 2021; 93:11312-11320. [PMID: 34355899 DOI: 10.1021/acs.analchem.1c02670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As one of the significant intracellular signaling molecules, hydrogen peroxide (H2O2) regulates some vital biological processes. However, it remains a challenge to develop noninvasive electrodes that can be used for sensing trace H2O2 at the cellular level. Here, we evaluated a high-performance solid-state electrochemiluminescence (ECL) H2O2 sensor based on MIL-88B(Fe) nanocrystal-anchored Ti microwires. Semiconducting TiO2 nanotubes (TiNTs) vertically grown around a Ti wire via an anodization technique act as an intrinsic ECL luminophore. By integrating with MIL-88B(Fe), the synergistic effect of the TiO2 luminophore and the remarkable peroxidase-like activity of MIL-88B(Fe) enable the resulting H2O2 sensor an ultrahigh sensitivity featuring a minimum detection limit of 0.1 nM (S/N = 3), long-term stability, high durativity, and wide-range linear response to a concentration of up to 10 mM. To demonstrate the concept of a MIL-88B(Fe)@TiO2 microelectrode for single-cell sensing, the electrode was used to detect intracellular H2O2 in a single cell. Moreover, benefiting from the heterojunction of MIL-88B(Fe)/TiO2, the microelectrode was found to exhibit excellent photocatalytic activity in the visible-light range, that is, the sensor surface can be self-cleaning after a short visible-light treatment. These advanced sensor characteristics involving easy reusability reveal that the MIL-88B(Fe)@TiO2 microelectrode is a new platform for cytosensing. This study provides a new strategy to design semiconductor materials with arbitrary shape and size, allowing for profound applications in biomedical and clinical analysis.
Collapse
Affiliation(s)
- Xiaoxia Jian
- College of Science, Northeastern University, Shenyang 110004, China
| | - Jing Xu
- College of Science, Northeastern University, Shenyang 110004, China
| | - Yiming Wang
- College of Science, Northeastern University, Shenyang 110004, China
| | - Chenxi Zhao
- College of Science, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Science, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang 110004, China
| |
Collapse
|
39
|
Zhou J, Zhang S, Liu Y. Electrochemiluminescence Single‐cell Analysis on Nanostructured Interface. ELECTROANAL 2021. [DOI: 10.1002/elan.202100341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Juanhua Zhou
- Department of Chemistry Beijing Key Laboratory for Analytical Methods and Instrumentation Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education Tsinghua University Beijing 100084 China
| | - Shiyu Zhang
- Department of Chemistry Beijing Key Laboratory for Analytical Methods and Instrumentation Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education Tsinghua University Beijing 100084 China
| | - Yang Liu
- Department of Chemistry Beijing Key Laboratory for Analytical Methods and Instrumentation Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education Tsinghua University Beijing 100084 China
| |
Collapse
|
40
|
Song X, Zhao L, Luo C, Ren X, Yang L, Wei Q. Peptide-Based Biosensor with a Luminescent Copper-Based Metal-Organic Framework as an Electrochemiluminescence Emitter for Trypsin Assay. Anal Chem 2021; 93:9704-9710. [PMID: 34242018 DOI: 10.1021/acs.analchem.1c00850] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A copper-based metal-organic framework (JUC-1000) has emerged as a promising electrochemiluminescence (ECL) emitter in the domains of bioanalysis and immunoassay. Herein, a highly efficient signal "on-off" peptide-based biosensor was constructed for trypsin (TPN) assay. JUC-1000 synthesized using an organic ligand of H4BDPO was functionalized as the ECL emitter, whose cathodic ECL behavior in aqueous media was first investigated using potassium persulfate (K2S2O8) as the coreactant. To further amplify the ECL signal, highly catalytic Ag@CeO2 nanoparticles were fabricated as both a substrate and an coreaction accelerator, which can efficiently catalyze the reduction of S2O82- to generate more sulfate anion radicals (SO4•-) for ECL enhancement, thereby generating strong and stable ECL signals in a "signal on" state. The functionalized JUC-1000 emitter was connected to the Ag@CeO2 sensing layer though a heptapeptide (HWRGWVC, HGC), and TPN as the target can specifically cleave the carboxyl side of arginine residues in HGC, leading to the release of emitters in a "signal off" state. Based on the efficient signal-switching, the biosensor exhibited linear ECL responses to the added TPN concentration, realizing sensitive detection of TPN in 10 fg/mL to 100 ng/mL with a limit of detection of 3.46 fg/mL. This work proposed an attractive orientation for the fundamental research of applying transition metal-organic frameworks as ECL emitters in bioanalysis and immunoassay.
Collapse
Affiliation(s)
- Xianzhen Song
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Lu Zhao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Chuannan Luo
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Lei Yang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| |
Collapse
|
41
|
Hiramoto K, Ino K, Komatsu K, Nashimoto Y, Shiku H. Electrochemiluminescence imaging of respiratory activity of cellular spheroids using sequential potential steps. Biosens Bioelectron 2021; 181:113123. [PMID: 33714859 DOI: 10.1016/j.bios.2021.113123] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022]
Abstract
The respiratory activity of cultured cells can be electrochemically monitored using scanning electrochemical microscopy (SECM) with high spatial resolution. However, in SECM, the electrode takes a long time to scan, limiting simultaneous measurements with large biological samples such as cell spheroids. Therefore, for rapid electrochemical imaging, a novel strategy is needed. Herein, we report electrochemiluminescence (ECL) imaging of spheroid respiratory activity for the first time using sequential potential steps. L-012, a luminol analog, was used as an ECL luminophore, and H2O2, a sensitizer for ECL of L-012, was generated by the electrochemical reduction of dissolved O2. The ECL imaging visualized spheroid respiratory activity-evidenced by ECL suppression-corresponding to O2 distribution around the spheroids. This method enabled the time-lapse imaging of respiratory activity in multiple spheroids with good spatial resolution comparable to that of SECM. Our work provides a promising high-throughput imaging strategy for elucidating spheroid cellular dynamics.
Collapse
Affiliation(s)
- Kaoru Hiramoto
- Graduate School of Environmental Studies, Tohoku University, Japan
| | - Kosuke Ino
- Graduate School of Engineering, Tohoku University, Japan.
| | - Keika Komatsu
- Graduate School of Environmental Studies, Tohoku University, Japan
| | - Yuji Nashimoto
- Graduate School of Engineering, Tohoku University, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Japan.
| |
Collapse
|
42
|
Ding H, Zhou P, Fu W, Ding L, Guo W, Su B. Spatially Selective Imaging of Cell-Matrix and Cell-Cell Junctions by Electrochemiluminescence. Angew Chem Int Ed Engl 2021; 60:11769-11773. [PMID: 33709454 DOI: 10.1002/anie.202101467] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/28/2021] [Indexed: 01/24/2023]
Abstract
Cell junctions are protein structures located at specific cell membrane domains that determine key processes in multicellular development. Here we report spatially selective imaging of cell junctions by electrochemiluminescence (ECL) microscopy. By regulating the concentrations of luminophore and/or co-reactant, the thickness of ECL layer can be controlled to match with the spatial location of different cell junctions. At a low concentration of luminophore, ECL generation is confined to the electrode surface, thus revealing only cell-matrix adhesions at the bottom of cells. While at a high concentration of luminophore, the ECL layer can be remarkably extended by decreasing the co-reactant concentration, thus allowing the sequential imaging of cell-matrix and cell-cell junctions at the bottom and near the apical surface of cells, respectively. This strategy not only provides new insights into the ECL mechanisms but also promises wide applications of ECL microscopy in bioimaging.
Collapse
Affiliation(s)
- Hao Ding
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wenxuan Fu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Lurong Ding
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Weiliang Guo
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
43
|
Towaranonte B, Gao Y. Application of Charge-Coupled Device (CCD) Cameras in Electrochemiluminescence: A Minireview. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1920971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- B. Towaranonte
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Y. Gao
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Cao Y, Ma C, Zhu JJ. DNA Technology-assisted Signal Amplification Strategies in Electrochemiluminescence Bioanalysis. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00175-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Ding H, Zhou P, Fu W, Ding L, Guo W, Su B. Spatially Selective Imaging of Cell–Matrix and Cell–Cell Junctions by Electrochemiluminescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hao Ding
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Ping Zhou
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Wenxuan Fu
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Lurong Ding
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Weiliang Guo
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Bin Su
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| |
Collapse
|
46
|
Li H, Zhang T, Zhou H, Zhang Z, Liu M, Wang C. Enhanced Electrochemiluminescence in a Microwell Bipolar Electrode Array Prepared with an Optical Fiber Bundle. ChemElectroChem 2021. [DOI: 10.1002/celc.202100158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Haidong Li
- School of Chemistry and Chemical Engineering Yangzhou University No.180 Siwangting Road Yangzhou 225002 China
| | - Tian Zhang
- School of Chemistry and Chemical Engineering Yangzhou University No.180 Siwangting Road Yangzhou 225002 China
| | - Han Zhou
- School of Chemistry and Chemical Engineering Yangzhou University No.180 Siwangting Road Yangzhou 225002 China
| | - Zhicheng Zhang
- School of Chemistry and Chemical Engineering Yangzhou University No.180 Siwangting Road Yangzhou 225002 China
| | - Miaoxia Liu
- School of Chemistry and Chemical Engineering Yangzhou University No.180 Siwangting Road Yangzhou 225002 China
| | - Chengyin Wang
- School of Chemistry and Chemical Engineering Yangzhou University No.180 Siwangting Road Yangzhou 225002 China
| |
Collapse
|
47
|
Zhao W, Chen HY, Xu JJ. Electrogenerated chemiluminescence detection of single entities. Chem Sci 2021; 12:5720-5736. [PMID: 34168801 PMCID: PMC8179668 DOI: 10.1039/d0sc07085h] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
Electrogenerated chemiluminescence, also known as electrochemiluminescence (ECL), is an electrochemically induced production of light by excited luminophores generated during redox reactions. It can be used to sense the charge transfer and related processes at electrodes via a simple visual readout; hence, ECL is an outstanding tool in analytical sensing. The traditional ECL approach measures averaged electrochemical quantities of a large ensemble of individual entities, including molecules, microstructures and ions. However, as a real system is usually heterogeneous, the study of single entities holds great potential in elucidating new truths of nature which are averaged out in ensemble assays or hidden in complex systems. We would like to review the development of ECL intensity and imaging based single entity detection and place emphasis on the assays of small entities including single molecules, micro/nanoparticles and cells. The current challenges for and perspectives on ECL detection of single entities are also discussed.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China +86-25-89687294 +86-25-89687294
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China +86-25-89687294 +86-25-89687294
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China +86-25-89687294 +86-25-89687294
| |
Collapse
|
48
|
Ding J, Zhou P, Guo W, Su B. Confined Electrochemiluminescence Generation at Ultra-High-Density Gold Microwell Electrodes. Front Chem 2021; 8:630246. [PMID: 33575249 PMCID: PMC7870482 DOI: 10.3389/fchem.2020.630246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/17/2020] [Indexed: 12/02/2022] Open
Abstract
Electrochemiluminescence (ECL) imaging analysis based on the ultra-high-density microwell electrode array (UMEA) has been successfully used in biosensing and diagnostics, while the studies of ECL generation mechanisms with spatial resolution remain scarce. Herein we fabricate a gold-coated polydimethylsiloxane (PDMS) UMEA using electroless deposition method for the visualization of ECL reaction process at the single microwell level in conjunction with using microscopic ECL imaging technique, demonstrating that the microwell gold walls are indeed capable of enhancing the ECL generation. For the classical ECL system involving tris(2,2′-bipyridyl)ruthenium (Ru(bpy)32+) and tri-n-propylamine (TPrA), the ECL image of a single microwell appears as a surface-confined ring, indicating the ECL intensity generated inside the well is much stronger than that on the top surface of UMEA. Moreover, at a low concentration of Ru(bpy)32+, the ECL image remains to be ring-shaped with the increase of exposure time, because of the limited lifetime of TPrA radical cations TPrA+•. In combination with the theoretical simulation, the ring-shaped ECL image is resolved to originate from the superposition effect of the mass diffusion fields at both microwell wall and bottom surfaces.
Collapse
Affiliation(s)
- Jialian Ding
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou, China
| | - Ping Zhou
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou, China
| | - Weiliang Guo
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou, China
| | - Bin Su
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Ma C, Wu S, Zhou Y, Wei H, Zhang J, Chen Z, Zhu J, Lin Y, Zhu W. Bio‐Coreactant‐Enhanced Electrochemiluminescence Microscopy of Intracellular Structure and Transport. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Shaojun Wu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Yang Zhou
- School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA
| | - Hui‐Fang Wei
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Jianrong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Jun‐Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA
| |
Collapse
|
50
|
Ma C, Wu S, Zhou Y, Wei HF, Zhang J, Chen Z, Zhu JJ, Lin Y, Zhu W. Bio-Coreactant-Enhanced Electrochemiluminescence Microscopy of Intracellular Structure and Transport. Angew Chem Int Ed Engl 2021; 60:4907-4914. [PMID: 33188721 DOI: 10.1002/anie.202012171] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/24/2020] [Indexed: 12/14/2022]
Abstract
A bio-coreactant-enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy)3 2+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a "catalytic route". Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time-resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy)3 3+ in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single-cell studies, the bio-coreactant-enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR-1.
Collapse
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shaojun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yang Zhou
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Hui-Fang Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jianrong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|