1
|
He X, Tareq AM, Qi K, Conti Y, Tung V, Chiang N. High-Resolution Distance Dependence Interrogation of Scanning Ion Conductance Microscopic Tip-Enhanced Raman Spectroscopy Enabled by Two-Dimensional Molybdenum Disulfide Substrates. NANO LETTERS 2024; 24:13805-13810. [PMID: 39432812 DOI: 10.1021/acs.nanolett.4c04200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Scanning ion conductance microscopy (SICM) is a powerful surface imaging tool used in the electrolytic environment. Tip-enhanced Raman spectroscopy (TERS) can give more information in addition to the morphology provided by the SICM by utilizing label-free Raman spectroscopy aided by the localized plasmonic enhancement from the metal-coated probes. In this study, the integration of SICM with TERS is demonstrated through employing a silver-coated plasmonic nanopipette. Leveraging a two-dimensional (2D) molybdenum disulfide (MoS2) as a model system, the SICM-TERS enhancement factor was estimated to be ∼105, supported by finite-difference time-domain (FDTD) simulation. Moreover, the subnanometer distance dependence SICM-TERS study reveals the tensile stress and structural changes caused by the nanopipette. These findings illustrate the potential of SICM-TERS for providing comprehensive morphological and chemical insights into electrolytic environments, paving the way for future investigations of electrocatalytic and biological systems.
Collapse
Affiliation(s)
- Xing He
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Abu Montakim Tareq
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Kai Qi
- Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ylli Conti
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra 08193, Spain
| | - Vincent Tung
- Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Naihao Chiang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
2
|
Gong LJ, Lv J, Wang XY, Wu X, Li DW, Qian RC. Analysis of vibrational dynamics in cell-substrate interactions using nanopipette electrochemical sensors. Biosens Bioelectron 2024; 259:116385. [PMID: 38759310 DOI: 10.1016/j.bios.2024.116385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Cell-substrate interaction plays a critical role in determining the mechanical status of living cell membrane. Changes of substrate surface properties can significantly alter the cell mechanical microenvironment, leading to mechanical changes of cell membrane. However, it is still difficult to accurately quantify the influence of the substrate surface properties on the mechanical status of living cell membrane without damage. This study addresses the challenge by using an electrochemical sensor made from an ultrasmall quartz nanopipette. With the tip diameter less than 100 nm, the nanopipette-based sensor achieves highly sensitive, noninvasive and label-free monitoring of the mechanical status of single living cells by collecting stable cyclic membrane oscillatory signals from continuous current versus time traces. The electrochemical signals collected from PC12 cells cultured on three different substrates (bare ITO (indium tin oxides) glass, hydroxyl modified ITO glass, amino modified ITO glass) indicate that the microenvironment more favorable for cell adhesion can increase the membrane stiffness. This work provides a label-free electrochemical approach to accurately quantify the mechanical status of single living cells in real-time, which may help to better understand the relationship between the cell membrane and the extra cellular matrix.
Collapse
Affiliation(s)
- Li-Juan Gong
- Key Laboratory for Advanced Materials, Joint Key Laboratory for Advanced Materials, Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Joint Key Laboratory for Advanced Materials, Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Xiao-Yuan Wang
- Key Laboratory for Advanced Materials, Joint Key Laboratory for Advanced Materials, Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xue Wu
- Key Laboratory for Advanced Materials, Joint Key Laboratory for Advanced Materials, Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Joint Key Laboratory for Advanced Materials, Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Joint Key Laboratory for Advanced Materials, Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
3
|
Jayamaha G, Maleki M, Bentley CL, Kang M. Practical guidelines for the use of scanning electrochemical cell microscopy (SECCM). Analyst 2024; 149:2542-2555. [PMID: 38632960 DOI: 10.1039/d4an00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Scanning electrochemical cell microscopy (SECCM) has emerged as a transformative technology for electrochemical materials characterisation and the study of single entities, garnering global adoption by numerous research groups. While details on the instrumentation and operational principles of SECCM are readily available, the growing need for practical guidelines, troubleshooting strategies, and a systematic overview of applications and trends has become increasingly evident. This tutorial review addresses this gap by offering a comprehensive guide to the practical application of SECCM. The review begins with a discussion of recent developments and trends in the application of SECCM, before providing systematic approaches to (and the associated troubleshooting associated with) instrumental set up, probe fabrication, substrate preparation and the deployment of environmental (e.g., atmosphere and humidity) control. Serving as an invaluable resource, this tutorial review aims to equip researchers and practitioners entering the field with a comprehensive guide to essential considerations for conducting successful SECCM experiments.
Collapse
Affiliation(s)
- Gunani Jayamaha
- School of Chemistry, The University of Sydney, Camperdown, 2006 NSW, Australia.
| | - Mahin Maleki
- Institute for Frontier Materials, Deakin University, Burwood, VIC 3125, Australia
| | - Cameron L Bentley
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia
| | - Minkyung Kang
- School of Chemistry, The University of Sydney, Camperdown, 2006 NSW, Australia.
| |
Collapse
|
4
|
Farrell EB, McNeill F, Weiss A, Duleba D, Guiry PJ, Johnson RP. The Detection of Trace Metal Contaminants in Organic Products Using Ion Current Rectifying Quartz Nanopipettes. Anal Chem 2024; 96:6055-6064. [PMID: 38569051 PMCID: PMC11024892 DOI: 10.1021/acs.analchem.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
While ion current rectification (ICR) in aprotic solvent has been fundamentally studied, its application in sensing devices lacks exploration. The development of sensors operable in these solvents is highly beneficial to the chemical industry, where polar aprotic solvents, such as acetonitrile, are widely used. Currently, this industry relies on the use of inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectroscopy (OES) for the detection of metal contamination in organic products. Herein, we present the detection of trace amounts of Pd2+ and Co2+ using ion current rectification, in cyclam-functionalized quartz nanopipettes, with tetraethylammonium tetrafluoroborate (TEATFB) in MeCN as supporting electrolyte. This methodology is employed to determine the concentration of Pd in organic products, before and after purification by Celite filtration and column chromatography, obtaining comparable results to ICP-MS within minutes and without complex sample preparation. Finite element simulations are used to support our experimental findings, which reveal that the formation of double-junction diodes in the nanopore enables trace detection of these metals, with a significant response from baseline even at picomolar concentrations.
Collapse
Affiliation(s)
- Emer B. Farrell
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fionn McNeill
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alexander Weiss
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dominik Duleba
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Robert P. Johnson
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Krushinski LE, Kauffmann PJ, Wang AK, Dick JE. Considerations for dual barrel electrode fabrication and experimentation. Analyst 2024; 149:2180-2189. [PMID: 38426542 PMCID: PMC10962018 DOI: 10.1039/d3an01969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
New electrochemical probes offer the opportunity to investigate new systems. A dual barrel electrode can be laser pulled to produce micron-sized platinum disk electrodes. Here, we detail several important considerations for both the fabrication process and for experimental implimentation of the probe. We provide parameters for a Sutter P-2000 laser puller, methods for optical and electrochemical characterization, tips for how to successfully bevel the microelectrodes, and how salt concentrations and electrostatic discharge affect the voltammetry. This paper serves as a guide for how to successfully implement dual barrel electrodes from fabrication to experimentation.
Collapse
Affiliation(s)
- Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Philip J Kauffmann
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Amber K Wang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Lai Z, Liu M, Bi P, Huang F, Jin Y. Perspectives on Corrosion Studies Using Scanning Electrochemical Cell Microscopy: Challenges and Opportunities. Anal Chem 2023; 95:15833-15850. [PMID: 37844123 DOI: 10.1021/acs.analchem.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Scanning electrochemical cell microscopy (SECCM) allows for electrochemical imaging at the micro- or nanoscale by confining the electrochemical reaction cell in a small meniscus formed at the end of a micro- or nanopipette. This technique has gained popularity in electrochemical imaging due to its high-throughput nature. Although it shows considerable application potential in corrosion science, there are still formidable and exciting challenges to be faced, particularly relating to the high-throughput characterization and analysis of microelectrochemical big data. The objective of this perspective is to arouse attention and provide opinions on the challenges, recent progress, and future prospects of the SECCM technique to the electrochemical society, particularly from the viewpoint of corrosion scientists. Specifically, four main topics are systematically reviewed and discussed: (1) the development of SECCM; (2) the applications of SECCM for corrosion studies; (3) the challenges of SECCM in corrosion studies; and (4) the opportunities of SECCM for corrosion science.
Collapse
Affiliation(s)
- Zhaogui Lai
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, P. R. China
| | - Min Liu
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, P. R. China
| | - Peng Bi
- Laboratory for Nuclear Materials, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Feifei Huang
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, P. R. China
| | - Ying Jin
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, P. R. China
| |
Collapse
|
7
|
Anderson KL, Edwards MA. Evaluating Analytical Expressions for Scanning Electrochemical Cell Microscopy (SECCM). Anal Chem 2023; 95:8258-8266. [PMID: 37191580 DOI: 10.1021/acs.analchem.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Scanning electrochemical cell microscopy (SECCM) maps the electrochemical activity of a surface with nanoscale resolution using an electrolyte-filled nanopipette. The meniscus at the end of the pipet is sequentially placed at an array of locations across the surface, forming a series of nanometric electrochemical cells where the current-voltage response is measured. Quantitative interpretation of these responses typically employs numerical modeling to solve the coupled equations of transport and electron transfer, which require costly software or self-written code. Expertise and time are required to build and solve numerical models, which must be rerun for each new experiment. In contrast, algebraic expressions directly relate the current response to physical parameters. They are simpler to use, faster to calculate, and can provide greater insight but frequently require simplifying assumptions. In this work, we provide algebraic expressions for current and concentration distributions in SECCM experiments, which are formulated by approximating the pipet and meniscus using 1-D spherical coordinates. Expressions for the current and concentration distributions as a function of experimental parameters and in various conditions (steady state and time dependent, diffusion limited, and including migration) all show excellent agreement with numerical simulations employing a full geometry. Uses of the analytical expressions include determination of expected currents in experiments and quantifying electron-transfer rate constants in SECCM experiments.
Collapse
Affiliation(s)
- Kamsy Lerae Anderson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Martin Andrew Edwards
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
8
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
9
|
Lai Z, Li D, Cai S, Liu M, Huang F, Zhang G, Wu X, Jin Y. Small-Area Techniques for Micro- and Nanoelectrochemical Characterization: A Review. Anal Chem 2023; 95:357-373. [PMID: 36625128 DOI: 10.1021/acs.analchem.2c04551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zhaogui Lai
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| | - Dingshi Li
- Beijing Institute of Space Launch Technology, Beijing 100076, China
| | - Shuangyu Cai
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| | - Min Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Feifei Huang
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| | - Guodong Zhang
- Beijing Institute of Space Launch Technology, Beijing 100076, China
| | - Xinyue Wu
- Beijing Institute of Space Launch Technology, Beijing 100076, China
| | - Ying Jin
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| |
Collapse
|
10
|
Li L, Zhou F, Xue Q. Conductive polymer hydrogel-coated nanopipette sensor with tunable size. NANOTECHNOLOGY AND PRECISION ENGINEERING 2022. [DOI: 10.1063/10.0016501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanopipette-based sensors are one of the most effective tools for detecting nanoparticles, bioparticles, and biomolecules. Quantitative analysis of nanoparticles with different shapes and electrical charges is achieved through measurement of the blockage currents that occur when particles pass through the nanopore. However, typical nanopipette sensors fabricated using a conventional needle-pulling method have a typical pore-diameter limitation of around 100 nm. Herein, we report a novel conductive hydrogel-composited nanopipette sensor with a tunable inner-pore diameter. This is made by electrodepositing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate onto the surface of a nanopipette with a prefabricated sacrificial copper layer. Because of the presence of copper ions, the conductive polymer can stably adhere to the tip of the nanopipette to form a nanopore; when nanoparticles pass through the conductive nanopore, more distinct blocking events are observed. The size of the nanopore can be changed simply by adjusting the electrodeposition time. In this way, suitable nanopores can be obtained for highly sensitive screening of a series of particles with diameters of the order of tens of nanometers.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Feng Zhou
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Qiannan Xue
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Kumakli H, Hoque A, White RJ. Observing Real-Time Formation of Self-Assembled Monolayers on Polycrystalline Gold Surfaces with Scanning Electrochemical Cell Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9148-9156. [PMID: 35850518 DOI: 10.1021/acs.langmuir.2c00667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-assembled monolayers (SAMs) of alkanethiols on gold have become a central focus of controllable surface chemistry because they can be easily formed from the solution phase and characterized using various techniques. Understanding the formation processes occurring at a nanoscale level is crucial to form defect-free SAMs for tailored applications in bio- and nanotechnology. Although many reports study and characterize SAMs after they are formed on gold surfaces, typical methods have not extensively studied the SAM formation process at the nanoscale. This paper focuses on the formation of defect-free SAMs and elucidates the formation mechanism occurring at the nanoscale level during the formation process. Exploiting the strength of scanning electrochemical cell microscopy, we monitored SAM formation via a soluble redox reporter on a polycrystalline gold foil using voltammetric and amperometric techniques. We formed SAMs by varying the concentration of 3-mercapto-1-propanol [HS(CH2)3OH], 6-mercapto-1-hexanol [HS(CH2)6OH], and 9-mercapto-1-nonanol [HS(CH2)9OH] to determine the effects of the thiol chain length, concentration, and location on the substrate (grain boundaries) on monolayer formation. We observed real-time changes in the quasisteady-state current of our redox reporter during the self-assembly process. Importantly, we formed defect-free SAMs at the nanoscale level using different concentrations of HS(CH2)6OH and HS(CH2)9OH and found that SAM formation at the nanoscale is concentration-dependent and varies when at a boundary between two crystal grains.
Collapse
Affiliation(s)
- Hope Kumakli
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Abdul Hoque
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Ryan J White
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
- Department of Electrical Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
12
|
Farrell EB, Duleba D, Johnson RP. Aprotic Solvent Accumulation Amplifies Ion Current Rectification in Conical Nanopores. J Phys Chem B 2022; 126:5689-5694. [PMID: 35867912 PMCID: PMC9358645 DOI: 10.1021/acs.jpcb.2c03172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ion current rectification is highly reported in aqueous electrochemical systems and sensors but lacks exploration in organic systems due to the additional complexity introduced by non-aqueous solvents. Herein, a detailed study on ion current rectification with highly polar and mildly polar aprotic organic solvents as a function of tetraethylammonium tetrafluoroborate supporting electrolyte concentration is presented. To explain our experimental results, we introduce a previously unreported phenomenon: the formation of a double-junction diode within the nanopore that arises due to a complex interplay between ion and solvent enrichment effects. Finite element simulations are used to explore this phenomenon and the subsequent effect on the rectifying behavior of conical quartz nanopores.
Collapse
Affiliation(s)
- Emer B Farrell
- School of Chemistry, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Dominik Duleba
- School of Chemistry, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Robert P Johnson
- School of Chemistry, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| |
Collapse
|
13
|
He P, Shao Y, Yu Z, Liang X, Liu J, Bian Y, Zhu Z, Li M, Pereira CM, Shao Y. Electrostatic-Gated Kinetics of Rapid Ion Transfers at a Nano-liquid/Liquid Interface. Anal Chem 2022; 94:9801-9810. [PMID: 35766488 DOI: 10.1021/acs.analchem.2c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Charge (ion and electron)-transfer reactions at a liquid/liquid interface are critical processes in many important biological and chemical systems. An ion-transfer (IT) process is usually very fast, making it difficult to accurately measure its kinetic parameters. Nano-liquid/liquid interfaces supported at nanopipettes are advantageous approaches to study the kinetics of such ultrafast IT processes due to their high mass transport rate. However, correct measurements of IT kinetic parameters at nanointerfaces supported at nanopipettes are inhibited by a lack of knowledge of the nanometer-sized interface geometry, influence of the electric double layer, wall charge polarity, etc. Herein, we propose a new electrochemical characterization equation for nanopipettes and make a suggestion on the shape of a nano-water/1,2-dichloroethane (nano-W/DCE) interface based on the characterization and calculation results. A theoretical model based on the Poisson-Nernst-Planck equation was applied to systematically study how the electric double layer influences the IT process of cations (TMA+, TEA+, TPrA+, ACh+) and anions (ClO4-, SCN-, PF6-, BF4-) at the nano-W/DCE interface. The relationships between the wall charge conditions and distribution of concentration and potential inside the nanopipette revealed that the measured standard rate constant (k0) was enhanced when the polarity of the ionic species was opposite to the pipette wall charge and reduced when the same. This work lays the right foundation to obtain the kinetics at the nano-liquid/liquid interfaces.
Collapse
Affiliation(s)
- Peng He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhengyou Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xu Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junjie Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yixuan Bian
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiwei Zhu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meixian Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Carlos M Pereira
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto 4099-002, Portugal
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Caniglia G, Tezcan G, Meloni GN, Unwin PR, Kranz C. Probing and Visualizing Interfacial Charge at Surfaces in Aqueous Solution. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:247-267. [PMID: 35259914 DOI: 10.1146/annurev-anchem-121521-122615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface charge density and distribution play an important role in almost all interfacial processes, influencing, for example, adsorption, colloidal stability, functional material activity, electrochemical processes, corrosion, nanoparticle toxicity, and cellular processes such as signaling, absorption, and adhesion. Understanding the heterogeneity in, and distribution of, surface and interfacial charge is key to elucidating the mechanisms underlying reactivity, the stability of materials, and biophysical processes. Atomic force microscopy (AFM) and scanning ion conductance microscopy (SICM) are highly suitable for probing the material/electrolyte interface at the nanoscale through recent advances in probe design, significant instrumental (hardware and software) developments, and the evolution of multifunctional imaging protocols. Here, we assess the capability of AFM and SICM for surface charge mapping, covering the basic underpinning principles alongside experimental considerations. We illustrate and compare the use of AFM and SICM for visualizing surface and interfacial charge with examples from materials science, geochemistry, and the life sciences.
Collapse
Affiliation(s)
- Giada Caniglia
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany;
| | - Gözde Tezcan
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany;
| |
Collapse
|
15
|
Gold nanoparticle functionalized nanopipette sensors for electrochemical paraquat detection. Mikrochim Acta 2022; 189:251. [PMID: 35680710 DOI: 10.1007/s00604-022-05348-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
A sensitive nanopipette sensor is established through a unique design of host-guest recognition, which could be further enhanced by the introduction of gold nanoparticles (Au NPs). Generally, the nanopipette is conjugated with caboxylatopillar[5]arenes (CP[5]) or carboxylated leaning pillar[6]arene (CLP[6]) to generate recognition sites. After the addition of pesticide molecules, they would be captured by CP[5] (or CLP[6]), resulting in a significant electronegativity change on the nanopipette's inner surface, which could be determined by the ionic current change. The CP[5]-modified nanopipette exhibited reliable selectivity for paraquat, while the CLP[6]-modified nanopipette showed an ability of detection for both paraquat and diquat. The addition of Au NPs improved the selectivity and sensitivity of the CP[5]-Au NP-modified nanopipette for paraquat sensing. After optimization by lowering the size of the Au NPs, CP[5]-Au NPs (3 nm)-modified nanopipettes achieved lower detection limits of 0.034 nM for paraquat. Furthermore, in real sample analysis, this sensor demonstrates exceptional sensitivity and selectivity. This study provides a new strategy to develop nanopipette sensors for practical small molecule detection. The gold nanoparticles enhanced quartz nanopipette sensor based on host-guest interaction was firstly established, which could achieve an excellent limit of detection of 3.4 × 10-11 mol/L for paraquat.
Collapse
|
16
|
Guo SX, Bentley CL, Kang M, Bond AM, Unwin PR, Zhang J. Advanced Spatiotemporal Voltammetric Techniques for Kinetic Analysis and Active Site Determination in the Electrochemical Reduction of CO 2. Acc Chem Res 2022; 55:241-251. [PMID: 35020363 DOI: 10.1021/acs.accounts.1c00617] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusElectrochemical reduction of the greenhouse gas CO2 offers prospects for the sustainable generation of fuels and industrially useful chemicals when powered by renewable electricity. However, this electrochemical process requires the use of highly stable, selective, and active catalysts. The development of such catalysts should be based on a detailed kinetic and mechanistic understanding of the electrochemical CO2 reduction reaction (eCO2RR), ideally through the resolution of active catalytic sites in both time (i.e., temporally) and space (i.e., spatially). In this Account, we highlight two advanced spatiotemporal voltammetric techniques for electrocatalytic studies and describe the considerable insights they provide on the eCO2RR. First, Fourier transformed large-amplitude alternating current voltammetry (FT ac voltammetry), as applied by the Monash Electrochemistry Group, enables the resolution of rapid underlying electron-transfer processes in complex reactions, free from competing processes, such as the background double-layer charging current, slow catalytic reactions, and solvent/electrolyte electrolysis, which often mask conventional voltammetric measurements of the eCO2RR. Crucially, FT ac voltammetry allows details of the catalytically active sites or the rate-determining step to be revealed under catalytic turnover conditions. This is well illustrated in investigations of the eCO2RR catalyzed by Bi where formate is the main product. Second, developments in scanning electrochemical cell microscopy (SECCM) by the Warwick Electrochemistry and Interfaces Group provide powerful methods for obtaining high-resolution activity maps and potentiodynamic movies of the heterogeneous surface of a catalyst. For example, by coupling SECCM data with colocated microscopy from electron backscatter diffraction (EBSD) or atomic force microscopy, it is possible to develop compelling correlations of (precatalyst) structure-activity at the nanoscale level. This correlative electrochemical multimicroscopy strategy allows the catalytically more active region of a catalyst, such as the edge plane of two-dimensional materials and the grain boundaries between facets in a polycrystalline metal, to be highlighted. The attributes of SECCM-EBSD are well-illustrated by detailed studies of the eCO2RR on polycrystalline gold, where carbon monoxide is the main product. Comparing SECCM maps and movies with EBSD images of the same region reveals unambiguously that the eCO2RR is enhanced at surface-terminating dislocations, which accumulate at grain boundaries and slip bands. Both FT ac voltammetry and SECCM techniques greatly enhance our understanding of the eCO2RR, significantly boosting the electrochemical toolbox and the information available for the development and testing of theoretical models and rational catalyst design. In the future, it may be possible to further enhance insights provided by both techniques through their integration with in situ and in operando spectroscopy and microscopy methods.
Collapse
Affiliation(s)
| | | | - Minkyung Kang
- Institute for Frontier Materials, Deakin University, Burwood, Victoria 3125, Australia
| | | | - Patrick R. Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | |
Collapse
|
17
|
|
18
|
Valavanis D, Ciocci P, Meloni GN, Morris P, Lemineur JF, McPherson IJ, Kanoufi F, Unwin PR. Hybrid scanning electrochemical cell microscopy-interference reflection microscopy (SECCM-IRM): tracking phase formation on surfaces in small volumes. Faraday Discuss 2021; 233:122-148. [PMID: 34909815 DOI: 10.1039/d1fd00063b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We describe the combination of scanning electrochemical cell microscopy (SECCM) and interference reflection microscopy (IRM) to produce a compelling technique for the study of interfacial processes and to track the SECCM meniscus status in real-time. SECCM allows reactions to be confined to well defined nm-to-μm-sized regions of a surface, and for experiments to be repeated quickly and easily at multiple locations. IRM is a highly surface-sensitive technique which reveals processes happening (very) close to a substrate with temporal and spatial resolution commensurate with typical electrochemical techniques. By using thin transparent conductive layers on glass as substrates, IRM can be coupled to SECCM, to allow real-time in situ optical monitoring of the SECCM meniscus and of processes that occur within it at the electrode/electrolyte interface. We first use the technique to assess the stability of the SECCM meniscus during voltammetry at an indium tin oxide (ITO) electrode at close to neutral pH, demonstrating that the meniscus contact area is rather stable over a large potential window and reproducible, varying by only ca. 5% over different SECCM approaches. At high cathodic potentials, subtle electrowetting is easily detected and quantified. We also look inside the meniscus to reveal surface changes at extreme cathodic potentials, assigned to the possible formation of indium nanoparticles. Finally, we examine the effect of meniscus size and driving potential on CaCO3 precipitation at the ITO electrode as a result of electrochemically-generated pH swings. We are able to track the number, spatial distribution and morphology of material with high spatiotemporal resolution and rationalise some of the observed deposition patterns with finite element method modelling of reactive-transport. Growth of solid phases on surfaces from solution is an important pathway to functional materials and SECCM-IRM provides a means for in situ or in operando visualisation and tracking of these processes with improved fidelity. We anticipate that this technique will be particularly powerful for the study of phase formation processes, especially as the high throughput nature of SECCM-IRM (where each spot is a separate experiment) will allow for the creation of large datasets, exploring a wide experimental parameter landscape.
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Peter Morris
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
19
|
Blount B, Juarez G, Wang Y, Ren H. iR drop in scanning electrochemical cell microscopy. Faraday Discuss 2021; 233:149-162. [PMID: 34877955 DOI: 10.1039/d1fd00046b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nanoscale electrochemical mapping techniques, e.g., scanning electrochemical cell microscopy (SECCM), have been increasingly used to study the local electrochemistry in electrocatalysis. Its capability for local electrochemistry mapping helps to reveal the heterogeneity in the electrode kinetics and mechanisms, which are otherwise averaged out in ensemble measurements. Accurate determination of the electrode kinetics requires the careful assessment of the ohmic potential drop in the solution, i.e., the iR drop. Herein, the iR drop in SECCM experiments is assessed. We showed that the iR drop in single-barrel SECCM can be estimated using the solution conductivity and pipette geometry, or the mass transfer limiting current without the assumption of pipette geometry. For dual-barrel SECCM, we developed a method of measuring the solution resistance directly, which can be used to compensate for the iR drop and the potential shift in the experiments. These methods offer a convenient way to estimate and compensate for the iR drop in SECCM, allowing the more accurate measurement of local electrode kinetics for the determination of local mechanisms in electrocatalysis.
Collapse
Affiliation(s)
- Brandon Blount
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX 78712, USA.
| | - Gabriel Juarez
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX 78712, USA.
| | - Yufei Wang
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX 78712, USA.
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX 78712, USA.
| |
Collapse
|
20
|
Zhou Y, Sun L, Watanabe S, Ando T. Recent Advances in the Glass Pipet: from Fundament to Applications. Anal Chem 2021; 94:324-335. [PMID: 34841859 DOI: 10.1021/acs.analchem.1c04462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuanshu Zhou
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shinji Watanabe
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
21
|
Ma Y, Liu R, Shen X, Wang D. Quantification of Asymmetric Ion Transport in Glass Nanopipettes near Charged Substrates. ChemElectroChem 2021. [DOI: 10.1002/celc.202101180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yingfei Ma
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 10049 P. R. China
| | - Rujia Liu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 10049 P. R. China
| | - Xiaoyue Shen
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 10049 P. R. China
| | - Dengchao Wang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 10049 P. R. China
| |
Collapse
|
22
|
Abstract
Scanning ion conductance microscopy (SICM) has emerged as a versatile tool for studies of interfaces in biology and materials science with notable utility in biophysical and electrochemical measurements. The heart of the SICM is a nanometer-scale electrolyte filled glass pipette that serves as a scanning probe. In the initial conception, manipulations of ion currents through the tip of the pipette and appropriate positioning hardware provided a route to recording micro- and nanoscopic mapping of the topography of surfaces. Subsequent advances in instrumentation, probe design, and methods significantly increased opportunities for SICM beyond recording topography. Hybridization of SICM with coincident characterization techniques such as optical microscopy and faradaic electrodes have brought SICM to the forefront as a tool for nanoscale chemical measurement for a wide range of applications. Modern approaches to SICM realize an important tool in analytical, bioanalytical, biophysical, and materials measurements, where significant opportunities remain for further exploration. In this review, we chronicle the development of SICM from the perspective of both the development of instrumentation and methods and the breadth of measurements performed.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
23
|
Ren R, Sun M, Goel P, Cai S, Kotov NA, Kuang H, Xu C, Ivanov AP, Edel JB. Single-Molecule Binding Assay Using Nanopores and Dimeric NP Conjugates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103067. [PMID: 34323323 PMCID: PMC11469134 DOI: 10.1002/adma.202103067] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Indexed: 06/13/2023]
Abstract
The ability to measure biomarkers, both specifically and selectively at the single-molecule level in biological fluids, has the potential to transform the diagnosis, monitoring, and therapeutic intervention of diseases. The use of nanopores has been gaining prominence in this area, not only for sequencing but more recently in screening applications. The selectivity of nanopore sensing can be substantially improved with the use of labels, but substantial challenges remain, especially when trying to differentiate between bound from unbound targets. Here highly sensitive and selective molecular probes made from nanoparticles (NPs) that self-assemble and dimerize upon binding to a biological target are designed. It is shown that both single and paired NPs can be successfully resolved and detected at the single-molecule nanopore sensing and can be used for applications such as antigen/antibody detection and microRNA (miRNA) sequence analysis. It is expected that such technology will contribute significantly to developing highly sensitive and selective strategies for the diagnosis and screening of diseases without the need for sample processing or amplification while requiring minimal sample volume.
Collapse
Affiliation(s)
- Ren Ren
- Department of ChemistryMolecular Science Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| | - Maozhong Sun
- Key Lab of Synthetic and Biological ColloidsMinistry of EducationState Key Lab of Food Science and TechnologyInternational Joint Research Laboratory for Biointerface and BiodetectionSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Pratibha Goel
- Department of ChemistryMolecular Science Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| | - Shenglin Cai
- Department of ChemistryMolecular Science Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| | - Nicholas A. Kotov
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Department of Materials Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Hua Kuang
- Key Lab of Synthetic and Biological ColloidsMinistry of EducationState Key Lab of Food Science and TechnologyInternational Joint Research Laboratory for Biointerface and BiodetectionSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological ColloidsMinistry of EducationState Key Lab of Food Science and TechnologyInternational Joint Research Laboratory for Biointerface and BiodetectionSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Aleksandar P. Ivanov
- Department of ChemistryMolecular Science Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| | - Joshua B. Edel
- Department of ChemistryMolecular Science Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| |
Collapse
|
24
|
Bentley CL. Scanning electrochemical cell microscopy for the study of (nano)particle electrochemistry: From the sub‐particle to ensemble level. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
25
|
Fried JP, Swett JL, Nadappuram BP, Mol JA, Edel JB, Ivanov AP, Yates JR. In situ solid-state nanopore fabrication. Chem Soc Rev 2021; 50:4974-4992. [PMID: 33623941 DOI: 10.1039/d0cs00924e] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanopores in solid-state membranes are promising for a wide range of applications including DNA sequencing, ultra-dilute analyte detection, protein analysis, and polymer data storage. Techniques to fabricate solid-state nanopores have typically been time consuming or lacked the resolution to create pores with diameters down to a few nanometres, as required for the above applications. In recent years, several methods to fabricate nanopores in electrolyte environments have been demonstrated. These in situ methods include controlled breakdown (CBD), electrochemical reactions (ECR), laser etching and laser-assisted controlled breakdown (la-CBD). These techniques are democratising solid-state nanopores by providing the ability to fabricate pores with diameters down to a few nanometres (i.e. comparable to the size of many analytes) in a matter of minutes using relatively simple equipment. Here we review these in situ solid-state nanopore fabrication techniques and highlight the challenges and advantages of each method. Furthermore we compare these techniques by their desired application and provide insights into future research directions for in situ nanopore fabrication methods.
Collapse
Affiliation(s)
- Jasper P Fried
- Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
| | - Jacob L Swett
- Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
| | - Binoy Paulose Nadappuram
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus, 82 Wood Lane, W12 0BZ, UK
| | - Jan A Mol
- School of Physics and Astronomy, Queen Mary University of London, Mile End Road, E1 4NS, UK
| | - Joshua B Edel
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus, 82 Wood Lane, W12 0BZ, UK
| | - Aleksandar P Ivanov
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus, 82 Wood Lane, W12 0BZ, UK
| | - James R Yates
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
26
|
Shigyou K, Sun L, Yajima R, Takigaura S, Tajima M, Furusho H, Kikuchi Y, Miyazawa K, Fukuma T, Taoka A, Ando T, Watanabe S. Geometrical Characterization of Glass Nanopipettes with Sub-10 nm Pore Diameter by Transmission Electron Microscopy. Anal Chem 2020; 92:15388-15393. [PMID: 33205942 DOI: 10.1021/acs.analchem.0c02884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glass nanopipettes are widely used for various applications in nanosciences. In most of the applications, it is important to characterize their geometrical parameters, such as the aperture size and the inner cone angle at the tip region. For nanopipettes with sub-10 nm aperture and thin wall thickness, transmission electron microscopy (TEM) must be most instrumental in their precise geometrical measurement. However, this measurement has remained a challenge because heat generated by electron beam irradiation would largely deform sub-10 nm nanopipettes. Here, we provide methods for preparing TEM specimens that do not cause deformation of such tiny nanopipettes.
Collapse
Affiliation(s)
- Kazuki Shigyou
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Linhao Sun
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Riku Yajima
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shohei Takigaura
- Department of Physics, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masashi Tajima
- College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirotoshi Furusho
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yousuke Kikuchi
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Azuma Taoka
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shinji Watanabe
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
27
|
Abstract
Nanopores hold great potential for the analysis of complex biological molecules at the single-entity level. One particularly interesting macromolecular machine is the ribosome, responsible for translating mRNAs into proteins. In this study, we use a solid-state nanopore to fingerprint 80S ribosomes and polysomes from a human neuronal cell line andDrosophila melanogaster cultured cells and ovaries. Specifically, we show that the peak amplitude and dwell time characteristics of 80S ribosomes are distinct from polysomes and can be used to discriminate ribosomes from polysomes in mixed samples. Moreover, we are able to distinguish large polysomes, containing more than seven ribosomes, from those containing two to three ribosomes, and demonstrate a correlation between polysome size and peak amplitude. This study highlights the application of solid-state nanopores as a rapid analytical tool for the detection and characterization of ribosomal complexes.
Collapse
Affiliation(s)
- Mukhil Raveendran
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K
| | - Anna Rose Leach
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K
| | - Tayah Hopes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
- LeedsOmics, University of Leeds, Leeds LS2 9JT, U.K
| | - Julie L. Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
- LeedsOmics, University of Leeds, Leeds LS2 9JT, U.K
| | - Paolo Actis
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K
- LeedsOmics, University of Leeds, Leeds LS2 9JT, U.K
- Bragg Centre for Materials Research, Leeds LS2 9JT, U.K
| |
Collapse
|
28
|
Liu Y, Xu C, Gao T, Chen X, Wang J, Yu P, Mao L. Sizing Single Particles at the Orifice of a Nanopipette. ACS Sens 2020; 5:2351-2358. [PMID: 32672038 DOI: 10.1021/acssensors.9b02520] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Developing new methods and techniques for the size analysis of particles in a solution is highly desirable not only for the industrial screening of particles but also for single biological entity analysis (e.g., single cells or single vesicles). Herein, we report a new technique for sizing single particles in a solution with a nanopipette. The rationale is essentially based on ion-current blockage when the particles approach the proximity of a nanopipette orifice. By rationally controlling the geometry of the nanopipette and the applied potential, the spike-type ion current transient generated from the motion of particles in the process of "collision and departure" is employed for sizing single particles. The results show that both the relative ion-current change (ΔI/I0) and the dwell time (Δt) of spike-type transient are dependent on particle size. Differently, Δt is also related to an externally applied voltage. Statistical analysis shows that ΔI/I0 is proportional to the particle diameter, and this linear relationship is further understood by finite-element simulations. This study not only provides a new principle for sizing single particles in a solution but also is helpful to understand the motion of a particle near the orifice of the nanopipette.
Collapse
Affiliation(s)
- Yang Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Cong Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tienan Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Shkirskiy V, Kang M, McPherson IJ, Bentley CL, Wahab OJ, Daviddi E, Colburn AW, Unwin PR. Electrochemical Impedance Measurements in Scanning Ion Conductance Microscopy. Anal Chem 2020; 92:12509-12517. [PMID: 32786472 DOI: 10.1021/acs.analchem.0c02358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrochemical impedance spectroscopy (EIS) is a versatile tool for electrochemistry, particularly when applied locally to reveal the properties and dynamics of heterogeneous interfaces. A new method to generate local electrochemical impedance spectra is outlined, by applying a harmonic bias between a quasi-reference counter electrode (QRCE) placed in a nanopipet tip of a scanning ion conductance microscope (SICM) and a conductive (working electrode) substrate (two-electrode setup). The AC frequency can be tuned so that the magnitude of the impedance is sensitive to the tip-to-substrate distance, whereas the phase angle is broadly defined by the local capacitive response of the electrical double layer (EDL) of the working electrode. This development enables the surface topography and the local capacitance to be sensed reliably, and separately, in a single measurement. Further, self-referencing the probe impedance near the surface to that in the bulk solution allows the local capacitive response of the working electrode substrate in the overall AC signal to be determined, establishing a quantitative footing for the methodology. The spatial resolution of AC-SICM is an order of magnitude larger than the tip size (100 nm radius), for the studies herein, due to frequency dispersion. Comprehensive finite element method (FEM) modeling is undertaken to optimize the experimental conditions and minimize the experimental artifacts originating from the frequency dispersion phenomenon, and provides an avenue to explore the means by which the spatial resolution could be further improved.
Collapse
Affiliation(s)
- Viacheslav Shkirskiy
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Oluwasegun J Wahab
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Enrico Daviddi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alex W Colburn
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
30
|
Liu X, Zeng Q, Liu C, Wang L. A Fourier Transform-Induced Data Process for Label-Free Selective Nanopore Analysis under Sinusoidal Voltage Excitations. Anal Chem 2020; 92:11635-11643. [PMID: 32786474 DOI: 10.1021/acs.analchem.0c01339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nanopore analysis based on a resistive-pulse technique is an attractive tool for single-molecule detection in different fields, but it suffers a great drawback in selectivity. A common solution to this challenge is to add extra sensing aptamers and labels to analytes by improving the sensitivity of their pulses for distinguishing. Compared to the labeling methods, we alternatively develop and demonstrate a novel data process for label-free nanopore analysis that enables the conversion of resistive current signals to more specific frequency domain phase angle features with the contribution from both sinusoidal voltage excitation and Fourier transform. In particular, we find that the transmural capacitance induced by nanoparticle translocations under a sinusoidal voltage plays an important role in this process, making phase angle features more pronounced. In practical applications, the method is successfully applied to directly distinguish the translocation events through a nanopipette by their unique phase angles for similarly sized SiO2, Ag, and Au nanoparticles and soft living organisms of HeLa and LoVo and even in a more complicated case of a SiO2, Ag, and Au nanoparticle mixture.
Collapse
Affiliation(s)
- Xuye Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Cheng Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
31
|
Bentley CL, Kang M, Unwin PR. Scanning Electrochemical Cell Microscopy (SECCM) in Aprotic Solvents: Practical Considerations and Applications. Anal Chem 2020; 92:11673-11680. [PMID: 32521997 DOI: 10.1021/acs.analchem.0c01540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many applications in modern electrochemistry, notably electrosynthesis and energy storage/conversion take advantage of the "tunable" physicochemical properties (e.g., proton availability and/or electrochemical stability) of nonaqueous (e.g., aprotic) electrolyte media. This work develops general guidelines pertaining to the use of scanning electrochemical cell microscopy (SECCM) in aprotic solvent electrolyte media to address contemporary structure-electrochemical activity problems. Using the simple outer-sphere Fc0/+ process (Fc = ferrocene) as a model system, high boiling point (low vapor pressure) solvents give rise to highly robust and reproducible electrochemistry, whereas volatile (low boiling point) solvents need to be mixed with suitable low melting point supporting electrolytes (e.g., ionic liquids) or high boiling point solvents to avoid complications associated with salt precipitation/crystallization on the scanning (minutes to hours) time scale. When applied to perform microfabrication-specifically the electrosynthesis of the conductive polymer, polypyrrole-the optimized SECCM set up produces highly reproducible arrays of synthesized (electrodeposited) material on a commensurate scale to the employed pipet probe. Applying SECCM to map electrocatalytic activity-specifically the electro-oxidation of iodide at polycrystalline platinum-reveals unique (i.e., structure-dependent) patterns of surface activity, with grains of specific crystallographic orientation, grain boundaries and areas of high local surface misorientation identified as potential electrocatalytic "hot spots". The work herein further cements SECCM as a premier technique for structure-function-activity studies in (electro)materials science and will open up exciting new possibilities through the use of aprotic solvents for rational analysis/design in electrosynthesis, microfabrication, electrochemical energy storage/conversion, and beyond.
Collapse
Affiliation(s)
- Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Minkyung Kang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
32
|
Paschoalino WJ, Payne NA, Pessanha TM, Gateman SM, Kubota LT, Mauzeroll J. Charge Storage in Graphene Oxide: Impact of the Cation on Ion Permeability and Interfacial Capacitance. Anal Chem 2020; 92:10300-10307. [DOI: 10.1021/acs.analchem.0c00218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Waldemir J. Paschoalino
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec, Canada
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP Brazil
| | - Nicholas A. Payne
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec, Canada
| | - Tatiana M. Pessanha
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP Brazil
| | - Samantha M. Gateman
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec, Canada
| | - Lauro T. Kubota
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP Brazil
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec, Canada
| |
Collapse
|
33
|
Cadinu P, Kang M, Nadappuram BP, Ivanov AP, Edel JB. Individually Addressable Multi-nanopores for Single-Molecule Targeted Operations. NANO LETTERS 2020; 20:2012-2019. [PMID: 32053383 DOI: 10.1021/acs.nanolett.9b05307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fine-tuning of molecular transport is a ubiquitous problem of single-molecule methods. The latter is evident even in powerful single-molecule techniques such as nanopore sensing, where the quest for resolving more detailed biomolecular features is often limited by insufficient control of the dynamics of individual molecules within the detection volume of the nanopore. In this work, we introduce and characterize a reconfigurable multi-nanopore architecture that enables additional channels to manipulate the dynamics of DNA molecules in a nanopore. We show that the fabrication process of this device, consisting of four adjacent, individually addressable nanopores located at the tip of a quartz nanopipette, is fast and highly reproducible. By individually tuning the electric field across each nanopore, these devices can operate in several unique cooperative detection modes that allow moving, sensing, and trapping of DNA molecules with high efficiency and increased temporal resolution.
Collapse
Affiliation(s)
- Paolo Cadinu
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Minkyung Kang
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Binoy Paulose Nadappuram
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Aleksandar P Ivanov
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Joshua B Edel
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
34
|
Liang S, Xiang F, Tang Z, Nouri R, He X, Dong M, Guan W. Noise in nanopore sensors: Sources, models, reduction, and benchmarking. NANOTECHNOLOGY AND PRECISION ENGINEERING 2020. [DOI: 10.1016/j.npe.2019.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Abstract
To achieve super-resolution scanning electrochemical microscopy (SECM), we must overcome the theoretical limitation associated with noncontact electrochemical imaging of surface-generated species. This is the requirement for mass transfer to the electrode, which gives rise to the diffusional broadening of surface features. In this work, a procedure is developed for overcoming this limitation and thus generating "super-resolved" images using point spread function (PSF)-based deconvolution, where the point conductor plays the same role as the point emitter in optical imaging. In contrast to previous efforts in SECM towards this goal, our method uses a finite element model to generate a pair of corresponding blurred and sharp images for PSF estimation, avoiding the need to perform parameter optimization for effective deconvolution. It can therefore be used for retroactive data treatment and an enhanced understanding of the structure-property relationships that SECM provides.
Collapse
Affiliation(s)
- Lisa I Stephens
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Nicholas A Payne
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
36
|
Ly NH, Joo SW. Recent advances in cancer bioimaging using a rationally designed Raman reporter in combination with plasmonic gold. J Mater Chem B 2020; 8:186-198. [DOI: 10.1039/c9tb01598a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold nanomaterials (AuNMs) have been widely implemented for the purpose of bioimaging of cancer and tumor cells in combination with Raman spectral markers.
Collapse
Affiliation(s)
| | - Sang-Woo Joo
- Department of Chemistry
- Soongsil University
- Seoul 06978
- Korea
- Department of Information Communication, Materials
| |
Collapse
|
37
|
Wang Z, Liu Y, Yu L, Li Y, Qian G, Chang S. Nanopipettes: a potential tool for DNA detection. Analyst 2019; 144:5037-5047. [PMID: 31290857 DOI: 10.1039/c9an00633h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As the information in DNA is of practical value for clinical diagnosis, it is important to develop efficient and rapid methods for DNA detection. In the past decades, nanopores have been extensively explored for DNA detection due to their low cost and high efficiency. As a sub-group of the solid-state nanopore, nanopipettes exhibit great potential for DNA detection which is ascribed to their stability, ease of fabrication and good compatibility with other technologies, compared with biological and traditional solid-state nanopores. Herein, the review systematically summarizes the recent progress in DNA detection with nanopipettes and highlights those studies dedicated to improve the performance of DNA detection using nanopipettes through different approaches, including reducing the rate of DNA translocation, improving the spatial resolution of sensing nanopipettes, and controlling DNA molecules through novel techniques. Besides, some new perspectives of the integration of nanopipettes with other technologies are reviewed.
Collapse
Affiliation(s)
- Zhe Wang
- The State Key Laboratory of Refractories and Metallurgy, and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China.
| | | | | | | | | | | |
Collapse
|
38
|
Payne NA, Dawkins JIG, Schougaard SB, Mauzeroll J. Effect of Substrate Permeability on Scanning Ion Conductance Microscopy: Uncertainty in Tip-Substrate Separation and Determination of Ionic Conductivity. Anal Chem 2019; 91:15718-15725. [PMID: 31741380 DOI: 10.1021/acs.analchem.9b03907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Composite electrodes can significantly improve the performance of an electrochemical device by maximizing surface area and active material loading. Typically, additives such as carbon are used to improve conductivity and a polymer is used as a binder, leading to a heterogeneous surface film with thickness on the order of 10s of micrometers. For such composite electrodes, good ionic conduction within the film is critical to capitalize on the increased loading of active material and surface area. Ionic conductivity within a film can be tricky to measure directly, and homogenization models based on porosity are often used as a proxy. SICM has traditionally been a topography-mapping microscopy method for which we here outline a new function and demonstrate its capacity for measuring ion conductivity within a lithium-ion battery film.
Collapse
Affiliation(s)
- Nicholas A Payne
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec Canada
| | - Jeremy I G Dawkins
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec Canada
| | - Steen B Schougaard
- Département de Chimie and NanoQAM , Université du Québec à Montréal , Montréal , Quebec Canada
| | - Janine Mauzeroll
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec Canada
| |
Collapse
|
39
|
Watanabe S, Kitazawa S, Sun L, Kodera N, Ando T. Development of high-speed ion conductance microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:123704. [PMID: 31893861 DOI: 10.1063/1.5118360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Scanning ion conductance microscopy (SICM) can image the surface topography of specimens in ionic solutions without mechanical probe-sample contact. This unique capability is advantageous for imaging fragile biological samples but its highest possible imaging rate is far lower than the level desired in biological studies. Here, we present the development of high-speed SICM. The fast imaging capability is attained by a fast Z-scanner with active vibration control and pipette probes with enhanced ion conductance. By the former, the delay of probe Z-positioning is minimized to sub-10 µs, while its maximum stroke is secured at 6 μm. The enhanced ion conductance lowers a noise floor in ion current detection, increasing the detection bandwidth up to 100 kHz. Thus, temporal resolution 100-fold higher than that of conventional systems is achieved, together with spatial resolution around 20 nm.
Collapse
Affiliation(s)
- Shinji Watanabe
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Satoko Kitazawa
- Department of Physics, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
40
|
Sun L, Shigyou K, Ando T, Watanabe S. Thermally Driven Approach To Fill Sub-10-nm Pipettes with Batch Production. Anal Chem 2019; 91:14080-14084. [PMID: 31589026 DOI: 10.1021/acs.analchem.9b03848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Typically, utilization of small nanopipettes results in either high sensitivity or spatial resolution in modern nanoscience and nanotechnology. However, filling a nanopipette with a sub-10-nm pore diameter remains a significant challenge. Here, we introduce a thermally driven approach to filling sub-10-nm pipettes with batch production, regardless of their shape. A temperature gradient is applied to transport water vapor from the backside of nanopipettes to the tip region until bubbles are completely removed from this region. The electrical contact and pore size for filling nanopipettes are confirmed by current-voltage and transmission electron microscopy (TEM) measurements, respectively. In addition, we quantitatively compare the pore size between the TEM characterization and estimation on the basis of pore radius and conductance. The validity of this method provides a foundation for highly sensitive detection of single molecules and high spatial resolution imaging of nanostructures.
Collapse
Affiliation(s)
- Linhao Sun
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Kazuki Shigyou
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Shinji Watanabe
- Nano Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| |
Collapse
|
41
|
Gangotra A, Biviano M, Dagastine RR, Berry JD, Willmott GR. Use of microaspiration to study the mechanical properties of polymer gel microparticles. SOFT MATTER 2019; 15:7286-7294. [PMID: 31498362 DOI: 10.1039/c9sm00862d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mechanical properties of polyacrylamide (PA) and polydimethylsiloxane (PDMS) microparticle populations have been measured using microaspiration, a recently developed experimental technique. Microaspiration is an augmented version of micropipette aspiration, in which optical microscopy data are obtained as individual soft particles pass through the tip of a micropipette. During microaspiration, the ion current passing through the pipette tip is also measured, and the synchronised optical and current data streams are used to study and quantify mechanical properties. Ion current signatures for the poroelastic PA particles were qualitatively different from those of the viscoelastic PDMS particles. For PA particles the current gradually reduced during each aspiration event, whereas for PDMS particles the current trace resembled a negative top hat function. For PA particles it was found that the maximum change in current during aspiration (ΔIh) increased with particle size. By considering the initial elastic response, a mean effective shear modulus (G') of 6.6 ± 0.2 kPa was found for aspiration of 115 PA particles of ∼10-20 μm diameter. Using a viscoelastic model to describe flow into the pipette, a mean initial effective elastic modulus (E0') of 3.5 ± 1.7 MPa was found for aspiration of 17 PDMS particles of ∼ 9-11 μm diameter. These moduli are consistent with previously reported literature values, providing initial validation of the microaspiration method.
Collapse
Affiliation(s)
- Ankita Gangotra
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | | | | | | | | |
Collapse
|
42
|
Gangotra A, Willmott GR. Mechanical properties of bovine erythrocytes derived from ion current measurements using micropipettes. Bioelectrochemistry 2019; 128:204-210. [DOI: 10.1016/j.bioelechem.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/31/2022]
|
43
|
Sabaragamuwe SG, Conti D, Puri SR, Andreu I, Kim J. Single-Entity Electrochemistry of Nanoemulsion: The Nanostructural Effect on Its Electrochemical Behavior. Anal Chem 2019; 91:9599-9607. [PMID: 31260275 DOI: 10.1021/acs.analchem.9b00920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
New electrochemical approaches have been applied to investigate nanoemulsions (NEs) for their nanostructures and the relevant electrochemical activity by single-entity electrochemistry (SEE). Herein, we make highly monodisperse NEs with ∼40 nm diameter, composed of biocompatible surfactants, castor oil as plasticizers, and ion exchangers. Dynamic light scattering (DLS) measurements with periodically varying surfactant to oil ratios provide us with a structural implication about uneven distributions of incorporating components inside NEs. To support this structural insight, we apply SEE and selectively monitor electron-transfer reactions occurring at individual NEs containing ferrocene upon each collision onto a Pt ultramicroelectrode. The quantitative analysis of the nanoelectrochemical results along with DLS and transmission electron microscopy (TEM) measurements reveal nanostructured compartments of incorporating components inside NEs and their effect on the electrochemical behavior. Indeed, a tunneling barrier inside NEs could be formed depending on the NE composition, thus determining an electrochemical behavior of NEs, which cannot be differentiated by a general morphological study such as DLS and TEM but by our SEE measurements. Furthermore, by employing the nanopipet voltammetry with an interface between two immiscible electrolyte solutions (ITIES) to mimic the NE interface, we could explicitly investigate that the electron-transfer reaction occurring inside NEs is facilitated by the ion-transfer reaction. Overall, these comprehensive electrochemical approaches enable us to elucidate the relation between structures and the electrochemical functionality of NEs and provide quantitative criteria for the proper compositions of NEs regarding their activity in the electrochemical applications. Also, this finding should be a prerequisite for suitable biomedical/electrochemical applications of NEs.
Collapse
|
44
|
Cartailler J, Holcman D. Steady-state voltage distribution in three-dimensional cusp-shaped funnels modeled by PNP. J Math Biol 2019; 79:155-185. [DOI: 10.1007/s00285-019-01353-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 11/24/2022]
|
45
|
Yu R, Ying Y, Gao R, Long Y. Confined Nanopipette Sensing: From Single Molecules, Single Nanoparticles, to Single Cells. Angew Chem Int Ed Engl 2019; 58:3706-3714. [DOI: 10.1002/anie.201803229] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/25/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Ru‐Jia Yu
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Yi‐Lun Ying
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Rui Gao
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Yi‐Tao Long
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
46
|
Gunderson CG, Barlow ST, Zhang B. FIB-Milled Quartz Nanopores in a Sealed Nanopipette. J Electroanal Chem (Lausanne) 2019; 833:181-188. [PMID: 31447621 PMCID: PMC6707750 DOI: 10.1016/j.jelechem.2018.11.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report the use of laser-pulled quartz nanopipettes as a new platform for microfabricated nanopores. A quartz nanopipette is prepared on a laser puller and sealed closed prior to focused-ion beam (FIB) milling. A quartz nanopore can then be FIB-milled into the side walls of the sealed pipette and used to analyze single nanoparticles. This method is fast, reproducible and creates nearly cylindrical nanopores in ultrathin quartz walls with controllable diameter down to 66 nm. Both pore size and wall thickness can be readily controlled in the FIB milling process by adjusting milling parameters and milling at different locations along the pipette walls. FIB-milled quartz nanopores combine the advantages of the pipette pores and silicon chip-based membrane pores into one device while avoiding many of the challenges of two popular nanopore devices. First, they can be used as a handheld probe device like a quartz pipette. Second, the use of an ultrathin quartz membrane gives them superior electric property enabling low noise recording at a higher bandwidth and a highly focused sensing zone located at a farther distance away from the highly restricted tip region. The inner and outer diameters of the resulting pore can be precisely measured using scanning electron microscopy (SEM). As an application, FIB-milled side nanopores are used to study translocation of polystyrene nanoparticles. In addition to studying the dependence of translocation time on the pore length, we demonstrate detection of nanoparticles in parallel nanopores of different lengths and use finite-element simulation to confirm the identity of the two resulting populations. Our results show that FIB-milled side nanopores are a useful platform for future analytical applications like studying nanoparticle translocation dynamics.
Collapse
Affiliation(s)
| | - Samuel T Barlow
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
47
|
Puri SR, Kim J. Kinetics of Antimicrobial Drug Ion Transfer at a Water/Oil Interface Studied by Nanopipet Voltammetry. Anal Chem 2019; 91:1873-1879. [DOI: 10.1021/acs.analchem.8b03593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Surendra Raj Puri
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Jiyeon Kim
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
48
|
Liu X, Zeng Q, Liu C, Yang J, Wang L. Experimental and finite element method studies for femtomolar cobalt ion detection using a DHI modified nanochannel. Analyst 2019; 144:6118-6127. [DOI: 10.1039/c9an01344j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a sensing nanochannel based on a N-[3-(triethoxysilyl)propyl]-4,5-dihydroimidazole (DHI) modified nanopipette was prepared and characterized for the ultrasensitive detection of cobalt ions (Co2+) in aqueous solutions.
Collapse
Affiliation(s)
- Xuye Liu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Cheng Liu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Jie Yang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| |
Collapse
|
49
|
Yu R, Ying Y, Gao R, Long Y. Detektieren mit Nanopipetten im eingeschränkten Raum: von einzelnen Molekülen über Nanopartikel hin zu der Zelle. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ru‐Jia Yu
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| | - Yi‐Lun Ying
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| | - Rui Gao
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| | - Yi‐Tao Long
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| |
Collapse
|
50
|
Bentley CL, Edmondson J, Meloni GN, Perry D, Shkirskiy V, Unwin PR. Nanoscale Electrochemical Mapping. Anal Chem 2018; 91:84-108. [PMID: 30500157 DOI: 10.1021/acs.analchem.8b05235] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|