1
|
Liu R, Lan H, Yan S, Huang L, Pan D, Wu Y. Penicillin binding proteins-based immunoassay for the selective and quantitative determination of beta-lactam antibiotics. Enzyme Microb Technol 2024; 181:110507. [PMID: 39241682 DOI: 10.1016/j.enzmictec.2024.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
An immunoassay method based on penicillin-binding protein (PBP) was developed for the quantitative determination of 10 kinds of beta-lactam antibiotics (BLAs). First, two kinds of PBPs, which are named PBP1a and PBP2x, were expressed and purified, and they were characterized by SDS-PAGE and western blotting analysis. Then, the binding activity of PBP1a and PBP2x to template BLAs, cefquinome (CEFQ) and ampicillin (AMP), was determined. The effect of the buffer solution system, e.g., pH, ion concentration, and organic solvent, on the immune interaction efficiency between PBPs and BLAs was also evaluated. In the end, the PBP-based immunoassay method was developed and validated for the detection of 10 kinds of BLAs. Under optimal conditions, PBPs exhibited high binding affinity to BLAs. In addition, this method showed a high sensitivity for the detection of 10 kinds of BLAs with the limits of detection from 0.21 to 9.12 ng/mL, which are much lower than their corresponding maximum residual limit of European Union (4-100 ng/mL). Moreover, the developed PBP-immunoassay was employed for BLA detection from milk samples, and satisfactory recoveries (68.9-101.3 %) were obtained.
Collapse
Affiliation(s)
- Rilong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition and College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition and College of Food Science and Engineering, Ningbo University, Ningbo 315800, China.
| | - Song Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition and College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Lu Huang
- College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition and College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Yichun Wu
- Zhoushan Institute for Food and Drug Control, Zhoushan 316012, China
| |
Collapse
|
2
|
Chen C, Chen YX, Zhang CJ. A Radical-Generating Probe to Release Free Fluorophores and Identify Artemisinin-Sensitive Cancer Cells. ACS Sens 2024; 9:2310-2316. [PMID: 38651676 DOI: 10.1021/acssensors.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The smart light-up probes have been extensively developed to image various enzymes and other bioactive molecules. Upon activation, these probes result in light-up fluorophores that exist in a protein-bound or a free form. The difference between these two forms has not yet been reported. Here, we present a pair of smart light-up probes that generate a protein-bound fluorophore and a free fluorophore upon activation by heme. Probe 8 generated a radical-attached fluorophore that predominantly existed in the free form, while probe 10 generated an α,β-unsaturated ketone-attached fluorophore that showed extensive labeling of proteins. In live-cell imaging, probe 8 showed greater fluorescence intensity than probe 10 when low concentrations (0.1-5 μM) of the probes were used, but probe 8 was less fluorescent than probe 10 when the concentrations of the probes were high (10 μM). Finally, probe 8 was used to reflect the activation level of the endoperoxide bond in cancer cells and to effectively distinguish ART-sensitive cancer cells from ART-insensitive ones.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi-Xin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Dutta A, Mukherjee S, Haldar J, Maitra U. Augmenting Antimicrobial Resistance Surveillance: Rapid Detection of β-Lactamase-Expressing Drug-Resistant Bacteria through Sensitized Luminescence on a Paper-Supported Hydrogel. ACS Sens 2024; 9:351-360. [PMID: 38156608 DOI: 10.1021/acssensors.3c02065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The emergence of antimicrobial resistance (AMR) in pathogenic bacteria, expedited by the overuse and misuse of antibiotics, necessitates the development of a rapid and pan-territorially accessible diagnostic protocol for resistant bacterial infections, which would not only enable judicious prescription of drugs, leading to infection control but also augment AMR surveillance. In this study, we introduce for the first time a "turn-on" terbium (Tb3+) photoluminescence assay supported on a paper-based platform for rapid point-of-care (POC) detection of β-lactamase (BL)-producing bacteria. We strategically conjugated biphenyl-4-carboxylic acid (BCA), a potent Tb3+ sensitizer, with cephalosporin to engineer a BL substrate CCS, where the energy transfer to terbium is arrested. However, BL, a major resistance element produced by bacteria resistant to β-lactam antibiotics, triggers a spontaneous release of BCA, empowering terbium sensitization within a supramolecular scaffold supported on paper. The remarkable optical response facilitates quick assessment with a binary answer, and the time-gated signal acquisition ensues improved sensitivity with a detection limit as low as 0.1 mU/mL. Furthermore, to ensure accessibility, particularly in resource-limited areas, we have developed an in loco imaging device as an affordable alternative to high-end instruments. The integration of the assay with the device readily identified the BL-associated drug-resistant strains in the mimic urinary tract infection samples within 2 h, demonstrating its excellent potential for in-field translation. We believe that this rapid paper-based POC assay, coupled with the in loco device, can be deployed anywhere, especially in developing regions, and will enable extensive surveillance on antibiotic-resistant infections.
Collapse
Affiliation(s)
- Arnab Dutta
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sudip Mukherjee
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India
| | - Jayanta Haldar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India
| | - Uday Maitra
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
4
|
Zhuang Q, Guo H, Peng T, Ding E, Zhao H, Liu Q, He S, Zhao G. Advances in the detection of β-lactamase: A review. Int J Biol Macromol 2023; 251:126159. [PMID: 37549760 DOI: 10.1016/j.ijbiomac.2023.126159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
β-lactamase, an enzyme secreted by bacteria, is the main resistant mechanism of Gram-negative bacteria to β-lactam antibiotics. The resistance of bacteria to β-lactam antibiotics can be evaluated by testing the activity of β-lactamase. Traditional phenotypic detection is a golden principle, but it is time-consuming. In recent years, many new methods have emerged, which improve the efficiency by virtue of their sensitivity, low cost, easy operation, and other advantages. In this paper, we systematically review these researches and emphasize their limits of detection, sample operation, and test duration. Noteworthily, some detection systems can identify the β-lactamase subtype conveniently. We mainly divide these tests into three categories to elaborate their characteristics and application status. Both advantages and disadvantages of these methods are discussed. Additionally, we analyze the recent 5 years published researches to predict the trend of development in this field.
Collapse
Affiliation(s)
- Qian Zhuang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110122, China
| | - Huijun Guo
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Tian Peng
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Enjie Ding
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Hui Zhao
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Qiulan Liu
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Shiyin He
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, China
| | - Guojie Zhao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
5
|
Cole MS, Hegde PV, Aldrich CC. β-Lactamase-Mediated Fragmentation: Historical Perspectives and Recent Advances in Diagnostics, Imaging, and Antibacterial Design. ACS Infect Dis 2022; 8:1992-2018. [PMID: 36048623 DOI: 10.1021/acsinfecdis.2c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The discovery of β-lactam (BL) antibiotics in the early 20th century represented a remarkable advancement in human medicine, allowing for the widespread treatment of infectious diseases that had plagued humanity throughout history. Yet, this triumph was followed closely by the emergence of β-lactamase (BLase), a bacterial weapon to destroy BLs. BLase production is a primary mechanism of resistance to BL antibiotics, and the spread of new homologues with expanded hydrolytic activity represents a pressing threat to global health. Nonetheless, researchers have developed strategies that take advantage of this defense mechanism, exploiting BLase activity in the creation of probes, diagnostic tools, and even novel antibiotics selective for resistant organisms. Early discoveries in the 1960s and 1970s demonstrating that certain BLs expel a leaving group upon BLase cleavage have spawned an entire field dedicated to employing this selective release mechanism, termed BLase-mediated fragmentation. Chemical probes have been developed for imaging and studying BLase-expressing organisms in the laboratory and diagnosing BL-resistant infections in the clinic. Perhaps most promising, new antibiotics have been developed that use BLase-mediated fragmentation to selectively release cytotoxic chemical "warheads" at the site of infection, reducing off-target effects and allowing for the repurposing of putative antibiotics against resistant organisms. This Review will provide some historical background to the emergence of this field and highlight some exciting recent reports that demonstrate the promise of this unique release mechanism.
Collapse
Affiliation(s)
- Malcolm S Cole
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| | - Pooja V Hegde
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Alkekhia D, LaRose C, Shukla A. β-Lactamase-Responsive Hydrogel Drug Delivery Platform for Bacteria-Triggered Cargo Release. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27538-27550. [PMID: 35675049 DOI: 10.1021/acsami.2c02614] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance is a growing public health threat that complicates the treatment of infections. β-Lactamase enzymes, which hydrolyze the β-lactam ring present in many common antibiotics, are a major cause of this resistance and are produced by a broad range of bacterial pathogens. Here, we developed hydrogels that degrade specifically in the presence of β-lactamases and β-lactamase-producing bacteria as a platform for bacteria-triggered drug delivery. A maleimide-functionalized β-lactamase-cleavable cephalosporin was used as a crosslinker in the fabrication of hydrogels through end-crosslinked polymerization with multiarm thiol-terminated poly(ethylene glycol) macromers via Michael-type addition. We demonstrated that only hydrogels containing the responsive crosslinker were degraded by β-lactamases and β-lactamase-producing bacteria in vitro and in an ex vivo porcine skin infection model. Fluorescent polystyrene nanoparticles, encapsulated in the hydrogels as model cargo, were released at rates that closely tracked hydrogel wet mass loss, confirming β-lactamase-triggered controlled cargo release. Nonresponsive hydrogels, lacking the β-lactam crosslinker, remained stable in the presence of β-lactamases and β-lactamase-producing bacteria and exhibited no change in mass or nanoparticle release. Furthermore, the responsive hydrogels remained stable in non-β-lactamase enzymes, including collagenases and lipases. These hydrogels have the potential to be used as a bacteria-triggered drug delivery system to control unnecessary exposure to encapsulated antimicrobials, which can provide effective infection treatment without exacerbating resistance.
Collapse
Affiliation(s)
- Dahlia Alkekhia
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Cassi LaRose
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
7
|
Farag MA, Tanios M, AlKarimy S, Ibrahim H, Guirguis HA. Biosensing approaches to detect potential milk contaminants: a comprehensive review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1169-1192. [PMID: 33989131 DOI: 10.1080/19440049.2021.1914864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Accidentally present contaminants or intentionally added adulterants in milk lead potentially to delivering not only unhealthy but seriously hazardous products. Thorough, fast and sensitive analytical tools are essential for monitoring of milk quality, and for screening of any objectionable contaminants. Biosensors represent an innovative, time-efficient and on-site solution to assess milk quality in addition to their specificity towards target analytes alongside high accuracy within such complex matrices. Most biosensors use antibodies, aptamers or enzymes as the bio-receptor and rely on optical, electrochemical or thermometric transduction to generate a signal. The simplest biosensors appear to be those based on a colorimetric assay, being simple and having a signal that can be detected visually. Electrochemical sensors are more specific and sensitive, though with more complicated designs, whereas thermometric sensors have not been thoroughly explored concerning biosensing contaminants in milk. This review discusses recent advances in the field of biosensors and analyzes the various methods of bio-recognition and transduction with regard to their advantages, limitations, and application to milk products. Additionally, challenges facing further development of these strategies to fulfil the increasing demand for fast and on-line milk quality control are also presented.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Marie Tanios
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Sara AlKarimy
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Hany Ibrahim
- Analytical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hania A Guirguis
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
8
|
Tummala S, Huang W, Wu B, Chang K, Ho Y. Fluorescent Mesoporous Nanoparticles for β-Lactamase Screening Assays. ChemistryOpen 2020; 9:1074-1081. [PMID: 33117628 PMCID: PMC7582675 DOI: 10.1002/open.202000221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Indexed: 11/10/2022] Open
Abstract
We present a sensitive and rapid screening method for the determination of β-lactamase activity of antibiotic-resistant bacteria, by designing a pH-sensitive fluorescent dye-doped mesoporous silica nanoparticle encapsulated with penicillin G as a substrate. When penicillin G was hydrolysed by β-lactamase and converted into penicilloic acid, the acidic environment resulted in fluorescence quenching of the dye. The dye-doped mesoporous nanoparticles not only enhanced the β-lactamase-catalyzed reaction rate but also stablized the substrate, penicillin G, which degrades into penicilloic acid in a water solution without β-lactamase. Twentyfive clinical bacterial samples were tested and the antibiotic resistant and susceptible strains were identified. The proposed method may detect the presence of β -lactamases of clinically relevant samples in less than 1 hour. Moreover, the detection limit of β-lactamase activity was as low as 7.8×10-4 U/mL, which was determined within two hours.
Collapse
Affiliation(s)
- Srikrishna Tummala
- Department of ChemistryNational Dong Hwa UniversityHualien974TaiwanRepublic of China
| | - Wei‐An Huang
- Department of ChemistryNational Dong Hwa UniversityHualien974TaiwanRepublic of China
| | - Bo‐Hong Wu
- Department of ChemistryNational Dong Hwa UniversityHualien974TaiwanRepublic of China
| | - Kai‐Chih Chang
- Department of Laboratory Medicine and BiotechnologyTzu Chi UniversityHualien970TaiwanRepublic of China
| | - Yen‐Peng Ho
- Department of ChemistryNational Dong Hwa UniversityHualien974TaiwanRepublic of China
| |
Collapse
|
9
|
Yu P, Yang JN, Yan JW, Meng ZZ, Hong WD, Roberts AP, Ward SA, Zhang L, Li S. A novel fluorescent probe for the detection of AmpC beta-lactamase and the application in screening beta-lactamase inhibitors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118257. [PMID: 32208355 DOI: 10.1016/j.saa.2020.118257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/01/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
The rapid detection of β-lactamases (Blas) and effective screening of Bla inhibitors are critically important and urgent for solving antibiotic resistance and improving precision medicine. Here a novel fluorescent probe CDC-559 was designed and synthesized, which can be used for the selective and direct detection of AmpC Blas. More importantly, it can realize screening the Bla inhibitors with sulbactam sodium and tazobactam as model compounds, and the half-maximal inhibitory concentration are 0.279 μM and 0.053 μM, respectively. CDC-559 can be applied not only to examine the resistance of bacterial strains, but also to categorize its mode of action specifically, which is consistent with the essential result of the Blas. The research suggests that CDC-559 probe has tremendous potential in the rapid detection of AmpC Blas as well as the strains with AmpC-encoded gene, which is instructive in promoting better antibiotic stewardship practices and developments.
Collapse
Affiliation(s)
- Pan Yu
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jia-Ning Yang
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jin-Wu Yan
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi-Zhong Meng
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - W David Hong
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Adam P Roberts
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Stephen A Ward
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Lei Zhang
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technological Centre for Biopharmaceuticals, South China University of Technology, Guangzhou 510006, PR China.
| | - Shan Li
- MOE Joint International Research Laboratory of Synthesis Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
10
|
Maity S, Wang X, Das S, He M, Riley LW, Murthy N. A cephalosporin-chemiluminescent conjugate increases beta-lactamase detection sensitivity by four orders of magnitude. Chem Commun (Camb) 2020; 56:3516-3519. [PMID: 32101196 PMCID: PMC7666973 DOI: 10.1039/c9cc09498a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The expression of beta-lactamases in bacteria is a central cause of drug resistance. In this report, we present a beta-lactamase chemiluminescent probe, termed CCP, which can for the first time detect beta-lactamase activity via chemiluminescence and can detect beta lactamase with a sensitivity that is 4-orders of magnitude higher than the commercially available fluorescent lactamase substrate fluorocillin.
Collapse
Affiliation(s)
- Santanu Maity
- Department of Bioengineering, University of California, Berkeley, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Deng S, Wu J, Zhang K, Li Y, Yang L, Hu D, Jin Y, Hao Y, Wang X, Liu Y, Liu H, Chen Y, Xie M. Fluorescence Resonance Energy Transfer-Mediated Immunosensor Based on Design and Synthesis of the Substrate of Amp Cephalosporinase for Biosensing. Anal Chem 2019; 91:11316-11323. [DOI: 10.1021/acs.analchem.9b02427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Suimin Deng
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Jing Wu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Kaina Zhang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yike Li
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Lina Yang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Dehua Hu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yuhao Jin
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yun Hao
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Xiangfeng Wang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yuan Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Hailing Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei China
| | - Mengxia Xie
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
Liu X, Lv Y, Xu K, Xiao X, Xi B, Lu S. Response of ginger growth to a tetracycline-contaminated environment and residues of antibiotic and antibiotic resistance genes. CHEMOSPHERE 2018; 201:137-143. [PMID: 29524814 DOI: 10.1016/j.chemosphere.2018.02.178] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2023]
Abstract
The presence of antibiotic residues in vegetables has been highlighted as a risk to human health; antibiotics not only cause toxic effects to plants but can also induce antibiotic resistance gene (ARG) expression. Using a soil-free approach, this study aimed to explore the response of ginger growth to tetracycline (TC) pollution and to assess the levels of antibiotic residues in different plant organs and the presence of ARGs in the rhizome. Ginger growth in a highly TC-contaminated environment was remarkably inhibited. Photosynthetic parameters, fluorescence parameters, and some physiological indicators (oxidative substances, photosynthetic pigments, enzyme activity, etc.) were negatively influenced by TC contamination. Although the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity levels significantly increased, their effects appear to be limited. The accumulation of TC in the rhizome (28.1 mg kg-1) was greater than that in the roots, stem, or leaves. All tested antibiotic resistance genes except for tetL were detectable in the rhizome, and their relative abundance was in the order integron1>tetG > tetA > tetC > tetB > tetM. The level of TC in ginger rhizomes was much higher than the maximum residue limits. The potential dose of TC acquired from the consumption of ginger grown in a highly TC-contaminated environment poses no obvious risk to adults but may be a threat to children.
Collapse
Affiliation(s)
- Xiaohui Liu
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China; State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for LakePollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Xinxin Xiao
- School of Resource and Environment Science, Wuhan University, Wuhan 430072, People's Republic of China
| | - Beidou Xi
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for LakePollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for LakePollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China.
| |
Collapse
|
13
|
Peng L, Xiao L, Ding Y, Xiang Y, Tong A. A simple design of fluorescent probes for indirect detection of β-lactamase based on AIE and ESIPT processes. J Mater Chem B 2018; 6:3922-3926. [DOI: 10.1039/c8tb00414e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A fluorescent probe with both AIE and ESIPT characteristics has been developed for β-lactamase based on an indirect approach.
Collapse
Affiliation(s)
- Lu Peng
- Department of Chemistry
- Beijing Key Laboratory for Analytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Lu Xiao
- Department of Chemistry
- Beijing Key Laboratory for Analytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Yiwen Ding
- Department of Chemistry
- Beijing Key Laboratory for Analytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Yu Xiang
- Department of Chemistry
- Beijing Key Laboratory for Analytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Aijun Tong
- Department of Chemistry
- Beijing Key Laboratory for Analytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| |
Collapse
|
14
|
Mao G, Du M, Wang X, Ji X, He Z. Simple construction of ratiometric fluorescent probe for the detection of dopamine and tyrosinase by the naked eye. Analyst 2018; 143:5295-5301. [DOI: 10.1039/c8an01640b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A simple and effective method for constructing a ratiometric fluorescent probe for the detection of dopamine and tyrosinase was developed.
Collapse
Affiliation(s)
- Guobin Mao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Mingyuan Du
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Xinxin Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
15
|
Yan F, Fan K, Bai Z, Zhang R, Zu F, Xu J, Li X. Fluorescein applications as fluorescent probes for the detection of analytes. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|