1
|
Oliveira JA, Loria F, Schobinger C, Kuuranne T, Mumenthaler C, Leuenberger N. Comparison between standard hematological parameters and blood doping biomarkers in dried blood spots within the athlete population of Swiss Sport Integrity. Front Sports Act Living 2024; 6:1452079. [PMID: 39364095 PMCID: PMC11446872 DOI: 10.3389/fspor.2024.1452079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction The study demonstrated the feasibility of incorporating RNA biomarkers, specifically 5-aminolevulinic acid synthase (ALAS2) and carbonic anhydrase 1 (CA1), to improve the hematological module of the Athlete Biological Passport (ABP) in routine antidoping context. Objective The aim was to investigate the implementation of reticulocyte (RET) related biomarkers, specifically ALAS2 and CA1, using quantitative reverse transcription polymerase chain reaction (RT-qPCR) on dried blood spots (DBS) from elite athletes. Hemoglobin changes over time in DBS samples was measured as well. Combining hemoglobin and messenger RNA (mRNA) analyses allowed to monitor alterations of the established marker, "DBS OFF-score". Methodology Ten athletes were selected for sampling by the Swiss national antidoping organization, Swiss Sports Integrity (SSI). Samples were collected, transported and analyzed for ABP following the World Anti-Doping Agency (WADA) procedures and spotted onto Protein Saver DBS cards. Results Most athletes exhibited stable biomarker levels, except for one individual involved in ski mountaineering, who demonstrated a sustained increase in ALAS2 compared to the individual baseline. This elevation could be due to blood withdrawal or other factors, such as doping with substances outside the targeted test menu. Conclusion In this study, RNA-biomarkers were successfully analyzed in routine blood samples, and the project demonstrated promising results for the implementation of ALAS2 and CA1 in routine analysis to complement the ABP.
Collapse
Affiliation(s)
- Jessica Almeida Oliveira
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne, Switzerland
- Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Francesco Loria
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne, Switzerland
- Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Céline Schobinger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne, Switzerland
- Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne, Switzerland
- Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | | | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne, Switzerland
- Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Deprez S, Heughebaert L, Boffel L, Stove CP. Application of non-contact hematocrit prediction technologies to overcome hematocrit effects on immunosuppressant quantification from dried blood spots. Talanta 2023; 254:124111. [PMID: 36462285 DOI: 10.1016/j.talanta.2022.124111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Fully automated dried blood spot (DBS) analysis for therapeutic drug monitoring (TDM) of the immunosuppressants tacrolimus, sirolimus, everolimus and cyclosporin A suffers from a so-called hematocrit (hct) effect. This effect is related to the analysis of a partial DBS punch and extractability differences imposed by blood with different hcts. As this is intrinsic to automated DBS analysis, this poses a serious drawback for accurate immunosuppressant quantification. Knowledge of a sample's hct allows to correct the derived immunosuppressant concentrations for this effect. Unfortunately, when using the DBS approach for sampling at patients' homes, this hct will typically not be available. The aim of this study was to investigate the validity of a correction algorithm during fully automated DBS analysis of immunosuppressants, based on knowledge of the DBS' hct, obtained via two distinct non-contact hematocrit prediction strategies, using either near-infrared (NIR) or ultra-violet/visible (UV/VIS) spectroscopy. For tacrolimus, sirolimus, everolimus, and cyclosporin A, 48, 47, 58 and 48 paired venous whole blood and venous DBS patient samples were collected, respectively, and analyzed using an automated DBS-MS 500 HCT extraction unit coupled to a liquid chromatography tandem mass spectrometry system. Additionally, for all 201 samples the hct of the DBS was predicted based on NIR and UV/VIS spectroscopy. For tacrolimus and cyclosporin A, both hct prediction strategies allowed for adequate correction of the hct effect. Also for sirolimus and everolimus the results greatly improved after hct correction, although a hct bias remained for sirolimus and for everolimus a slightly significant hct effect was observed after NIR- and UV/VIS-based correction. Application of both hct prediction strategies ensured that clinical acceptance limits (i.e. ≥ 80% of the samples within 20% difference compared to whole blood) were met for all analytes. In conclusion, we demonstrated that non-contact hct prediction strategies, applied in tandem with fully automated DBS analysis, can be used to adequately correct immunosuppressant concentrations, yielding a good agreement with whole blood.
Collapse
Affiliation(s)
- Sigrid Deprez
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Liesl Heughebaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Laura Boffel
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
3
|
Deprez S, Van Uytfanghe K, Stove CP. Liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring of immunosuppressants and creatinine from a single dried blood spot using the Capitainer® qDBS device. Anal Chim Acta 2023; 1242:340797. [PMID: 36657891 DOI: 10.1016/j.aca.2023.340797] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/12/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
In recent years, a lot of attention has been given to a more patient-centric therapeutic drug monitoring (TDM) of immunosuppressant drugs (tacrolimus, sirolimus, everolimus and cyclosporin A) by the use of microsampling techniques. By adopting Dried Blood Spots (DBS) after a finger prick, instead of conventional venous blood draws, follow-up can (partially) be established from patients' homes. Despite the many advantages of DBS, one of the major disadvantages associated with this technique is the well described hematocrit (hct) effect. In order to overcome the hct area bias, different strategies have been proposed, amongst which the use of dried blood sampling techniques based on the volumetric collection of blood. The aim of this study was to evaluate the use of the Capitainer® qDBS (quantitative Dried Blood Spot) device for the combined TDM of four immunosuppressants and creatinine from a single qDBS. The set-up of an adequate sample preparation allowing both immunosuppressants and creatinine quantification was one of the key challenges in the method development due to device-specific interferences. Liquid chromatography tandem-mass spectrometry methods for the quantification of tacrolimus, sirolimus, everolimus, cyclosporin A and creatinine from qDBS (10 μL) were developed and validated based on international guidelines, also taking into account DBS-specific parameters. The methods proved to be accurate and reproducible, with absolute biases below 10% and within-run CVs (%) below 8% over a calibration range from 1 to 50 ng/mL for tacrolimus, sirolimus and everolimus, 20-1500 ng/mL for cyclosporin A, and 15-700 μmol/L for creatinine. Reproducible (CV < 15%) IS-compensated relative recovery values were obtained, showing no hematocrit-dependence (compared to a hct of 0.37), except for cyclosporin A at higher hct values. Application on venous blood left-over patient samples showed good agreement between the results of Capitainer® qDBS and whole blood with 98% (47/48), 93% (41/44), 89% (41/46), 88% (38/43) and 89% (116/131) of the samples lying within 20% of the whole blood result for tacrolimus, sirolimus, everolimus, cyclosporin A and plasma/serum for creatinine, respectively. For creatinine a blood/plasma ratio of 0.85 was found and used to convert qDBS results to plasma/serum results. As a next step, capillary finger prick samples will need to demonstrate the clinical applicability of the method in a real life setting.
Collapse
Affiliation(s)
- Sigrid Deprez
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Katleen Van Uytfanghe
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium; Ref4U - Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
4
|
Ryšavá L, Dorazilová J, Dvořák M, Sedláček P, Vojtová L, Kubáň P. Fully soluble polymeric foams for in-vial dried blood spot collection and analysis of acidic drugs by capillary electrophoresis. Anal Chim Acta 2023; 1241:340793. [PMID: 36657868 DOI: 10.1016/j.aca.2023.340793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Polymeric foams tailor-made of polyvinylpyrrolidone (PVP) and carboxymethylcellulose/oxidized 6-carboxycellulose (CMC07/OC) composite were proposed as suitable sorbents for the collection and analysis of dried blood spots (DBSs). The PVP and CMC07/OC foams were easy to prepare, enabled collection of minute volumes of capillary blood, and blood drying at ambient temperature. The resulting foams were prepared as small porous discs with uniform dimensions (approx. 6 × 3 mm) and were fully soluble in aqueous solutions. The DBSs were formed in standard capillary electrophoresis (CE) vials fitted with the soluble foam discs and enabled the direct in-vial DBS processing and at-line analysis by CE. The DBSs were pretreated with a simple process, which involved a complete dissolution of the foam disc in an acidic solution and a simultaneous hollow fiber liquid-phase microextraction (HF-LPME) in one step. The complete solubility of the foam disc with the DBS served for a quantitative transfer of all blood components into the eluate and a nearly exhaustive HF-LPME of target analytes, whereas the blood matrix and the polymeric foam components were efficiently retained by the organic solvent impregnated in the walls of the HF. The suitability of the PVP and CMC07/OC foams for the collection and the direct analysis of DBSs was demonstrated by the HF-LPME/CE determination of model acidic drugs (warfarin, ibuprofen, naproxen, ketoprofen, and diclofenac) at therapeutically relevant concentrations. Repeatability of the analytical method was better than 8.1% (RSD), extraction recoveries ranged from 70 to 99% (for PVP foam), calibration curves were linear over two orders of magnitude (R2 higher than 0.9991), and limits of detection were less than 44 μg/L (for concentrations in undiluted capillary blood). The soluble polymeric foams exhibited non-significant variations in analyte concentrations for DBSs prepared from blood samples with different hematocrit levels and for aged DBSs (less than 9.2%), moreover, they outperformed standard DBS sampling devices in terms of sample pretreatment time and extraction recovery.
Collapse
Affiliation(s)
- Lenka Ryšavá
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic; Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-61200, Brno, Czech Republic
| | - Jana Dorazilová
- Central European Institute of Technology, Advanced Biomaterials, Brno University of Technology, Purkyňova 656/123, CZ-612 00, Brno, Czech Republic
| | - Miloš Dvořák
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Petr Sedláček
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-61200, Brno, Czech Republic
| | - Lucy Vojtová
- Central European Institute of Technology, Advanced Biomaterials, Brno University of Technology, Purkyňova 656/123, CZ-612 00, Brno, Czech Republic
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic.
| |
Collapse
|
5
|
Deprez S, Stove CP. Dried blood microsampling-assisted therapeutic drug monitoring of immunosuppressants: An overview. J Chromatogr A 2023; 1689:463724. [PMID: 36592482 DOI: 10.1016/j.chroma.2022.463724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
In the field of solid organ transplantation, chemotherapy and autoimmune disorders, treatment with immunosuppressant drugs requires intensive follow-up of the blood concentrations via therapeutic drug monitoring (TDM) because of their narrow therapeutic window and high intra- and inter-subject variability. This requires frequent hospital visits and venepunctures to allow the determination of these analytes, putting a high burden on the patients. In the context of patient-centric thinking, it is becoming increasingly established that at least part of these conventional blood draws could be replaced by microsampling, allowing home-sampling and increasing the quality of life for these patients. In this review we discuss the published methods - mostly using liquid chromatography coupled to tandem mass spectrometry - that have utilized (volumetric) dried blood samples as an alternative for conventional liquid whole blood for the TDM of immunosuppressant drugs. Furthermore, some pre-analytical considerations using DBS or volumetric alternatives are considered, as well as the applicability on clinical samples. The implementation status in clinical practice is also discussed, including (1) the cost-effectiveness of this approach compared to venepuncture, (2) the availability of multiplexed methods, (3) the status of harmonization and (4) patient perception. A brief perspective on potential future developments for the dried blood-based TDM of immunosuppressant drugs is provided, by considering how obstacles for the implementation of these strategies into clinical practice might be overcome.
Collapse
Affiliation(s)
- Sigrid Deprez
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
6
|
Jain A, Morris M, Lin EZ, Khan SA, Ma X, Deziel NC, Godri Pollitt KJ, Johnson CH. Hemoglobin normalization outperforms other methods for standardizing dried blood spot metabolomics: A comparative study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158716. [PMID: 36113793 DOI: 10.1016/j.scitotenv.2022.158716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Dried blood spot (DBS) metabolomics has numerous applications in newborn health screening, exposomics, and biomonitoring of environmental chemicals in pregnant women and the elderly. However, accurate metabolite quantification is hindered by several challenges: notably the "hematocrit effect" and unknown blood-spotting volumes. Different techniques have been employed to overcome these issues but there is no consensus on the optimal normalization method for DBS metabolomics, and in some cases no normalization is used. We compared five normalization methods (hemoglobin (Hb), specific gravity (SG), protein, spot weight, potassium (K+)) to unnormalized data, and assessed sex-related differences in the DBS metabolome in 21 adults (group 1, n = 10 males, n = 11 females). The performance of each normalization method was evaluated using multiple criteria: (a) reduction of intragroup variation (pooled median absolute deviation, pooled estimate of variance, pooled coefficient of variation, NMDS and principal component analysis), (b) effect on differential metabolic analysis (dendrogram, heatmap, p-value distribution), and (c) influence on classification accuracy (partial least squares discriminant analysis, sparse partial least squares discriminant analysis error rates, receiver operating curve, random forest out of bag error rate). Our results revealed that Hb normalization outperformed all the other methods based on the three criteria and 13 different parameters; the performance of Hb was further demonstrated in an independent group of DBS from 18 neonates (group 2, n = 9 males, n = 9 females). Furthermore, we showed that SG and Hb are correlated in adults (rs = 0.86, p < 0.001), and validated this relationship in an independent group of 18 neonates and infants (group 3) (rs = 0.84, p < 0.001). Using the equation, SG = -0.4814Hb2 + 2.44Hb + 0.005, SG can be used as a surrogate for normalization by Hb. This is the first comparative study to concurrently evaluate multiple normalization methods for DBS metabolomics which will serve as a robust methodological platform for future environmental epidemiological studies.
Collapse
Affiliation(s)
- Abhishek Jain
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States
| | - Montana Morris
- Yale University School of Medicine, New Haven, CT, United States
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States
| | - Sajid A Khan
- Division of Surgical Oncology, Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, United States
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States.
| |
Collapse
|
7
|
Thevis M, Walpurgis K, Thomas A. DropWise: current role and future perspectives of dried blood spots (DBS), blood microsampling, and their analysis in sports drug testing. Crit Rev Clin Lab Sci 2023; 60:41-62. [PMID: 35938300 DOI: 10.1080/10408363.2022.2103085] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For decades, blood testing has been an integral part of routine doping controls. The breadth of information contained in blood samples has become considerably more accessible for anti-doping purposes over the last 10 years through technological advancements regarding analytical instrumentation as well as enhanced sample collection systems. Particularly, microsampling of whole blood and serum, for instance as dried blood spots (DBS), has opened new avenues in sports drug testing and substantially increased the availability and cost-effectiveness of doping control specimens. Thus, microvolume blood specimens possess the potential to improve monitoring of blood hormone and drug levels, support evaluation of circulating drug concentrations in competition, and enhance the stability of labile markers and target analytes in blood passport analyses as well as peptide hormone and steroid ester detection. Further, the availability of the fraction of lysed erythrocytes for anti-doping purposes warrants additional investigation, considering the sequestering capability of red blood cells (RBCs) for certain substances, as a complementary approach in support of the clean sport.
Collapse
Affiliation(s)
- M Thevis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Bonn, Germany
| | - Katja Walpurgis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - A Thomas
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
8
|
Deprez S, Heughebaert L, Boffel L, Stove CP. Comparison of near-infrared and UV–vis-based non-contact hematocrit prediction of dried blood spots from patients on immunosuppressants. Clin Chem Lab Med 2022; 61:e87-e90. [PMID: 36517416 DOI: 10.1515/cclm-2022-0864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Sigrid Deprez
- Laboratory of Toxicology, Department of Bioanalysis , Faculty of Pharmaceutical Sciences, Ghent University , Ghent , Belgium
| | - Liesl Heughebaert
- Laboratory of Toxicology, Department of Bioanalysis , Faculty of Pharmaceutical Sciences, Ghent University , Ghent , Belgium
| | - Laura Boffel
- Laboratory of Toxicology, Department of Bioanalysis , Faculty of Pharmaceutical Sciences, Ghent University , Ghent , Belgium
| | - Christophe P. Stove
- Laboratory of Toxicology, Department of Bioanalysis , Faculty of Pharmaceutical Sciences, Ghent University , Ghent , Belgium
| |
Collapse
|
9
|
Mazzarino M, Di Costanzo L, Comunità F, Stacchini C, de la Torre X, Botrè F. UHPLC-HRMS Method for the Simultaneous Screening of 235 Drugs in Capillary Blood for Doping Control Purpose: Comparative Evaluation of Volumetric and Non-volumetric Dried Blood Spotting Devices. ACS OMEGA 2022; 7:31845-31868. [PMID: 36119994 PMCID: PMC9475635 DOI: 10.1021/acsomega.2c01417] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
We present a quick and simple multi-targeted analytical workflow based on ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry for the screening in dried blood spots and dried plasma spots of a wide variety of drugs with different chemical properties. Seven different microsampling devices were evaluated in view of their application for the detection of the selected target analytes in the framework of doping control analysis. The extraction of the analytes was optimized by assessing the efficacy of protocols based on ultrasonication with aqueous buffers and/or organic solvents of different polarities. Optimal recoveries were obtained by using pure methanol or mixtures of methanol/acetonitrile and methanol/isopropanol, depending on both the device and the target analytes. The method was fully validated according to both ISO17025 and the requirements of the World Anti-Doping Agency: all the analytes were clearly distinguishable from the matrix, with limits of detection in the range of 0.1-3.0 ng mL-1. Stability studies simulating the storage of samples before the analysis and in view of a possible re-analysis showed that most of the analytes were stable for at least 24 h at 50 °C and for at least 3 weeks at 25 and at 4 °C. The real applicability of the method was assessed by analyzing the samples collected after the administration of two model drugs, acetazolamide and deflazacort. The performance of the method was confirmed to be fit for purpose, and data obtained in blood can also be used to complement those available in urine, allowing to refine the knowledge concerning the pharmacokinetic profiles.
Collapse
Affiliation(s)
- Monica Mazzarino
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
| | - Ludovica Di Costanzo
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
| | - Fabio Comunità
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
| | - Carlotta Stacchini
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
- Dipartimento
Chimica e Tecnologia del Farmaco, “Sapienza”
Università di Roma, Piazzale Aldo Moro 5, 00161 Rome, Italy
| | - Xavier de la Torre
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
| | - Francesco Botrè
- Laboratorio
Antidoping, Federazione Medico Sportiva
Italiana, Largo Giulio
Onesti, 1, 00197 Rome, Italy
- REDs—Research
and Expertise in Anti-Doping Sciences, ISSUL—Institute of Sport
Sciences, University of Lausanne, Synathlon—Quartier Centre, 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Haga M, Isobe M, Kawabata K, Shimizu M, Mochizuki H. The Acylcarnitine Profile in Dried Blood Spots is Affected by Hematocrit: A Study of Newborn Screening Samples in Very-Low-Birth-Weight Infants. Am J Perinatol 2022; 39:1236-1240. [PMID: 33374020 DOI: 10.1055/s-0040-1721849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The acylcarnitine profile is analyzed in dried blood spots (DBS) to screen for inborn errors of metabolism. Hematocrit (Ht) is known to affect the result of quantitative analyses of DBS samples; however, the effects of Ht on the acylcarnitine profiles in DBS have not been studied in actual samples from newborns. STUDY DESIGN The acylcarnitine profiles in DBS for newborn screening tests and Ht levels of very-low-birth-weight infants were obtained from medical records. We investigated the relationship between Ht and each acylcarnitine using Pearson's correlation coefficient (r). RESULTS We examined 77 newborns in this study. There was a significantly positive correlation between Ht and C0, C2, C12, C16, C18, C18:1, and C18:1-OH, respectively (p < 0.0025). The correlation was the greatest on C2 (r = 0.59). CONCLUSION This study clarifies that Ht and C0, C2, C12, C16, C18, C18:1, and C18:1-OH are significantly correlated in DBS, which is consistent with previous studies. Hence, the effect of Ht should be considered when interpreting the results of acylcarnitine profiles in DBS. KEY POINTS · Acylcarnitine profile in dried blood spots (DBS) is affected by the hematocrit (Ht) of the sample.. · There are positive correlations between Ht and C0, C2, C12, C16, C18, and C18:1-OH in DBS.. · We should be aware of the effects of Ht on acylcarnitine profiles in DBS..
Collapse
Affiliation(s)
- Mitsuhiro Haga
- Department of Neonatology, Saitama Children's Medical Center, Saitama, Japan.,Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Mitsuhisa Isobe
- Division of Health Science, Saitama City Institute of Health Science and Research, Saitama, Japan
| | - Ken Kawabata
- Department of Neonatology, Saitama Children's Medical Center, Saitama, Japan
| | - Masaki Shimizu
- Department of Neonatology, Saitama Children's Medical Center, Saitama, Japan
| | - Hiroshi Mochizuki
- Department of Metabolism and Endocrinology, Saitama Children's Medical Center, Saitama, Japan
| |
Collapse
|
11
|
Allaway D, Alexander JE, Carvell-Miller LJ, Reynolds RM, Winder CL, Weber RJM, Lloyd GR, Southam AD, Dunn WB. Suitability of Dried Blood Spots for Accelerating Veterinary Biobank Collections and Identifying Metabolomics Biomarkers With Minimal Resources. Front Vet Sci 2022; 9:887163. [PMID: 35812865 PMCID: PMC9258959 DOI: 10.3389/fvets.2022.887163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Biomarker discovery using biobank samples collected from veterinary clinics would deliver insights into the diverse population of pets and accelerate diagnostic development. The acquisition, preparation, processing, and storage of biofluid samples in sufficient volumes and at a quality suitable for later analysis with most suitable discovery methods remain challenging. Metabolomics analysis is a valuable approach to detect health/disease phenotypes. Pre-processing changes during preparation of plasma/serum samples may induce variability that may be overcome using dried blood spots (DBSs). We report a proof of principle study by metabolite fingerprinting applying UHPLC-MS of plasma and DBSs acquired from healthy adult dogs and cats (age range 1–9 years), representing each of 4 dog breeds (Labrador retriever, Beagle, Petit Basset Griffon Vendeen, and Norfolk terrier) and the British domestic shorthair cat (n = 10 per group). Blood samples (20 and 40 μL) for DBSs were loaded onto filter paper, air-dried at room temperature (3 h), and sealed and stored (4°C for ~72 h) prior to storage at −80°C. Plasma from the same blood draw (250 μL) was prepared and stored at −80°C within 1 h of sampling. Metabolite fingerprinting of the DBSs and plasma produced similar numbers of metabolite features that had similar abilities to discriminate between biological classes and correctly assign blinded samples. These provide evidence that DBSs, sampled in a manner amenable to application in in-clinic/in-field processing, are a suitable sample for biomarker discovery using UHPLC-MS metabolomics. Further, given appropriate owner consent, the volumes tested (20–40 μL) make the acquisition of remnant blood from blood samples drawn for other reasons available for biobanking and other research activities. Together, this makes possible large-scale biobanking of veterinary samples, gaining sufficient material sooner and enabling quicker identification of biomarkers of interest.
Collapse
Affiliation(s)
- David Allaway
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, United Kingdom
- *Correspondence: David Allaway
| | - Janet E. Alexander
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, United Kingdom
| | - Laura J. Carvell-Miller
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, United Kingdom
| | - Rhiannon M. Reynolds
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, United Kingdom
| | - Catherine L. Winder
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ralf J. M. Weber
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
| | - Gavin R. Lloyd
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
| | - Andrew D. Southam
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
| | - Warwick B. Dunn
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Verougstraete N, Stove V, Verstraete AG, Stove CP. Therapeutic Drug Monitoring of Tyrosine Kinase Inhibitors Using Dried Blood Microsamples. Front Oncol 2022; 12:821807. [PMID: 35392223 PMCID: PMC8980857 DOI: 10.3389/fonc.2022.821807] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Therapeutic drug monitoring (TDM) of tyrosine kinase inhibitors (TKIs) is not yet performed routinely in the standard care of oncology patients, although it offers a high potential to improve treatment outcome and minimize toxicity. TKIs are perfect candidates for TDM as they show a relatively small therapeutic window, a wide inter-patient variability in pharmacokinetics and a correlation between drug concentration and effect. Moreover, most of the available TKIs are susceptible to various drug-drug interactions and medication adherence can be checked by performing TDM. Plasma, obtained via traditional venous blood sampling, is the standard matrix for TDM of TKIs. However, the use of plasma poses some challenges related to sampling and stability. The use of dried blood microsamples can overcome these limitations. Collection of samples via finger-prick is minimally invasive and considered convenient and simple, enabling sampling by the patients themselves in their home-setting. The collection of small sample volumes is especially relevant for use in pediatric populations or in pharmacokinetic studies. Additionally, working with dried matrices improves compound stability, resulting in convenient and cost-effective transport and storage of the samples. In this review we focus on the different dried blood microsample-based methods that were used for the quantification of TKIs. Despite the many advantages associated with dried blood microsampling, quantitative analyses are also associated with some specific difficulties. Different methodological aspects of microsampling-based methods are discussed and applied to TDM of TKIs. We focus on sample preparation, analytics, internal standards, dilution of samples, external quality controls, dried blood spot specific validation parameters, stability and blood-to-plasma conversion methods. The various impacts of deviating hematocrit values on quantitative results are discussed in a separate section as this is a key issue and undoubtedly the most widely discussed issue in the analysis of dried blood microsamples. Lastly, the applicability and feasibility of performing TDM using microsamples in a real-life home-sampling context is discussed.
Collapse
Affiliation(s)
- Nick Verougstraete
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Veronique Stove
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Alain G Verstraete
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Monitoring of hemoglobin and erythropoiesis-related mRNA with dried blood spots in athletes and patients. Bioanalysis 2022; 14:241-251. [PMID: 35172618 DOI: 10.4155/bio-2021-0252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: We assessed the feasibility of using hematological parameters (such as hemoglobin and reticulocyte mRNA) in dried blood spot (DBS) samples to test athletes for doping and to improve patient care. Methods: Hemoglobin and erythropoiesis-related mRNAs were measured in venous blood and DBSs from both healthy athletes and hemodialysis patients. Results: We accurately measured hemoglobin changes over time in both venous blood and DBS samples. Combining hemoglobin and mRNA analyses, we detected erythropoietin injection in DBSs more sensitively and with higher efficiency by using the DBS OFF-score than by using the athlete biological passport OFF-score. Conclusion: DBS-based measurements are practical for calculating hemoglobin levels and athlete biological passport OFF-scores. This approach may help detect blood doping and help predict patient response to EPO.
Collapse
|
14
|
Chiu HH, Tsai YJ, Lo C, Liao HW, Lin CH, Tang SC, Kuo CH. Development of an LC-MS/MS method to simultaneously quantify therapeutic mAbs and estimate hematocrit values in dried blood spot samples. Anal Chim Acta 2022; 1189:339231. [PMID: 34815034 DOI: 10.1016/j.aca.2021.339231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/25/2021] [Accepted: 10/28/2021] [Indexed: 01/14/2023]
Abstract
Recently, monoclonal antibody (mAb) therapy has gained increasing attention in the medical field due to its high specificity. Dried blood spots (DBSs) have been used in various clinical fields due to their unique characteristics, such as easy transportation, low invasiveness, and home sampling. However, hematocrit (HCT)-associated issues may lead to inaccurate quantification; moreover, the HCT value is required for converting the drug concentration from DBS to plasma. To simultaneously measure HCT levels and quantify mAb concentrations in DBS samples, this study used volumetrically applied 15 μL DBS, and combined protein G purification and ethanol precipitation approaches as the sample preparation method. Sixty-two clinical samples were used to investigate the HCT estimation ability by using hemoglobin (Hb) peptides. Four mAbs, bevacizumab, trastuzumab, nivolumab and tocilizumab, were selected to demonstrate our method, and pembrolizumab was used as the internal standard. The optimized method could measure four mAbs and Hb peptides simultaneously within 11 min. Moreover, a correlation study revealed that the correlation coefficient for the Hb peptides and the HCT value was larger than 0.9. The HCT estimation results revealed that for over 90% of the real DBS samples the HCT could be obtained within ±20% estimation error acceptance criteria. The method was validated in terms of accuracy and precision for the four mAbs. The developed method was further applied to simultaneously quantify mAb concentrations and estimate HCT values in six patient DBS samples to demonstrate its clinical applicability. It is believed that this newly developed method could facilitate various clinical studies and provide benefits for mAb therapies in clinical fields.
Collapse
Affiliation(s)
- Huai-Hsuan Chiu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun-Jung Tsai
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiao Lo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiao-Wei Liao
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Oncology, National Taiwan University Cancer Center Hospital, Taipei, Taiwan
| | - Sung-Chun Tang
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
15
|
Boffel L, Heughebaert L, Lambrecht S, Luginbühl M, Stove CP. In-depth evaluation of automated non-contact reflectance-based hematocrit prediction of dried blood spots. Analyst 2022; 147:5445-5454. [DOI: 10.1039/d2an01642g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Using the automated CAMAG® DBS-MS 500 HCT system, a UV-Vis-based hematocrit prediction calibration model was succesfully set up and applied on both an independent instrument and an independent set of venous DBS samples.
Collapse
Affiliation(s)
- Laura Boffel
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Liesl Heughebaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Stijn Lambrecht
- Laboratory of Clinical Chemistry and Hematology, Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Marc Luginbühl
- CAMAG, Sonnenmattstrasse 11, CH-4132 Muttenz, Switzerland
| | - Christophe P. Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
16
|
Delahaye L, Heughebaert L, Lühr C, Lambrecht S, Stove CP. Near-infrared-based hematocrit prediction of dried blood spots: An in-depth evaluation. Clin Chim Acta 2021; 523:239-246. [PMID: 34624275 DOI: 10.1016/j.cca.2021.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Dried blood spot (DBS) microsampling has gained interest in different clinical fields, owing to its many advantages compared to conventional blood sampling. However, whilst being applied for decades for screening purposes, some challenges, such as the hematocrit (Hct) effect, hinder further widespread use of DBS for quantitative purposes in clinical practice. Amongst the approaches that were developed to cope with this issue, is the Hct prediction of DBS using near-infrared (NIR) spectroscopy. METHODS Using left-over EDTA-anticoagulated patient samples, the accuracy and precision, stability, and robustness were assessed. Furthermore, applicability of the method on capillary DBS was evaluated via finger prick samples. RESULTS A maximal bias, respectively CV, of 0.012 L/L and 4.5% were obtained. The method was robust towards several aspects, including storage (except for storage at 60°C), measurement location, type of filter paper and spotted volume. Furthermore, the potential to predict the Hct of capillary DBS was demonstrated. CONCLUSION A commercially available NIR set-up was extensively and successfully validated, allowing non-contact Hct prediction of DBS with excellent accuracy and precision. This allows to correct for the Hct-based bias observed in partial-punch DBS analysis and the set-up of blood-plasma conversion factors, increasing the application potential of patient-centric sampling.
Collapse
Affiliation(s)
- Lisa Delahaye
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent, Belgium
| | - Liesl Heughebaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent, Belgium
| | | | - Stijn Lambrecht
- Laboratory of Clinical Chemistry and Hematology, Ghent University Hospital, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent, Belgium.
| |
Collapse
|
17
|
Kleijne VD, Kohler I, C Heijboer A, Ackermans MT. Solutions for hematocrit bias in dried blood spot hormone analysis. Bioanalysis 2021; 13:1293-1308. [PMID: 34470479 DOI: 10.4155/bio-2021-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Over the last years, dried blood spot (DBS) sampling has gained significant interest due to development of analytical techniques combined with DBS, the simplicity and low cost of the method. Despite its wide use, DBS sampling can lead to inaccurate results due to the impact of the hematocrit (Hct) on the analysis. Some analytes have shown to be hardly impacted by Hct values. However, in other cases, a significant impact of Hct is observed, which requires the use of alternative approaches to circumvent this issue. This review describes the possible impact of Hct-related bias in DBS sampling in the context of hormone analysis and discusses the different methodologies that can be used to overcome this bias to ensure accurate results.
Collapse
Affiliation(s)
- Vera de Kleijne
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular & Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam, Amsterdam, The Netherlands
| | - Annemieke C Heijboer
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| | - Mariëtte T Ackermans
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Luginbühl M, Stöth F, Weinmann W, Gaugler S. Fully automated correction for the hematocrit bias of non-volumetric dried blood spot phosphatidylethanol analysis. Alcohol 2021; 94:17-23. [PMID: 33865941 DOI: 10.1016/j.alcohol.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
The quantitative analysis of substances in dried blood spots (DBS) has gained vast popularity in the past decade. The World Anti-Doping Agency (WADA) also recently committed to implementing DBS. Currently, DBS sampling mainly has focused on various volumetric sampling devices such as Hemaxis, Capitainer, and Mitra. These devices are designed to collect a specific sample volume, independent of the hematocrit (HCT), to enable quantitative DBS analysis. Here, we present an automated solution that makes the necessity of volumetric sampling for quantitative DBS analysis obsolete. Combining automated reflectance-based HCT correction in combination with fully automated DBS LC-MS/MS analysis, the novel strategy permits high-throughput analysis in combination with HCT independence. Studying the model compound phosphatidylethanol 16:0/18:1, which is HCT-dependent due to incorporation into red blood cells, an implementation of DBS HCT normalization is presented. First, the performance of the automated HCT module with DBS is demonstrated compared to standardized HCT analysis from whole blood using a centrifuge. Second, the HCT dependency of fully automated PEth analysis from DBS is evaluated. Third, a solution to correct for the HCT dependency of PEth using the HCT scanner is presented. The study demonstrates that as soon as the HCT dependence of an analyte is known, a correction factor can be applied for the normalization of HCT levels. In the context of PEth, a linear increase in PEth concentration was observed, as the analyte is primarily located within the cellular fraction. Based on the obtained results, the use of a common correction factor for PEth DBS is possible.
Collapse
Affiliation(s)
- Marc Luginbühl
- CAMAG DBS Laboratory, Sonnenmattstrasse 11, 4132 Muttenz, Switzerland.
| | - Frederike Stöth
- Institute of Forensic Medicine Bern, University of Bern, Bühlstrasse 20, 3012 Bern, Switzerland
| | - Wolfgang Weinmann
- Institute of Forensic Medicine Bern, University of Bern, Bühlstrasse 20, 3012 Bern, Switzerland
| | - Stefan Gaugler
- CAMAG DBS Laboratory, Sonnenmattstrasse 11, 4132 Muttenz, Switzerland
| |
Collapse
|
19
|
Deprez S, Stove CP. Fully Automated Dried Blood Bpot Extraction coupled to Liquid Chromatography-tandem Mass Spectrometry for Therapeutic Drug Monitoring of Immunosuppressants. J Chromatogr A 2021; 1653:462430. [PMID: 34384960 DOI: 10.1016/j.chroma.2021.462430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022]
Abstract
Patients receiving immunosuppressant therapy, require intensive follow-up via therapeutic drug monitoring (TDM). This puts quite a burden on the patient involving frequent hospital visits and venipunctures and could (partially) be resolved by the use of dried blood microsamples (e.g. dried blood spots, DBS). One of the drawbacks of the use of DBS is the requirement for a dedicated, manual sample preparation. Fully automated DBS extraction systems, online coupled to standard liquid chromatography-tandem mass spectrometry (LC-MS/MS) configurations, could provide a solution for that. The aim of this study was to evaluate the use of the DBS-MS 500, online coupled to an LC-MS/MS system, for the TDM of immunosuppressants using DBS. Two methods for the quantification of tacrolimus, sirolimus, everolimus and cyclosporin A, in both DBS and whole blood, were developed and validated based on international guidelines. For the DBS method also DBS-specific parameters were taken into account. Both methods proved to be accurate and reproducible with biases below 11% (20% for the LLOQ) and CVs (%) below 14% (with a single exception) (20% for the LLOQ) over a calibration range from 1 to 50 ng/mL for tacrolimus, sirolimus and everolimus and 20 to 1500 ng/mL for cyclosporin A. Reproducible (CV < 15%) IS-compensated relative recovery values were obtained. However, a hematocrit-dependent relative recovery was observed for DBS, with lower hematocrit values yielding higher relative recoveries (and vice versa). Relative to the reference hematocrit of 0.37, this difference exceeded 15% at hematocrit extremes (0.18 and 0.60). Application on venous left-over patient samples showed reasonable agreement between the results of both methodologies (8,6,9 and 9/10 mean DBS results within 20% of the mean whole blood result for tacrolimus, sirolimus, everolimus and cyclosporin A, respectively), although also here an impact of the hematocrit could be discerned. As a next step, larger patient sets are needed to allow a better insight on how (correction for) the hct effect affects the quantification of immunosuppressants via fully automated DBS analysis.
Collapse
Affiliation(s)
- Sigrid Deprez
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| |
Collapse
|
20
|
Mbughuni MM, Stevens MA, Langman LJ, Kudva YC, Sanchez W, Dean PG, Jannetto PJ. Volumetric Microsampling of Capillary Blood Spot vs Whole Blood Sampling for Therapeutic Drug Monitoring of Tacrolimus and Cyclosporin A: Accuracy and Patient Satisfaction. J Appl Lab Med 2021; 5:516-530. [PMID: 32445361 DOI: 10.1093/jalm/jfaa005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/07/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Immunosuppressant therapeutic drug monitoring (TDM) usually requires outpatient travel to hospitals or phlebotomy sites for venous blood collection; however Mitra® Microsampling Device (MSD) sampling could allow self-collection and shipping of samples to a laboratory for analysis. This study examined the feasibility of using volumetric microsampling by MSD for TDM of tacrolimus (TaC) and cyclosporin A (CsA) in transplant patients, along with their feedback on the process. METHODS MSD was used to collect TaC and CsA from venous (VB) or capillary (CB) blood. The MSDs were rehydrated, extracted, and analyzed using on-line solid phase extraction coupled to tandem mass spectrometry (SPE-MS/MS). We report an abbreviated method validation of the MSD including: accuracy, precision, linearity, carry-over, and stability using residual venous whole blood (VB) samples. Subsequent clinical validation compared serially collected MSD + CB against VB (200 µL) from transplant patients. RESULTS Accuracy comparing VB vs. MSD+VB showed high clinical concordance (TaC = 89% and CsA = 98%). Inter- and intra-precision was ≤11.5 %CV for TaC and CsA. Samples were stable for up to 7 days at room temperature with an average difference of <10%. Clinical validation with MSD+CB correlated well with VB for CsA (slope = 0.95, r2 = 0.88, n = 47) and TaC (slope = 0.98, r2 = 0.82, n = 49). CB vs. VB gave concordance of 94% for CsA and 79% for TaC. A satisfaction survey showed 82% of patients preferred having the capillary collection option. CONCLUSION Transplant patients favored having the ability to collect capillary samples at home for TaC/CsA monitoring. Our results demonstrate good concordance between MSD+CB and VB for TaC and CsA TDM, but additional studies are warranted.
Collapse
Affiliation(s)
- Michael M Mbughuni
- Department of Pathology & Laboratory Medicine, Mayo Clinic, Rochester, MN
| | | | - Loralie J Langman
- Department of Pathology & Laboratory Medicine, Mayo Clinic, Rochester, MN
| | - Yogish C Kudva
- Department of Pathology & Laboratory Medicine, Mayo Clinic, Rochester, MN
| | | | - Patrick G Dean
- Department of Transplantation Surgery, Mayo Clinic, Rochester, MN
| | - Paul J Jannetto
- Department of Pathology & Laboratory Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
21
|
van de Velde D, van der Graaf JL, Boussaidi M, Huisman R, Hesselink DA, Russcher H, Kooij-Egas AC, van Maarseveen E, de Winter BCM. Development and Validation of Hematocrit Level Measurement in Dried Blood Spots Using Near-Infrared Spectroscopy. Ther Drug Monit 2021; 43:351-357. [PMID: 33149057 DOI: 10.1097/ftd.0000000000000834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/05/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dried blood spots (DBSs) have gained recent popularity as a sampling method for therapeutic drug monitoring. For patients, DBS sampling has several advantages over venous blood sampling. However, technical issues primarily influenced by hematocrit levels, interfere with the implementation of this method in daily clinical practice. The results of concentration measurements of drugs that are influenced by hematocrit should be corrected for hematocrit levels. In this article, we developed a fast, nondestructive, near-infrared (NIR)-based method for measuring the hematocrit in DBSs. METHOD Using a partial least squares algorithm, an NIR-based quantification method was developed for measuring hematocrit levels of 0.19-0.49 L/L. Residual venous blood of 522 patients was used to build this partial least squares model. The validity of the method was evaluated using 40 patient samples. DBSs were created by adding a small amount (50 µL) of blood on a Whatman filter paper and drying for 24 hours in a desiccator cabinet. The robustness was evaluated by measuring 24 additional samples with a high hemolysis, icterus, and lipemia (HIL) index. The hematocrit values obtained using a Sysmex XN hemocytometry analyzer were used as reference. RESULTS The difference between hematocrit measurements obtained with NIR spectroscopy and a hemocytometry analyzer was <15% for the 40 samples. The accuracy (≤9%) and precision (≤7%) for all the quality control samples were within the acceptance criteria of <15%. The intraassay and interassay coefficient of variability was ≤3% and ≤6%, respectively, for the different quality control levels. There were no deviations in the measurements for the samples with high HIL indices. The stability of hematocrit in DBS was up to 14 days for all levels. CONCLUSIONS We developed and validated a hematocrit model using NIR spectroscopy. This nondestructive, accurate, and reproducible method has a short analysis time (51 seconds), and can be used to analyze DBS samples stored for up to 2 weeks in a desiccator cabinet.
Collapse
Affiliation(s)
| | | | | | | | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC
| | - Henk Russcher
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands ; and
| | - Annelies C Kooij-Egas
- Department of Hospital Pharmacy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Erik van Maarseveen
- Department of Hospital Pharmacy, University Medical Center Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
22
|
Delahaye L, Stove C. Alternative Sampling Strategies in Therapeutic Drug Monitoring: Microsampling Growing Toward Maturity. Ther Drug Monit 2021; 43:307-309. [PMID: 33973965 DOI: 10.1097/ftd.0000000000000893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Lisa Delahaye
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | |
Collapse
|
23
|
Luginbühl M, Gaugler S. Addressing New Possibilities and New Challenges: Automated Nondestructive Hematocrit Normalization for Dried Blood Spots. Ther Drug Monit 2021; 43:346-350. [PMID: 33973966 DOI: 10.1097/ftd.0000000000000887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/24/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT The patient's hematocrit (HCT) level can adversely affect the analysis results when dried blood spots (DBS) are used for sampling. Volumetric DBS sampling has been proposed to nullify the impact of HCT area bias (spreading area) on DBS by normalizing to a known sample volume. However, this strategy ignores DBS-related parameters such as analyte properties (red blood cell-to-plasma ratio) and HCT recovery bias. With the recent release of fully automated HCT measurement systems for DBS analysis, a broad range of end users are now able to measure and correct a sample's HCT level in a nondestructive manner. These systems permit correction for all known HCT-related impacts on DBS, such as analyte properties, HCT recovery bias, HCT area bias, and venous blood-to-DBS ratio, supporting and accelerating future quantitative DBS applications. However, with these novel tools, new questions arise concerning the normalization of analytical results, the choice of technique (single-wavelength reflectance vs near-infrared spectroscopy), and the DBS card-handling process post sampling. Herein, the necessary considerations for end users are addressed and examples are provided.
Collapse
|
24
|
Delahaye L, Veenhof H, Koch BCP, Alffenaar JWC, Linden R, Stove C. Alternative Sampling Devices to Collect Dried Blood Microsamples: State-of-the-Art. Ther Drug Monit 2021; 43:310-321. [PMID: 33470777 DOI: 10.1097/ftd.0000000000000864] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
ABSTRACT Dried blood spots (DBS) have been used in newborn screening programs for several years. More recently, there has been growing interest in using DBS as a home sampling tool for the quantitative determination of analytes. However, this presents challenges, mainly because of the well-known hematocrit effect and other DBS-specific parameters, including spotted volume and punch site, which could add to the method uncertainty. Therefore, new microsampling devices that quantitatively collect capillary dried blood are continuously being developed. In this review, we provided an overview of devices that are commercially available or under development that allow the quantitative (volumetric) collection of dried blood (-based) microsamples and are meant to be used for home or remote sampling. Considering the field of therapeutic drug monitoring (TDM), we examined different aspects that are important for a device to be implemented in clinical practice, including ease of patient use, technical performance, and ease of integration in the workflow of a clinical laboratory. Costs related to microsampling devices are briefly discussed, because this additionally plays an important role in the decision-making process. Although the added value of home sampling for TDM and the willingness of patients to perform home sampling have been demonstrated in some studies, real clinical implementation is progressing at a slower pace. More extensive evaluation of these newly developed devices, not only analytically but also clinically, is needed to demonstrate their real-life applicability, which is a prerequisite for their use in the field of TDM.
Collapse
Affiliation(s)
- Lisa Delahaye
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Belgium
| | - Herman Veenhof
- University of Groningen, Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jan-Willem C Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia; and
| | - Rafael Linden
- Laboratory of Analytical Toxicology, Institute of Health Sciences, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Belgium
| |
Collapse
|
25
|
Barr DB, Kannan K, Cui Y, Merrill L, Petrick LM, Meeker JD, Fennell TR, Faustman EM. The use of dried blood spots for characterizing children's exposure to organic environmental chemicals. ENVIRONMENTAL RESEARCH 2021; 195:110796. [PMID: 33508256 PMCID: PMC7988293 DOI: 10.1016/j.envres.2021.110796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/02/2021] [Accepted: 01/20/2021] [Indexed: 05/05/2023]
Abstract
Biomonitoring is a commonly used tool for exposure assessment of organic environmental chemicals with urine and blood samples being the most commonly used matrices. However, for children's studies, blood samples are often difficult to obtain. Dried blood spots (DBS) represent a potential matrix for blood collection in children that may be used for biomonitoring. DBS are typically collected at birth to screen for several congenital disorders and diseases; many of the states that are required to collect DBS archive these spots for years. If the archived DBS can be accessed by environmental health researchers, they potentially could be analyzed to retrospectively assess exposure in these children. Furthermore, DBS can be collected prospectively in the field from children ranging in age from newborn to school-aged with little concern from parents and minimal risk to the child. Here, we review studies that have evaluated the measurement of organic environmental toxicants in both archived and prospectively collected DBS, and where available, the validation procedures that have been performed to ensure these measurements are comparable to traditional biomonitoring measurements. Among studies thus far, the amount of validation has varied considerably with no studies systematically evaluating all parameters from field collection, shipping and storage contamination and stability to laboratory analysis feasibility. These validation studies are requisite to ensure reliability of the measurement and comparability to more traditional matrices. Thus, we offer some recommendations for validation studies and other considerations before DBS should be adopted as a routine matrix for biomonitoring.
Collapse
Affiliation(s)
- Dana Boyd Barr
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA.
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Yuxia Cui
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Lauren M Petrick
- The Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John D Meeker
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Elaine M Faustman
- University of Washington, School of Public Health, Department of Environmental and Occupational Health, Seattle, WA, USA
| |
Collapse
|
26
|
The Evolving Role of Microsampling in Therapeutic Drug Monitoring of Monoclonal Antibodies in Inflammatory Diseases. Molecules 2021; 26:molecules26061787. [PMID: 33810104 PMCID: PMC8004874 DOI: 10.3390/molecules26061787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Monoclonal antibodies (mAbs) have been extensively developed over the past few years, for the treatment of various inflammatory diseases. They are large molecules characterized by complex pharmacokinetic and pharmacodynamic properties. Therapeutic drug monitoring (TDM) is routinely implemented in the therapy with mAbs, to monitor patients’ treatment response and to further guide dose adjustments. Serum has been the matrix of choice in the TDM of mAbs and its sampling requires the visit of the patients to laboratories that are not always easily accessible. Therefore, dried blood spots (DBS) and various microsampling techniques have been suggested as an alternative. DBS is a sampling technique in which capillary blood is deposited on a special filter paper. It is a relatively simple procedure, and the patients can perform the home-sampling. The convenience it offers has enabled its use in the quantification of small-molecule drugs, whilst in the recent years, studies aimed to develop microsampling methods that will facilitate the TDM of mAbs. Nevertheless, hematocrit still remains an obstacle that hinders a more widespread implementation of DBS in clinical practice. The introduction of novel analytical techniques and contemporary microsampling devices can be considered the steppingstone to the attempts made addressing this issue.
Collapse
|
27
|
Abstract
A series of dried blood spot (DBS) detection methods for doping agents have been developed in the last two decades. The DBS technique minimizes invasiveness and reduces storage and shipping costs. Recently, the World Anti-Doping Agency announced the use of DBS for the 2022 Beijing Winter Olympic Games and Paralympic Games owing to the advantages of the DBS application in routine doping control. Therefore the further development of detection methods for doping agents in DBS is important and urgent. This review summarizes five aspects of DBS application in doping analysis: sample collection, storage conditions, pretreatment, instrumentation and validation according to the Prohibited List issued by the World Anti-Doping Agency, and proposes some suggestions for future studies of DBS in doping analysis.
Collapse
|
28
|
Bressán IG, Giménez MI, Llesuy SF. Validation of a simple liquid chromatography coupled to tandem mass spectrometry method for the simultaneous determination of tacrolimus, sirolimus, everolimus and cyclosporin A in dried matrix on paper discs. J Mass Spectrom Adv Clin Lab 2021; 19:7-19. [PMID: 34820661 PMCID: PMC8601012 DOI: 10.1016/j.jmsacl.2021.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/02/2022] Open
Abstract
INTRODUCTION Due to its high specificity and sensitivity, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is the gold standard method for immunosuppressant quantification in therapeutic drug monitoring. In this context, dried blood spots (DBS) have become a promising strategy as a sample collection procedure. Although the advantages of DBS over venipuncture are well known, this approach has limitations that strongly influence the acceptance of analytical results. Among them, the most important is hematocrit (Ht). The easiest way of overcoming this problem is by analyzing complete spots. In this strategy, called dried matrix on paper discs (DMPD), blood is volumetrically applied on pre-punched discs. OBJECTIVES To validate an LC-MS/MS method for the quantification of tacrolimus, sirolimus, everolimus and cyclosporin A using DMPD. METHODS The procedure was validated according to international guidelines using a commercial kit. The following performance parameters were evaluated: selectivity, carryover, linearity, accuracy, precision, lower limit of quantitation, relative recovery, commutability and stability. In addition, a method comparison study was performed to evaluate the clinical influence of Ht on the results. RESULTS All performance parameters were within acceptance criteria and, hence, it was determined that the validated method is fit for the intended purpose. Likewise, calculated bias values on medical decision levels showed that there was no clinical influence of Ht on the results. CONCLUSION Unlike other similar methodologies that have been published, here, a simple method has been fully validated. This is the first LC-MS/MS methodology adapting a commercial kit to use DMPD as a sampling strategy.
Collapse
Key Words
- C0, Pre-dose trough concentration
- C2, 2-hour post-dose concentration
- CS, Calibration standard
- CV%, Coefficient of variation
- DBS, Dried blood spots
- DMPS, Dried matrix on paper discs
- Dried matrix on paper discs (DMPD)
- ESI+, Positive electrospray source ionization mode
- Hematocrit
- Ht, Hematocrit
- ICb95%, 95% confidence interval for intercepts
- ICm95%, 95% confidence interval for slopes
- Immunosuppressants
- LC-MS/MS, Liquid chromatography coupled to tandem mass spectrometry
- LLOQ, Lower limit of quantitation
- LSS, Limited sampling strategy
- Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)
- Method comparison
- PCDBS, Pre-cut dried blood spots
- PDBS, Perforated dried blood spots
- PIs, Prediction intervals
- QC, Quality control samples
- R%, Relative recovery
- RE%, Percentage of the relative error
- ZnSO4·7H2O, Zinc sulfate heptahydrate
- [M+NH4]+, Ammoniated adduct
- mTOR, Mechanistic target of Rapamycin
Collapse
Affiliation(s)
- Ignacio Guillermo Bressán
- Laboratory of Mass Spectrometry, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
- Department of Chemistry, Instituto Universitario Escuela de Medicina del Hospital Italiano, Buenos Aires, Argentina
| | - María Isabel Giménez
- Laboratory of Mass Spectrometry, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
- Department of Clinical Biochemistry, Instituto Universitario Escuela de Medicina del Hospital Italiano, Buenos Aires, Argentina
| | - Susana Francisca Llesuy
- Department of Chemistry, Instituto Universitario Escuela de Medicina del Hospital Italiano, Buenos Aires, Argentina
| |
Collapse
|
29
|
Luginbühl M, Fischer Y, Gaugler S. Fully Automated Optical Hematocrit Measurement From Dried Blood Spots. J Anal Toxicol 2020; 46:bkaa189. [PMID: 33277901 DOI: 10.1093/jat/bkaa189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 02/24/2024] Open
Abstract
The impact of the hematocrit (HCT) on the dried blood spot's (DBS) spreading area is one of the most important hurdles which prevents the full acceptance of quantitative microsampling strategies. Several destructive- and non-destructive strategies to assess the HCT from a DBS post-sampling have been presented. Unfortunately, the current methods are either labor-intensive, require a complicated algorithm, or are not automatable. Here, we present a novel setup that permits the fully automated reflectance analysis to measure the HCT from a DBS. The underlying principle is based on the concept presented by Capiau et al. for the non-destructive single-wavelength measurement of the HCT. The novel module was embedded within the DBS-MS 500 platform to enable high-throughput analysis of hematocrit values in combination with automated DBS extraction. The novel setup was assessed and optimized for the probe to card distance, stability, anti-coagulant, spotting volume, scan number, calibration variability, accuracy, and precision. It showed excellent inter-day (≤3.7%) and intra-day (≤1.16%) precision, as well as high accuracy when analyzing authentic samples 101%±7% (range:87%-127%). Besides, the simple and straightforward application of an HCT correction for DBS was demonstrated during a pharmacokinetic study with diclofenac involving three subjects. Thereby, the sample's HCT and the HCT impact on the analyte was assessed and compensated. In conclusion, the novel setup enables quantitative analysis of non-volumetric samples in an automated fashion without compromising the concept of cost-effective, minimally invasive sampling.
Collapse
Affiliation(s)
- Marc Luginbühl
- CAMAG DBS Laboratory, Sonnenmattstrasse 11, 4132 Muttenz, Switzerland
| | - Yannick Fischer
- University of Applied Sciences and Arts Northwestern Switzerland, Institute for Chemistry and Bioanalytics
| | - Stefan Gaugler
- CAMAG DBS Laboratory, Sonnenmattstrasse 11, 4132 Muttenz, Switzerland
| |
Collapse
|
30
|
Luginbühl M, Gaugler S. Dried blood spots for anti-doping: Why just going volumetric may not be sufficient. Drug Test Anal 2020; 13:69-73. [PMID: 33201591 DOI: 10.1002/dta.2977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
The perspective discusses quantitative DBS analysis for anti-doping testing in an athletic population and why only using volumetric sampling for this subgroup might not be enough. It presents examples to highlight where HCT variations occur, followed by a whole blood to plasma ratio and an HCT extraction bias discussion. Finally, options to correct for the HCT bias are presented.
Collapse
|
31
|
Verstraete J, Boffel L, Stove C. Dried blood microsample-assisted determination of vitamins: Recent developments and challenges. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Frey BS, Damon DE, Badu-Tawiah AK. Emerging trends in paper spray mass spectrometry: Microsampling, storage, direct analysis, and applications. MASS SPECTROMETRY REVIEWS 2020; 39:336-370. [PMID: 31491055 PMCID: PMC7875099 DOI: 10.1002/mas.21601] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/22/2019] [Indexed: 05/20/2023]
Abstract
Recent advancements in the sensitivity of chemical instrumentation have led to increased interest in the use of microsamples for translational and biomedical research. Paper substrates are by far the most widely used media for biofluid collection, and mass spectrometry is the preferred method of analysis of the resultant dried blood spot (DBS) samples. Although there have been a variety of review papers published on DBS, there has been no attempt to unify the century old DBS methodology with modern applications utilizing modified paper and paper-based microfluidics for sampling, storage, processing, and analysis. This critical review will discuss how mass spectrometry has expanded the utility of paper substrates from sample collection and storage, to direct complex mixture analysis to on-surface reaction monitoring.
Collapse
Affiliation(s)
- Benjamin S Frey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Deidre E Damon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
33
|
Lange T, Thomas A, Walpurgis K, Thevis M. Fully automated dried blood spot sample preparation enables the detection of lower molecular mass peptide and non-peptide doping agents by means of LC-HRMS. Anal Bioanal Chem 2020; 412:3765-3777. [PMID: 32300840 PMCID: PMC7220872 DOI: 10.1007/s00216-020-02634-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
The added value of dried blood spot (DBS) samples complementing the information obtained from commonly routine doping control matrices is continuously increasing in sports drug testing. In this project, a robotic-assisted non-destructive hematocrit measurement from dried blood spots by near-infrared spectroscopy followed by a fully automated sample preparation including strong cation exchange solid-phase extraction and evaporation enabled the detection of 46 lower molecular mass (< 2 kDa) peptide and non-peptide drugs and drug candidates by means of LC-HRMS. The target analytes included, amongst others, agonists of the gonadotropin-releasing hormone receptor, the ghrelin receptor, the human growth hormone receptor, and the antidiuretic hormone receptor. Furthermore, several glycine derivatives of growth hormone–releasing peptides (GHRPs), arguably designed to undermine current anti-doping testing approaches, were implemented to the presented detection method. The initial testing assay was validated according to the World Anti-Doping Agency guidelines with estimated LODs between 0.5 and 20 ng/mL. As a proof of concept, authentic post-administration specimens containing GHRP-2 and GHRP-6 were successfully analyzed. Furthermore, DBS obtained from a sampling device operating with microneedles for blood collection from the upper arm were analyzed and the matrix was cross-validated for selected parameters. The introduction of the hematocrit measurement method can be of great value for doping analysis as it allows for quantitative DBS applications by managing the well-recognized “hematocrit effect.” Graphical abstract ![]()
Collapse
Affiliation(s)
- Tobias Lange
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Katja Walpurgis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany.
| |
Collapse
|
34
|
Official International Association for Therapeutic Drug Monitoring and Clinical Toxicology Guideline: Development and Validation of Dried Blood Spot-Based Methods for Therapeutic Drug Monitoring. Ther Drug Monit 2020; 41:409-430. [PMID: 31268966 DOI: 10.1097/ftd.0000000000000643] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dried blood spot (DBS) analysis has been introduced more and more into clinical practice to facilitate Therapeutic Drug Monitoring (TDM). To assure the quality of bioanalytical methods, the design, development and validation needs to fit the intended use. Current validation requirements, described in guidelines for traditional matrices (blood, plasma, serum), do not cover all necessary aspects of method development, analytical- and clinical validation of DBS assays for TDM. Therefore, this guideline provides parameters required for the validation of quantitative determination of small molecule drugs in DBS using chromatographic methods, and to provide advice on how these can be assessed. In addition, guidance is given on the application of validated methods in a routine context. First, considerations for the method development stage are described covering sample collection procedure, type of filter paper and punch size, sample volume, drying and storage, internal standard incorporation, type of blood used, sample preparation and prevalidation. Second, common parameters regarding analytical validation are described in context of DBS analysis with the addition of DBS-specific parameters, such as volume-, volcano- and hematocrit effects. Third, clinical validation studies are described, including number of clinical samples and patients, comparison of DBS with venous blood, statistical methods and interpretation, spot quality, sampling procedure, duplicates, outliers, automated analysis methods and quality control programs. Lastly, cross-validation is discussed, covering changes made to existing sampling- and analysis methods. This guideline of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology on the development, validation and evaluation of DBS-based methods for the purpose of TDM aims to contribute to high-quality micro sampling methods used in clinical practice.
Collapse
|
35
|
Li K, Naviaux JC, Monk JM, Wang L, Naviaux RK. Improved Dried Blood Spot-Based Metabolomics: A Targeted, Broad-Spectrum, Single-Injection Method. Metabolites 2020; 10:metabo10030082. [PMID: 32120852 PMCID: PMC7143494 DOI: 10.3390/metabo10030082] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Dried blood spots (DBS) have proven to be a powerful sampling and storage method for newborn screening and many other applications. However, DBS methods have not yet been optimized for broad-spectrum targeted metabolomic analysis. In this study, we developed a robust, DBS-based, broad-spectrum, targeted metabolomic method that was able to measure over 400 metabolites from a 6.3 mm punch from standard Whatman 903TM filter paper cards. The effects of blood spot volumes, hematocrit, vacutainer chemistry, extraction methods, carryover, and comparability with plasma and fingerstick capillary blood samples were analyzed. The stability of over 400 metabolites stored under varying conditions over one year was also tested. No significant impacts of blood volume and hematocrit variations were observed when the spotted blood volume was over 60 µL and the hematocrit was between 31% and 50%. The median area under the curve (AUC) of metabolites in the DBS metabolome declined by 40% in the first 3 months and then did not decline further for at least 1 year. All originally detectable metabolites remained within detectable limits. The optimal storage conditions for metabolomic analysis were -80 °C with desiccants and without an O2 scavenger. The method was clinically validated for its potential utility in the diagnosis of the mitochondrial disease mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). Our method provides a convenient alternative to freezing, storing, and shipping liquid blood samples for comparative metabolomic studies.
Collapse
Affiliation(s)
- Kefeng Li
- The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego, CA 92103, USA; (J.C.N.); (L.W.)
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92103, USA;
- Correspondence: (K.L.); (R.K.N.)
| | - Jane C. Naviaux
- The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego, CA 92103, USA; (J.C.N.); (L.W.)
- Department of Neuroscience, School of Medicine, University of California, San Diego, CA 92103, USA
| | - Jonathan M. Monk
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92103, USA;
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego, CA 92103, USA; (J.C.N.); (L.W.)
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92103, USA;
| | - Robert K. Naviaux
- The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego, CA 92103, USA; (J.C.N.); (L.W.)
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92103, USA;
- Department of Pediatrics, School of Medicine, University of California, San Diego, CA 92103, USA
- Correspondence: (K.L.); (R.K.N.)
| |
Collapse
|
36
|
Jhang RS, Lin SY, Peng YF, Chao HC, Tsai IL, Lin YT, Liao HW, Tang SC, Kuo CH, Jeng JS. Using the PCI-IS Method to Simultaneously Estimate Blood Volume and Quantify Nonvitamin K Antagonist Oral Anticoagulant Concentrations in Dried Blood Spots. Anal Chem 2020; 92:2511-2518. [DOI: 10.1021/acs.analchem.9b04063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ren-Shiang Jhang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Shin-Yi Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- Department of Pharmacy, National Taiwan University Hospital, Taipei 10617, Taiwan
| | - Yu-Fong Peng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Hsi-Chun Chao
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - I-Lin Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Ting Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiao-Wei Liao
- Faculty of Pharmacy, National Yang-Ming University, Taipei 11221, Taiwan
| | - Sung-Chun Tang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- Department of Pharmacy, National Taiwan University Hospital, Taipei 10617, Taiwan
| | - Jiann-Shing Jeng
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei 10617, Taiwan
| |
Collapse
|
37
|
Lampič K, Trontelj J, Prosen H, Drobne D, Šmid A, Vovk T. Determination of 6-thioguanine and 6-methylmercaptopurine in dried blood spots using liquid chromatography-tandem mass spectrometry: Method development, validation and clinical application. Clin Chim Acta 2019; 499:24-33. [DOI: 10.1016/j.cca.2019.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023]
|
38
|
Palmer EA, Cooper HJ, Dunn WB. Investigation of the 12-Month Stability of Dried Blood and Urine Spots Applying Untargeted UHPLC-MS Metabolomic Assays. Anal Chem 2019; 91:14306-14313. [PMID: 31618007 DOI: 10.1021/acs.analchem.9b02577] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of dried blood spot (DBS) and dried urine spot (DUS) samples represents an attractive opportunity for researchers in biomedical metabolomics to collect whole blood and urine samples in the absence of a processing laboratory and so to allow collection in remote areas or in longitudinal studies away from the clinic. The 12-month stability of the thousands of metabolites present in these biofluids and the applicability of DBS and DUS samples for untargeted metabolomics applications has not previously been investigated in detail and compared to blood and urine samples. Here, the 12-month stability of DBS and DUS at different storage temperatures (-20, +4, and +21 °C) have been compared to plasma and urine biofluids stored at the same storage temperatures and time. Samples were analyzed applying complementary HILIC and C18 reversed-phase UHPLC-MS untargeted metabolomic assays. Results show that metabolites demonstrate increased stability in DBS and DUS compared to whole blood and urine at all storage temperatures and times. DBS and DUS stored at +21 °C are stable for up to 4 weeks but are not stable over a 1 year period. DBS and DUS showed good stability when stored at -20 °C for 1 year. We recommend that DBS and DUS samples are collected and transported within 28 days at room temperature and are stored for longer periods of time at -20 or -80 °C. The metabolomes of DUS samples and urine were very similar but the metabolome of DBS included additional metabolites not detected in plasma and therefore proposed to be released from cells in whole blood.
Collapse
Affiliation(s)
- Elliott A Palmer
- School of Biosciences , University of Birmingham , Edgbaston , Birmingham , West Midlands B15 2TT , United Kingdom
| | - Helen J Cooper
- School of Biosciences , University of Birmingham , Edgbaston , Birmingham , West Midlands B15 2TT , United Kingdom
| | - Warwick B Dunn
- School of Biosciences , University of Birmingham , Edgbaston , Birmingham , West Midlands B15 2TT , United Kingdom.,Phenome Centre Birmingham , University of Birmingham , Edgbaston , Birmingham , West Midlands B15 2TT , United Kingdom.,Institute of Metabolism and Systems Research , University of Birmingham , Edgbaston , Birmingham , West Midlands B15 2TT , United Kingdom
| |
Collapse
|
39
|
Chepyala D, Kuo HC, Su KY, Liao HW, Wang SY, Chepyala SR, Chang LC, Kuo CH. Improved Dried Blood Spot-Based Metabolomics Analysis by a Postcolumn Infused-Internal Standard Assisted Liquid Chromatography-Electrospray Ionization Mass Spectrometry Method. Anal Chem 2019; 91:10702-10712. [DOI: 10.1021/acs.analchem.9b02050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Divyabharathi Chepyala
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Hsiao-Wei Liao
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - San-Yuan Wang
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Lin-Chau Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 10055, Taiwan
- Department of Pharmacy, National Taiwan University Hospital, Taipei 10051, Taiwan
| |
Collapse
|
40
|
Nguyen VL, Fitzpatrick M. Should phosphatidylethanol be currently analysed using whole blood, dried blood spots or both? ACTA ACUST UNITED AC 2019; 57:617-622. [DOI: 10.1515/cclm-2018-0667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/09/2018] [Indexed: 11/15/2022]
Abstract
Abstract
Phosphatidylethanol (PEth) are phospholipids produced through non-oxidative ethanol metabolism. They accumulate in red blood cells and have been traditionally analysed in whole blood as potential biomarkers for moderate to long-term alcohol consumption. More recently, their analysis in dried blood spots has been gaining favour, namely, due to the ease in sampling, transport and storage conditions required. This paper aims at providing a short comparative review between analysing PEth in whole blood and dried blood spots and the potential pitfalls that researchers may face when setting up PEth testing for clinical use.
Collapse
|
41
|
Poothong S, Papadopoulou E, Lundanes E, Padilla-Sánchez JA, Thomsen C, Haug LS. Dried blood spots for reliable biomonitoring of poly- and perfluoroalkyl substances (PFASs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1420-1426. [PMID: 30577133 DOI: 10.1016/j.scitotenv.2018.11.214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Dried blood spot (DBS) sampling has gained attention in several scientific areas because of the low sampling burden. The study aimed to develop a method for the determination of poly- and perfluoroalkyl substances (PFASs) in DBS using a standardized blood volume. The DBS method using a simple methanol extraction followed by online solid phase extraction-ultra high performance liquid chromatography-tandem mass spectrometry quantification was validated. Only 30 μL of blood is required. Based on the measurements of DBS dispersed areas from known blood volumes (20-70 μL), the blood volume on a 3 mm diameter DBS subsample was calculated to be 3.3 μL (median, n = 708 measurements, 59 adults). Strong correlations of PFAS concentrations between finger prick DBSs and venous whole blood samples (n = 57) were found (rho 0.72-0.97, p < 0.0001). Also, Passing-Bablok regressions and Bland-Altman plots demonstrated good agreements of PFAS concentrations in finger prick DBSs and venous whole blood samples. This finding indicates that the DBS method was satisfactory, and allows straightforward analysis of PFASs in DBS without hematocrit correction. This DBS method is reliable for accurate determination of PFASs and has a high potential for use of self-collected DBS in large-scale biomonitoring studies as well as for archived DBS samples.
Collapse
Affiliation(s)
- Somrutai Poothong
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway; Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway.
| | - Eleni Papadopoulou
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Juan Antonio Padilla-Sánchez
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway
| | - Cathrine Thomsen
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway
| | - Line Småstuen Haug
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway
| |
Collapse
|
42
|
Rmandić M, Dotsikas Y, Malenović A. Identification of the factors affecting the consistency of DBS formation via experimental design and image processing methodology. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Velghe S, Delahaye L, Stove CP. Is the hematocrit still an issue in quantitative dried blood spot analysis? J Pharm Biomed Anal 2019; 163:188-196. [DOI: 10.1016/j.jpba.2018.10.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/12/2023]
|
44
|
Klak A, Pauwels S, Vermeersch P. Preanalytical considerations in therapeutic drug monitoring of immunosuppressants with dried blood spots. Diagnosis (Berl) 2018; 6:57-68. [DOI: 10.1515/dx-2018-0034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022]
Abstract
Abstract
Background
Dried blood spots (DBSs) could allow patients to prepare their own samples at home and send them to the laboratory for therapeutic drug monitoring (TDM) of immunosuppressants. The purpose of this review is to provide an overview of the current knowledge about the impact of DBS-related preanalytical factors on TDM of tacrolimus, sirolimus and everolimus.
Content
Blood spot volume, blood spot inhomogeneity, stability of analytes in DBS and hematocrit (Hct) effects are considered important DBS-related preanalytical factors. In addition, the influence of drying time has recently been identified as a noteworthy preanalytical factor. Tacrolimus is not significantly influenced by these factors. Sirolimus and everolimus are more prone to heat degradation and exhibited variations in recovery which were dependent on Hct and drying time.
Summary and outlook
DBS-related preanalytical factors can have a significant impact on TDM for immunosuppressants. Tacrolimus is not significantly influenced by the studied preanalytical factors and is a viable candidate for DBS sampling. For sirolimus and everolimus more validation of preanalytical factors is needed. In particular, drying conditions need to be examined further, as current protocols may mask Hct-dependent effects on recovery. Further validation is also necessary for home-based self-sampling of immunosuppressants as the sampling quality is variable.
Collapse
Affiliation(s)
- Adrian Klak
- Clinical Department of Laboratory Medicine , UZ Leuven , Leuven 3000 , Belgium
| | - Steven Pauwels
- Clinical Department of Laboratory Medicine , UZ Leuven , Leuven 3000 , Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine , UZ Leuven , Herestraat 49 , Leuven 3000 , Belgium
| |
Collapse
|
45
|
Ambach L, Menzies E, Parkin MC, Kicman A, Archer JR, Wood DM, Dargan PI, Stove C. Quantification of cocaine and cocaine metabolites in dried blood spots from a controlled administration study using liquid chromatography–tandem mass spectrometry. Drug Test Anal 2018; 11:709-720. [DOI: 10.1002/dta.2537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Lars Ambach
- Faculty of Pharmaceutical Sciences, Department of Bioanalysis, Laboratory of ToxicologyGhent University Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Eleanor Menzies
- School of Population Health & Environmental Sciences Drug Control CentreKing's College London London UK
| | - Mark C. Parkin
- School of Population Health & Environmental Sciences Drug Control CentreKing's College London London UK
| | - Andrew Kicman
- School of Population Health & Environmental Sciences Drug Control CentreKing's College London London UK
| | - John R.H. Archer
- Clinical ToxicologyGuy's and St. Thomas' NHS Foundation Trust London UK
- Faculty of Life Sciences and MedicineKing's College London London UK
| | - David M. Wood
- Clinical ToxicologyGuy's and St. Thomas' NHS Foundation Trust London UK
- Faculty of Life Sciences and MedicineKing's College London London UK
| | - Paul I. Dargan
- Clinical ToxicologyGuy's and St. Thomas' NHS Foundation Trust London UK
| | - Christophe Stove
- Faculty of Pharmaceutical Sciences, Department of Bioanalysis, Laboratory of ToxicologyGhent University Ottergemsesteenweg 460 9000 Ghent Belgium
| |
Collapse
|
46
|
Damon DE, Yin M, Allen DM, Maher YS, Tanny CJ, Oyola-Reynoso S, Smith BL, Maher S, Thuo MM, Badu-Tawiah AK. Dried Blood Spheroids for Dry-State Room Temperature Stabilization of Microliter Blood Samples. Anal Chem 2018; 90:9353-9358. [DOI: 10.1021/acs.analchem.8b01962] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Deidre E. Damon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mengzhen Yin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Danyelle M. Allen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yosef S. Maher
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christian J. Tanny
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Stephanie Oyola-Reynoso
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Barry L. Smith
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, U.K. L69 3GJ
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, U.K. L69 3GJ
| | - Martin M. Thuo
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Abraham K. Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
47
|
Novel and rapid LC-MS/MS method for quantitative analysis of methylphenidate in dried blood spots. Bioanalysis 2018; 10:839-850. [PMID: 29863895 DOI: 10.4155/bio-2018-0024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM Development and validation of a novel, sensitive, specific and rapid dried blood spots (DBS)-LC-MS/MS method for methylphenidate (MPH), an attention-deficit hyperactivity disorder drug. Methodology & results: Protein precipitation with acetonitrile was used to extract MPH from the DBS cards. Chromatographic separation was achieved on a Zorbax C18 column using an isocratic mobile phase composed of acetonitrile and 5 mM ammonium formate buffer (20:80, v/v) at a flow rate of 0.5 ml/min. MPH was quantified over a linear range of 200-25,000 pg/ml. CONCLUSION The clinical DBS-LC-MS/MS method was successfully validated as per the US FDA's Bioanalytical Method Validation Guidance to support an ongoing pediatric pharmacokinetic study.
Collapse
|
48
|
Study of measurement of the alcohol biomarker phosphatidylethanol (PEth) in dried blood spot (DBS) samples and application of a volumetric DBS device. Clin Chim Acta 2018; 479:38-42. [DOI: 10.1016/j.cca.2018.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/21/2022]
|
49
|
Liao HW, Lin SW, Lin YT, Lee CH, Kuo CH. Identification of potential sphingomyelin markers for the estimation of hematocrit in dried blood spots via a lipidomic strategy. Anal Chim Acta 2018; 1003:34-41. [DOI: 10.1016/j.aca.2017.11.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 11/28/2022]
|
50
|
Capiau S, Wilk LS, De Kesel PMM, Aalders MCG, Stove CP. Correction for the Hematocrit Bias in Dried Blood Spot Analysis Using a Nondestructive, Single-Wavelength Reflectance-Based Hematocrit Prediction Method. Anal Chem 2018; 90:1795-1804. [DOI: 10.1021/acs.analchem.7b03784] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sara Capiau
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemse-steenweg 460, Ghent 9000, Belgium
| | - Leah S. Wilk
- Department
of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Pieter M. M. De Kesel
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemse-steenweg 460, Ghent 9000, Belgium
| | - Maurice C. G. Aalders
- Department
of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemse-steenweg 460, Ghent 9000, Belgium
| |
Collapse
|