1
|
Ai J, Zhao W, Yu Q, Qian X, Zhou J, Huo X, Tang F. SR-Unet: A Super-Resolution Algorithm for Ion Trap Mass Spectrometers Based on the Deep Neural Network. Anal Chem 2023; 95:17407-17415. [PMID: 37963290 DOI: 10.1021/acs.analchem.3c04172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The mass spectrometer is an important tool for modern chemical analysis and detection. Especially, the emergence of miniature mass spectrometers has provided new tools for field analysis and detection. The resolution of a mass spectrometer reflects the ability of the instrument to discriminate between adjacent mass-to-charge ratio ions, and the higher the resolution, the better the discrimination of complex mixtures. Quadrupole ion traps are generally considered as a low-resolution mass spectrometry method, but they have gained wide attention and development in recent years because of their suitability for miniaturization and high qualitative capability. For an ion trap mass spectrometer, the mass sensitivity and resolution can be mutually constrained and need to be balanced by setting an appropriate scanning speed. In this study, a super-resolution U-net algorithm (SR-Unet) is proposed for ion trap mass spectrometry, which can estimate the possible ions from the overlapping ion peaks of low-resolution spectra and improve the equivalent resolution while ensuring sufficient sensitivity and analysis speed of the instrument. By determining the mass spectra of a linear ion trap mass spectrometer (LTQ XL) in Turbo and Normal scan modes, the same unit mass resolution as that at a scan speed of 16,667 Da/s was successfully obtained at 125,000 Da/s. Also, the experiments demonstrated that the algorithm is capable of the mass-to-charge ratio and instrument migration. SR-Unet can be migrated and applied to a miniature mass spectrometer for cruise detection of volatile organic compounds (VOCs), and the identification of VOC species in Photochemical Assessment Monitoring Stations (PAMS) was improved from 31 to 50 species with the same monitoring and analysis speed requirement. Further, super-unit mass resolution peptide detection was achieved on a miniature mass spectrometer with the help of the SR-Unet algorithm, which reduced the full width at half-maxima (FWHM) of bradykinin divalent ions (m/z 531) from 0.35 to 0.15 Da at a scan speed of 375 Da/s and improved the equivalent resolution to 3540. The proposed method provides a new idea to enhance the field mixture detection capability of miniature ion trap mass spectrometers.
Collapse
Affiliation(s)
- Jiawen Ai
- Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Weize Zhao
- Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Quan Yu
- Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xiang Qian
- Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinming Huo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fei Tang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Ruan H, Xu C, Wang W, Li H. Hexapole-Assisted Continuous Atmospheric Pressure Interface for a High-Pressure Photoionization Miniature Ion Trap Mass Spectrometer. Anal Chem 2022; 94:17287-17294. [PMID: 36451554 DOI: 10.1021/acs.analchem.2c04274] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Miniature mass spectrometers are powerful tools for on-site chemical analysis in the fields of homeland security, personal healthcare, and environmental monitoring. This study presents a novel hexapole-assisted continuous atmospheric pressure interface for a high-pressure photoionization miniature ion trap mass spectrometer (HA-HPPI-IT). Efficient ion transmission was achieved by combining radial focusing by an RF electric field and axial driving by gas flow, which was demonstrated by SIMION simulation and experimental verification. The pressure in the ionization-transmission chamber and the inner diameter of the skimmer were optimized, which helped in determining the number density of product ions and affected the ion transmission in the hexapole, respectively. After systematic optimizations, about 16-fold increase in signal intensity was achieved as the RF amplitude was varied from 140 to 400 Vpp, and a limit of detection of 1 ppbv was obtained. In addition, the HA-HPPI-IT exhibited high stability and the relative standard deviation was as low as 5.47%. Finally, the apparatus was applied for discovering the simulated spot for illicit drug synthesis by detecting toluene and propiophenone released to air and monitoring the evolutions of perchloroethylene residues from dry-cleaned clothes.
Collapse
Affiliation(s)
- Huiwen Ruan
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian116023, People's Republic of China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, People's Republic of China.,Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian116023, People's Republic of China.,Dalian Engineering Research Center of Breath Diagnostic Technology, Dalian116023, People's Republic of China
| | - Chuting Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian116023, People's Republic of China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, People's Republic of China.,Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian116023, People's Republic of China.,Dalian Engineering Research Center of Breath Diagnostic Technology, Dalian116023, People's Republic of China
| | - Weiguo Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian116023, People's Republic of China.,Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian116023, People's Republic of China.,Dalian Engineering Research Center of Breath Diagnostic Technology, Dalian116023, People's Republic of China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian116023, People's Republic of China.,Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian116023, People's Republic of China.,Dalian Engineering Research Center of Breath Diagnostic Technology, Dalian116023, People's Republic of China
| |
Collapse
|
3
|
Shi W, Huo X, Ding X, Zhu P, Wan Y, Lu X, Feng R, Yu Q, Wang X. Rapid screening of illegally added drugs in functional food using a miniature ion trap mass spectrometer. Food Chem 2022; 386:132808. [PMID: 35364493 DOI: 10.1016/j.foodchem.2022.132808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/04/2022]
Abstract
With the expansion of the functional food market, the qualification assessment of these products has become a major challenge, and efficient analytical tools are urgently needed. Here, a miniature mass spectrometer (MS) with self-aspiration capillary electrospray ionization (SACESI) source and ion trap analyzer was developed for rapid screening of various illegally added drugs in functional foods. No chromatographic separation was required, but a simplified two-step pretreatment method was developed to reduce the operational procedures and time consumption of the entire analysis. SACESI source uses capillary action to drive solution injection, which utilizes a simple structure and convenient operation to constitute a kind of disposable MS detection solution. To achieve accurate and automatic identification, an intelligent recognition algorithm with steps of spectrum preprocessing, characteristic peak matching, and support vector machine learning was constructed. The relative accuracy of rapid screening of 31 suspicious drugs in various samples is up to 99.78%. It achieves 100% correct identification for the 55 batches of actual samples captured by on-site inspection, which demonstrates the feasibility of the proposed analytical system and strategy in food safety applications.
Collapse
Affiliation(s)
- Wenyan Shi
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xinming Huo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xinyue Ding
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Peiyuan Zhu
- Shenzhen Han Industrial Technologies Co.Ltd., Shenzhen 518055, China
| | - Yutong Wan
- Shenzhen Chin Instrument Co., Ltd., Shenzhen 518055, China
| | - Xinqiong Lu
- Shenzhen Chin Instrument Co., Ltd., Shenzhen 518055, China
| | - Rui Feng
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
| | - Quan Yu
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Xiaohao Wang
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Tang X, Xie Z, Yu J, Chen K, Wu H, Hu S, Zarei R, Tang K. Enhancement of Portable Mass Spectrometer Sensitivity and Selectivity by a Qualitative Pre-Scan Waveform (QPSW). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2093890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Xu Tang
- College of Information Science and Engineering, Ningbo University, Ningbo, China
| | - Zhijun Xie
- College of Information Science and Engineering, Ningbo University, Ningbo, China
- Southeast Digital Economic Development Institute, QuZhou, Zhejiang Province, China
| | - Jiancheng Yu
- College of Information Science and Engineering, Ningbo University, Ningbo, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| | - Kewei Chen
- Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, China
| | - Huanming Wu
- College of Information Science and Engineering, Ningbo University, Ningbo, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| | - Shifu Hu
- College of Information Science and Engineering, Ningbo University, Ningbo, China
| | - Roozbeh Zarei
- School of Information Technology, Deakin University, Melbourne, VIC, Australia
| | - Keqi Tang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Zhu Y, Zhang Q, Zhang Q, Lu J, Wang K, Zhang R, Yu Q. High-Throughput Screening Using a Synchronized Pulsed Self-aspiration Vacuum Electrospray Ionization Miniature Mass Spectrometer. Anal Chem 2022; 94:7417-7424. [PMID: 35533348 DOI: 10.1021/acs.analchem.2c01170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the advantages of rapid analysis, high sensitivity, and multicomponent identification, mass spectrometry (MS) is recognized as an appealing choice for high-throughput screening (HTS) analysis. Aiming at the small size, simple operation, and adequate performance, the development of miniature mass spectrometers has made great progress over the last 2 decades. Besides the essential analytical performance, simple operation and HTS capability are two other crucial features desired in miniature MS instruments. In this paper, an induced self-aspiration vacuum electrospray ionization source (ISA-VESI) was developed and coupled to a miniature ion trap mass spectrometer. A special timing sequence was designed to synchronize all the operation steps in each measurement, including dual-pulse sample injection, multipulse gas injection, MS analysis, and the movement of the homemade HTS platform used as the sampler. Then, the automatic high-throughput analysis of multiple samples can be accomplished with close coordination among the sample delivery, the sample introduction and ionization, and the ion trap operation. The measurement time of each ISA-VESI-MS analysis was about 7 s, with a sample consumption of less than 100 nL.
Collapse
Affiliation(s)
- Yanping Zhu
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian Zhang
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian Zhang
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.,Informatization and Industrialization Integration Research Institute, China Academy of Information and Communications Technology, Beijing 100191, China
| | - Jun Lu
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Kai Wang
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ruina Zhang
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Quan Yu
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
6
|
Han W, Du S, Tang C, Li Y, Jiang T, Xu W. Integration of a liquid-phase ion trap with a miniature mass spectrometer. Anal Chim Acta 2022; 1193:339315. [DOI: 10.1016/j.aca.2021.339315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 01/16/2023]
|
7
|
Xu C, Ruan H, Wang W, Li H. Triboionization in Discontinuous Atmospheric Pressure Inlet for a Miniature Ion Trap Mass Spectrometer. Anal Chem 2021; 93:15897-15904. [PMID: 34817157 DOI: 10.1021/acs.analchem.1c02611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Discontinuous atmospheric pressure interface (DAPI) consisting of a pinch valve, a silicone tube, and two metal capillaries has been widely used in miniature mass spectrometry. It is interesting that clear ion signals could be observed even when the extra ionization source was turned off. In-depth analysis suggested that this new ionization phenomenon known as triboionization is based on the surface friction on the inner surface of the silicone tube during the on/off of the pinch valve. In this study, triboionization in the DAPI of a miniature ion trap mass spectrometer was investigated. It was discovered that the signal intensity depended greatly on the material and the roughness of the silicone tube used in the DAPI. By rubbing the inner surface of the silicone tube, for example, the signal intensity can increase by nearly 20 times. Two connected pinch valves were developed to study the effects of the discharge pressure, the number, and the frequency of on/off of the pinch valve on triboionization, which were verified to have a large impact on the product ions. In addition, the humidity of the inner surface of the silicone tube impacted the signal intensity of product ions and the mass spectrum patterns, where the product ions were typically protonated ions. As the humidity increases, the signal intensity of analytes with high proton affinity increases accordingly. This triboionization source, which does not require heat, light, radiation, auxiliary gas, or solution, has been preliminarily proved to have potential for surface detection after continuous enrichment.
Collapse
Affiliation(s)
- Chuting Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China.,Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Huiwen Ruan
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China.,Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Weiguo Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, People's Republic of China.,Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, People's Republic of China.,Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| |
Collapse
|
8
|
Shi W, Huo X, Tian Y, Lu X, Yang L, Zhou Q, Wang X, Yu Q. Development of membrane inlet photoionization ion trap mass spectrometer for trace VOCs analysis. Talanta 2021; 230:122352. [PMID: 33934800 DOI: 10.1016/j.talanta.2021.122352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/01/2022]
Abstract
With the development of instrumental miniaturization, the portable mass spectrometer is becoming a new tool for on-site rapid analysis of environmental samples. Membrane inlet (MI) and photoionization (PI) are two commonly used sampling and ionization techniques, respectively, as they both exhibit detection selectivity for volatile organic compounds (VOCs). In this paper, a membrane inlet photoionization ion trap mass spectrometer was developed for the direct analysis of VOCs in gaseous samples. With the new structure and timing design, various operation modes were proposed and tested. In particular, the use of pulse carrier gas can integrate the appropriate pressure conditions required by each module, thus improving the efficiency of analyte transport, ionization, and mass analysis. The detection limit of sub-ppb was obtained, and the response time can be greatly reduced by increasing the sample flow rate. Furthermore, the capability of selective enrichment for organic analytes was also realized by using a special accumulation mode with a modified sequence, which is easy to operate because no additional devices are needed.
Collapse
Affiliation(s)
- Wenyan Shi
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Xinming Huo
- Division of Life Science & Health, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuan Tian
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Xinqiong Lu
- Shenzhen Chin Instrument Co., Ltd., Shenzhen, 518055, China.
| | - Lili Yang
- Measurement Technology and Instrumentation Key Lab of Hebei Province, Yanshan University, Qinhuangdao, Hebei, 066004, China
| | - Qian Zhou
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Xiaohao Wang
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Quan Yu
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Kang M, Lian R, Zhang X, Li Y, Zhang Y, Zhang Y, Zhang W, Ouyang Z. Rapid and on-site detection of multiple fentanyl compounds by dual-ion trap miniature mass spectrometry system. Talanta 2020; 217:121057. [DOI: 10.1016/j.talanta.2020.121057] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
|
10
|
Hou C, Xu Q, Zhang F, Jiang T, Xu W. Toward high pressure miniature protein mass spectrometer: Theory and initial results. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:957-965. [PMID: 31697856 DOI: 10.1002/jms.4466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Current miniature mass spectrometers mainly focus on the analyses of organic and small biological molecules. In this study, we explored the possibility of developing high resolution miniature ion trap mass spectrometers for whole protein analysis. Theoretical derivation, GPU assisted ion trajectory simulation, and initial experiments on home-developed "brick" mass spectrometer were carried out. Results show that ion-neutral collisions have smaller damping effect on large protein ions, and a higher buffer gas pressure should be applied during ion trap operations for protein ions. As a result, higher pressure ion trap operation not only benefits instrument miniaturization, but also improves mass resolution of protein ions. Dynamic mass scan rate and generation of low charge state protein ions are also found to be helpful in terms of improving mass resolutions. Theory and conclusions found in this work are also applicable in the development of benchtop mass spectrometers.
Collapse
Affiliation(s)
- Chenyue Hou
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Qian Xu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Fei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ting Jiang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
11
|
Xu Z, Jiang T, Xu Q, Zhai Y, Li D, Xu W. Pseudo-Multiple Reaction Monitoring (Pseudo-MRM) Mode on the “Brick” Mass Spectrometer, Using the Grid-SWIFT Waveform. Anal Chem 2019; 91:13838-13846. [DOI: 10.1021/acs.analchem.9b03315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Zuqiang Xu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ting Jiang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Qian Xu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yanbing Zhai
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Dayu Li
- School of Computer Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
12
|
Kishi H, Kumazaki T, Kitagawa S, Ohtani H. Frequency division multiplex HPLC-MS for simultaneous analyses. Analyst 2019; 144:2922-2928. [PMID: 30912777 DOI: 10.1039/c8an02352b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiplex high-performance liquid chromatograph-mass spectrometry (HPLC-MS), in which multiple HPLCs and one MS are hyphenated, is an approach for high throughput analysis in HPLC-MS. A general multiplex HPLC-MS method employs a column-switching technology, and only one HPLC is connected to one MS at a time. In the present study, we propose a novel multiplex HPLC-MS system for simultaneous HPLC-MS analyses. In this study, multiple HPLCs are hyphenated with one MS without a column-switching mechanism, and a mixed-chromatogram is observed by the MS. Here, we employ a frequency division multiplexing (FDM) technique used in communication engineering to extract any chromatogram from the mixed-chromatogram. When a modulator (chopper or ion-gate type) is set between each ion source and the MS, each modulator blocks each sample stream with an individual frequency. In theory, each chromatogram can be extracted from the mixed-chromatogram via a signal processing based on a Fourier transform (FT), frequency-based signal extraction, and reversed FT. In the actual experiment, two HPLCs are hyphenated with one MS (2HPLC-1MS). The use of chopper type modulators leads to the extraction and restoration of each chromatogram from the mixed-chromatogram. However, each restored-chromatogram involves signal interference. On the other hand, the ion-gate modulation system successfully resulted in restored-chromatograms without interference. The potential of the novel multiplex HPLC-MS system based on FDM is confirmed with respect to the simultaneous and continuous analyses of plural samples.
Collapse
Affiliation(s)
- Hiroka Kishi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan.
| | - Takashi Kumazaki
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan.
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan.
| | - Hajime Ohtani
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan.
| |
Collapse
|
13
|
Decker TK, Zheng Y, Ruben AJ, Wang X, Lammert SA, Austin DE, Hawkins AR. A Microscale Planar Linear Ion Trap Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:482-488. [PMID: 30542974 DOI: 10.1007/s13361-018-2104-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
The planar linear ion trap (PLIT) is a version of the two-dimensional linear quadrupole ion trap constructed using two facing dielectric substrates on which electrodes are lithographically patterned. In this article, we present a PLIT that was successfully miniaturized from a radius of 2.5 mm to a microscale radius of 800 μm (a scaling factor of 3.125). The mathematics concerning scaling an ion trap mass spectrometer are demonstrated-including the tradeoff between RF power and pseudopotential well depth. The time average power for the microscale PLIT is, at best, ~ 1/100 that of the PLIT but at a cost of potential well depth of ~ 1/10 the original. Experimental data using toluene/deuterated toluene and isobutylbenze to verify trap performance demonstrated resolutions around 1.5 Da at a pressure of 5.4 × 10-3 Torr. The microscale PLIT was shown to retain resolutions between 2.3 and 2.7 Da at pressures up to 42 × 10-3 Torr while consuming a factor of 3.38 less time average power than the unscaled PLIT. Graphical Abstract.
Collapse
Affiliation(s)
| | | | | | - Xiao Wang
- Brigham Young University, Provo, UT, USA
| | | | | | | |
Collapse
|
14
|
Zou R, Cao W, Chong L, Hua W, Xu H, Mao Y, Page J, Shi R, Xia Y, Hu TY, Zhang W, Ouyang Z. Point-of-Care Tissue Analysis Using Miniature Mass Spectrometer. Anal Chem 2018; 91:1157-1163. [PMID: 30525456 DOI: 10.1021/acs.analchem.8b04935] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The combination of direct sampling ionization and miniature mass spectrometer presents a promising technical pathway of point-of-care analysis in clinical applications. In this work, a miniature mass spectrometry system was used for analysis of tissue samples. Direct tissue sampling coupled with extraction spray ionization was used with a home-built miniature mass spectrometer, Mini 12. Lipid species in tissue samples were well profiled in rat brain, kidney, and liver in a couple of minutes. By incorporating a photochemical (Paternò-Büchi) reaction, fast identification of lipid C═C location was realized. Relative quantitation of the lipid C═C isomer was performed by calculating the intensity ratio C═C diagnostic product ions, by which FA 18:1 (Δ9)/FA 18:1 (Δ11) was found to change significantly in mouse cancerous breast tissue samples. Accumulation of 2-hydroxylglutarate in human glioma samples, not in normal brains, can also be easily identified for rapid diagnosis.
Collapse
Affiliation(s)
- Ran Zou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China.,Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Wenbo Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Leelyn Chong
- Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital , Fudan University , Shanghai 200040 , China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital , Fudan University , Shanghai 200040 , China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital , Fudan University , Shanghai 200040 , China
| | - Jessica Page
- Department of Basic Medical Sciences, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Yu Xia
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Tony Y Hu
- The Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| | - Wenpeng Zhang
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China.,Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
15
|
Decker TK, Zheng Y, McClellan JS, Ruben AJ, Lammert SA, Austin DE, Hawkins AR. Double resonance ejection using novel radiofrequency phase tracking circuitry in a miniaturized planar linear ion trap mass spectrometer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:2024-2030. [PMID: 30133876 DOI: 10.1002/rcm.8267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Ion trap mass spectrometers are attractive due to their inherent sensitivity and specificity. Miniaturization increases trap portability for in situ mass analysis by relaxing vacuum and voltage requirements but decreases the trapping volume. To overcome signal/resolution loss from miniaturization, double resonance ejection using phase tracking circuitry was investigated. METHODS Phase tracking circuitry was developed to induce double resonance ejection in a planar linear ion trap using the β 2/3 hexapole resonance line. RESULTS Double resonance was observed using phase tracking circuitry. Resolution of 0.5 m/z units and improved signal-to-noise ratio (SNR) compared with AC resonant ejection were achieved. CONCLUSIONS The phase tracking circuitry proved effective despite deviations from a true phase locked condition. Double resonance ejection is a means to increase signal intensity in a miniaturized planar ion trap.
Collapse
Affiliation(s)
- Trevor K Decker
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT, 84602-0002, USA
| | - Yajun Zheng
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, 84602-0002, USA
| | - Joshua S McClellan
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT, 84602-0002, USA
| | - Aaron J Ruben
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT, 84602-0002, USA
| | | | - Daniel E Austin
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, 84602-0002, USA
| | - Aaron R Hawkins
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT, 84602-0002, USA
| |
Collapse
|
16
|
Liu J, Tang W, Meng X, Zhan L, Xu W, Nie Z, Wang Z. Improving the Performance of the Mini 2000 Mass Spectrometer with a Triboelectric Nanogenerator Electrospray Ionization Source. ACS OMEGA 2018; 3:12229-12234. [PMID: 31459297 PMCID: PMC6645661 DOI: 10.1021/acsomega.8b01777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/13/2018] [Indexed: 06/10/2023]
Abstract
Balancing the contradiction between portability and analytical performances of a miniaturized mass spectrometer is vital to extend its on-site applications. In this study, triboelectric nanogenerator (TENG)-driven ion sources were coupled with our home-built Mini 2000 system and applied to the analyses of different samples. Compared with the conventional direct current (DC) nanoelectrospray ionization (nanoESI) source, the ion intensity of the TENG-nanoESI miniature mass spectrometer was improved by ∼3 times. Moreover, maybe due to the different pathways of ion formation in comparison with DC electrospray, TENG electrospray is shown to reduce the salt suppression effect during ionization. With these figures of merit, the direct detection of reserpine in saliva was demonstrated using the TENG-Mini 2000 system.
Collapse
Affiliation(s)
- Jianli Liu
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Tang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Xiangzhi Meng
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Lingpeng Zhan
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory for Analytical
Chemistry for Living Biosystems, Institute
of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Xu
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zongxiu Nie
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory for Analytical
Chemistry for Living Biosystems, Institute
of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| | - Zhonglin Wang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
17
|
Decker TK, Tian Y, McClellan JS, Bennett L, Lammert SA, Austin DE, Hawkins AR. Optimal fabrication methods for miniature coplanar ion traps. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:289-294. [PMID: 29131427 DOI: 10.1002/rcm.8028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Ion trap mass spectrometers are beneficial due to their intrinsic sensitivity and specificity. Therefore, a portable version for in situ analysis of various compounds is very attractive. Miniaturization of ion traps is paramount for the portability of such mass spectrometers. METHODS We developed an optimized design for a planar linear ion trap mass spectrometer, consisting of two trapping plates with photolithographically patterned electrodes. Each plate is constructed using a machined glass substrate and standard microfabrication procedures. The plates are attached to a patterned circuit board via wire bonds then positioned approximately 5 mm apart. RESULTS Trapped ions are detected by ejecting them through tapered slits, which alleviate charge buildup. Mass analysis can be performed through either boundary or resonant ion ejection. Better than unit mass resolution is demonstrated with resonant ejection. CONCLUSIONS The optimized planar linear ion trap provides good resolution and the potential for further miniaturization. This was accomplished by vigorously testing variables associated with ion trap design including electrical connections, substrate materials, and electrode designs.
Collapse
Affiliation(s)
- Trevor K Decker
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT, 84602-0002, USA
| | - Yuan Tian
- Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Joshua S McClellan
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT, 84602-0002, USA
| | - Linsey Bennett
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT, 84602-0002, USA
| | | | - Daniel E Austin
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT, 84602-0002, USA
| | - Aaron R Hawkins
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT, 84602-0002, USA
| |
Collapse
|
18
|
Snyder DT, Szalwinski LJ, Cooks RG. Simultaneous and Sequential MS/MS Scan Combinations and Permutations in a Linear Quadrupole Ion Trap. Anal Chem 2017; 89:11053-11060. [PMID: 28953354 DOI: 10.1021/acs.analchem.7b03064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MSn operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.
Collapse
Affiliation(s)
- Dalton T Snyder
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Lucas J Szalwinski
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - R Graham Cooks
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
19
|
Snyder DT, Cooks RG. Single Analyzer Precursor Ion Scans in a Linear Quadrupole Ion Trap Using Orthogonal Double Resonance Excitation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1929-1938. [PMID: 28577288 DOI: 10.1007/s13361-017-1707-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
Reported herein is a simple method of performing single analyzer precursor ion scans in a linear quadrupole ion trap using orthogonal double resonance excitation. A first supplementary AC signal applied to the y electrodes is scanned through ion secular frequencies in order to mass-selectively excite precursor ions while, simultaneously, a second fixed-frequency AC signal is applied orthogonally on the x electrodes in order to eject product ions of selected mass-to-charge ratios towards the detector. The two AC signals are applied orthogonally so as to preclude the possibility of (1) inadvertently ejecting precursor ions into the detector, which results in artifact peaks, and (2) prevent beat frequencies on the x electrodes from ejecting ions off-resonance. Precursor ion scans are implemented while using the inverse Mathieu q scan for easier mass calibration. The orthogonal double resonance experiment results in single ion trap precursor scans with far less intense artifact peaks than when both AC signals are applied to the same electrodes, paving the way for implementation of neutral loss scanning in single ion trap mass spectrometers. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Dalton T Snyder
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
20
|
Wu Q, Tian Y, Li A, Andrews D, Hawkins AR, Austin DE. A Miniaturized Linear Wire Ion Trap with Electron Ionization and Single Photon Ionization Sources. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:859-865. [PMID: 28144897 DOI: 10.1007/s13361-017-1607-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
A linear wire ion trap (LWIT) with both electron ionization (EI) and single photon ionization (SPI) sources was built. The SPI was provided by a vacuum ultraviolet (VUV) lamp with the ability to softly ionize organic compounds. The VUV lamp was driven by a pulse amplifier, which was controlled by a pulse generator, to avoid the detection of photons during ion detection. Sample gas was introduced through a leak valve, and the pressure in the system is shown to affect the signal-to-noise ratio and resolving power. Under optimized conditions, the limit of detection (LOD) for benzene was 80 ppbv using SPI, better than the LOD using EI (137 ppbv). System performance was demonstrated by distinguishing compounds in different classes from gasoline. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Qinghao Wu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Yuan Tian
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Ailin Li
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Derek Andrews
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Aaron R Hawkins
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Daniel E Austin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
21
|
XU FX, DANG QK, DING HY, HUANG ZX, WANG YY, ZHOU Z, DING CF. Performance Investigation of Ion Trap with Various Collision Gas and Pressures. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|