1
|
Boukarkour Y, Reculusa S, Sojic N, Kuhn A, Salinas G. Wireless Light-Emitting Electrode Arrays for the Evaluation of Electrocatalytic Activity. Chemistry 2024; 30:e202400078. [PMID: 38470292 DOI: 10.1002/chem.202400078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
Water splitting has become a sustainable and clean alternative for hydrogen production. Commonly, the efficiency of such reactions is intimately related to the physico-chemical properties of the catalysts that constitute the electrolyzer. Thus, the development of simple and fast methods to evaluate the electrocatalytic efficiency of an electrolyzer is highly required. In this work, we present an unconventional method based on the combination of bipolar electrochemistry and light-emitting diodes, which allows the evaluation of the electrocatalytic performance of the two types of catalysts, composing an electrolyzer, namely for oxygen and hydrogen evolution reactions, respectively. The integrated light emission of the diode acts as an optical readout of the electrocatalytic information, which simultaneously depends on the composition of the anode and the cathode. The electrocatalytic activity of Au, Pt, and Ni electrodes, connected to the LED in multiple anode/cathode configurations, towards the water splitting reactions has been evaluated. The efficiency of the electrolyzer can be represented in terms of the onset electric field (ϵonset) for light emission, obtaining variations that are in agreement with data reported with conventional electrochemistry. This work introduces a straightforward method for evaluating electrocatalysts and underscores the importance of material characterization in developing efficient electrolyzers for hydrogen production.
Collapse
Affiliation(s)
| | - Stephane Reculusa
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Gerardo Salinas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| |
Collapse
|
2
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Hayat A, Sohail M, Ali H, Taha TA, Qazi HIA, Ur Rahman N, Ajmal Z, Kalam A, Al-Sehemi AG, Wageh S, Amin MA, Palamanit A, Nawawi WI, Newair EF, Orooji Y. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting. CHEM REC 2023; 23:e202200149. [PMID: 36408911 DOI: 10.1002/tcr.202200149] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/15/2022] [Indexed: 11/22/2022]
Abstract
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, Zhejiang, P. R. China.,College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, P. R. China
| | - Hamid Ali
- Multiscale Computational Materials Facility, Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, 350100, Fuzhou, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, PO Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - H I A Qazi
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Naveed Ur Rahman
- Department of Physics, Bacha Khan University Charsadda, KP, Pakistan
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, P. R. China
| | - Abul Kalam
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., 90110, Hat Yai, Songkhla, Thailand
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600, Cawangan Perlis, Arau Perlis, Malaysia
| | - Emad F Newair
- Chemistry Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| |
Collapse
|
4
|
Fattah ZA. Efficient Removal of Mercury from Polluted Aqueous Solutions Using the Wireless Bipolar Electrochemistry Technique. ChemistryOpen 2022; 11:e202200231. [PMID: 36541655 PMCID: PMC9769084 DOI: 10.1002/open.202200231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/11/2022] [Indexed: 12/24/2022] Open
Abstract
Mercury represents one of the major toxic pollutants in water that affect human and ecosystem. Extensive efforts have been globally invested to remove mercury using various chemical and electrochemical approaches. In this study, I propose the use of bipolar electrochemistry for the first time for mercury depollution process. Mercury(II) is removed from aqueous solutions by direct electrodeposition on millimeter scale graphite rods held in a bipolar setup. By adjusting the strength of the applied electric field and the number of the graphite rods the efficiency of the system can be controlled. This wireless technique allows the use of multiple graphite rod arrays within the bulk cell which resulted in high removal efficiency (98 %) of Hg2+ ions from the polluted solution. The method is straightforward, green, and efficient. The concept can be adapted to remove other heavy metal ions or electrochemically active contaminants from polluted water as long as their reduction potentials are within the water stability window.
Collapse
Affiliation(s)
- Zahra Ali Fattah
- Chemistry DepartmentDuhok UniversityZakho Street 381006AJ Duhok Kurdistan RegionIraq
| |
Collapse
|
5
|
Salinas G, Arnaboldi S, Bouffier L, Kuhn A. Recent Advances in Bipolar Electrochemistry with Conducting Polymers. ChemElectroChem 2022. [DOI: 10.1002/celc.202101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux ISM UMR 5255 CNRS, Bordeaux INP 33607 Pessac France
| | - Serena Arnaboldi
- Dip. Di Chimica Univ. degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Laurent Bouffier
- Univ. Bordeaux ISM UMR 5255 CNRS, Bordeaux INP 33607 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux ISM UMR 5255 CNRS, Bordeaux INP 33607 Pessac France
| |
Collapse
|
6
|
Sun L, Luo Q, Dai Z, Ma F. Material libraries for electrocatalytic overall water splitting. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Bouffier L, Zigah D, Sojic N, Kuhn A. Bipolar (Bio)electroanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:65-86. [PMID: 33940930 DOI: 10.1146/annurev-anchem-090820-093307] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This contribution reviews a selection of the most recent studies on the use of bipolar electrochemistry in the framework of analytical chemistry. Despite the fact that the concept is not new, with several important studies dating back to the middle of the last century, completely novel and very original approaches have emerged over the last decade. This current revival illustrates that scientists still (re)discover some exciting virtues of this approach, which are useful in many different areas, especially for tackling analytical challenges in an unconventional way. In several cases, this "wireless" electrochemistry strategy enables carrying out measurements that are simply not possible with classic electrochemical approaches. This review will hopefully stimulate new ideas and trigger scientists to integrate some aspects of bipolar electrochemistry in their work in order to drive the topic into yet unexplored and eventually completely unexpected directions.
Collapse
Affiliation(s)
- Laurent Bouffier
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Dodzi Zigah
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Alexander Kuhn
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| |
Collapse
|
8
|
Amin HMA, Königshoven P, Hegemann M, Baltruschat H. Role of Lattice Oxygen in the Oxygen Evolution Reaction on Co3O4: Isotope Exchange Determined Using a Small-Volume Differential Electrochemical Mass Spectrometry Cell Design. Anal Chem 2019; 91:12653-12660. [DOI: 10.1021/acs.analchem.9b01749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hatem M. A. Amin
- Department of Chemistry, Faculty of Science, Cairo University, 12613 Giza, Egypt
- Institute of Physical and Theoretical Chemistry, University of Bonn, 53117 Bonn, Germany
| | - Peter Königshoven
- Institute of Physical and Theoretical Chemistry, University of Bonn, 53117 Bonn, Germany
| | - Martina Hegemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, 53117 Bonn, Germany
| | - Helmut Baltruschat
- Institute of Physical and Theoretical Chemistry, University of Bonn, 53117 Bonn, Germany
| |
Collapse
|
9
|
Tian Z, Mi L, Wu Y, Shao F, Zou M, Zhou Z, Liu S. Visual Electrofluorochromic Detection of Cancer Cell Surface Glycoprotein on a Closed Bipolar Electrode Chip. Anal Chem 2019; 91:7902-7910. [PMID: 31135138 DOI: 10.1021/acs.analchem.9b01760] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work reports an electrofluorochromic strategy on the basis of electric field control of fluorescent signal generation on bipolar electrodes (BPEs) for visualizing cancer cell surface glycoprotein (mucin 1). The device included two separate cells: anodic sensing cell and cathodic reporting cell, which were connected by a screen-printing electrode patterned on poly(ethylene terephthalate) (PET) membrane. In the sensing cell, anti-MUC1 antibody immobilized on a chitosan-multiwalled carbon nanotube (CS-MWCNT)-modified anodic BPE channel was used for capturing mucin-1 (MUC1) or MCF-7 cancer cells. Then ferrocene (Fc)-labeled mucin 1 aptamers were introduced through hybridization. Under an applied voltage, the ferrocene was oxidized and the electroactive molecules of 1,4-benzoquinone (BQ) in the cathodic reporting cell were reduced according to electroneutrality. This produced a strongly basic 1,4-benzoquinone anion radical (BQ•-), which turned on the fluorescence of pH-responsive fluorescent molecules of (2-(2-(4-hydroxystyryl)-6-methyl-4 H-pyran-4-ylidene)malononitrile) (SPM) coexisting in the cathode reporting cell for both spectrophotometric detection and imaging. This strategy allowed sensitive detection of MUC1 at a concentration down to 10 fM and was capable of detecting a minimum of three MCF-7 cells. Furthermore, the amount of MUC1 on MCF-7 cells was calculated to be 6.02 × 104 molecules/cell. Our strategy also had the advantages of high temporal and spatial resolution, short response time, and high luminous contrast and is of great significance for human health and the promotion of life science development.
Collapse
Affiliation(s)
- Zhaoyan Tian
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| | - Li Mi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| | - Yafeng Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| | - Fengying Shao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ) , No. A3, Gaobeidian Road, Chaoyang District , Beijing 100123 , China
| | - Zhenxian Zhou
- Nanjing Second Hospital , No. 121, Jiangjiayuan, Gulou District , Nanjing , Jiangsu , China
| | - Songqin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| |
Collapse
|
10
|
Ma X, Qi L, Gao W, Yuan F, Xia Y, Lou B, Xu G. A portable wireless single-electrode system for electrochemiluminescent analysis. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Li M, Liu S, Jiang Y, Wang W. Visualizing the Zero-Potential Line of Bipolar Electrodes with Arbitrary Geometry. Anal Chem 2018; 90:6390-6396. [DOI: 10.1021/acs.analchem.7b04881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Meng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yingyan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
12
|
Eßmann V, Santana Santos C, Tarnev T, Bertotti M, Schuhmann W. Scanning Bipolar Electrochemical Microscopy. Anal Chem 2018; 90:6267-6274. [DOI: 10.1021/acs.analchem.8b00928] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Vera Eßmann
- Analytical Chemistry − Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätßtrasse 150, D-44780 Bochum, Germany
| | - Carla Santana Santos
- Analytical Chemistry − Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätßtrasse 150, D-44780 Bochum, Germany
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748 05513-970, São Paulo, Brazil
| | - Tsvetan Tarnev
- Analytical Chemistry − Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätßtrasse 150, D-44780 Bochum, Germany
| | - Mauro Bertotti
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748 05513-970, São Paulo, Brazil
| | - Wolfgang Schuhmann
- Analytical Chemistry − Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätßtrasse 150, D-44780 Bochum, Germany
| |
Collapse
|
13
|
Netskina O, Kellerman D, Ishchenko A, Komova O, Simagina V. Amorphous ferromagnetic cobalt-boron composition reduced by sodium borohydride: Phase transformation at heat-treatment and its influence on the catalytic properties. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Netskina O, Kochubey D, Prosvirin I, Malykhin S, Komova O, Kanazhevskiy V, Chukalkin Y, Bobrovskii V, Kellerman D, Ishchenko A, Simagina V. Cobalt-boron catalyst for NaBH4 hydrolysis: The state of the active component forming from cobalt chloride in a reaction medium. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Goodwin S, Walsh DA. Closed Bipolar Electrodes for Spatial Separation of H 2 and O 2 Evolution during Water Electrolysis and the Development of High-Voltage Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23654-23661. [PMID: 28654236 DOI: 10.1021/acsami.7b04226] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrolytic water splitting could potentially provide clean H2 for a future "hydrogen economy". However, as H2 and O2 are produced in close proximity to each other in water electrolyzers, mixing of the gases can occur during electrolysis, with potentially dangerous consequences. Herein, we describe an electrochemical water-splitting cell, in which mixing of the electrogenerated gases is impossible. In our cell, separate H2- and O2-evolving cells are connected electrically by a bipolar electrode in contact with an inexpensive dissolved redox couple (K3Fe(CN)6/K4Fe(CN)6). Electrolytic water splitting occurs in tandem with oxidation/reduction of the K3Fe(CN)6/K4Fe(CN) redox couples in the separate compartments, affording completely spatially separated H2 and O2 evolution. We demonstrate operation of our prototype cell using conventional Pt electrodes for each gas-evolving reaction, as well as using earth-abundant Ni2P electrocatalysts for H2 evolution. Furthermore, we show that our cell can be run in reverse and operate as a H2 fuel cell, releasing the energy stored in the electrogenerated H2 and O2. We also describe how the absence of an ionically conducting electrolyte bridging the H2- and O2-electrode compartments makes it possible to develop H2 fuel cells in which the anode and cathode are at different pH values, thereby increasing the voltage above that of conventional fuel cells. The use of our cell design in electrolyzers could result in dramatically improved safety during operation and the generation of higher-purity H2 than available from conventional electrolysis systems. Our cell could also be readily modified for the electrosynthesis of other chemicals, where mixing of the electrochemical products is undesirable.
Collapse
Affiliation(s)
- Sean Goodwin
- School of Chemistry and GSK Carbon Neutral Laboratory for Sustainable Chemistry, University of Nottingham , Jubilee Campus, Nottingham NG7 2TU, U.K
| | - Darren A Walsh
- School of Chemistry and GSK Carbon Neutral Laboratory for Sustainable Chemistry, University of Nottingham , Jubilee Campus, Nottingham NG7 2TU, U.K
| |
Collapse
|
16
|
Eßmann V, Zhao F, Hartmann V, Nowaczyk MM, Schuhmann W, Conzuelo F. In Operando Investigation of Electrical Coupling of Photosystem 1 and Photosystem 2 by Means of Bipolar Electrochemistry. Anal Chem 2017; 89:7160-7165. [DOI: 10.1021/acs.analchem.7b01222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vera Eßmann
- Analytical
Chemistry - Center for Electrochemical Sciences (CES) and ‡Plant Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Fangyuan Zhao
- Analytical
Chemistry - Center for Electrochemical Sciences (CES) and ‡Plant Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Volker Hartmann
- Analytical
Chemistry - Center for Electrochemical Sciences (CES) and ‡Plant Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Marc M. Nowaczyk
- Analytical
Chemistry - Center for Electrochemical Sciences (CES) and ‡Plant Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical
Chemistry - Center for Electrochemical Sciences (CES) and ‡Plant Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Felipe Conzuelo
- Analytical
Chemistry - Center for Electrochemical Sciences (CES) and ‡Plant Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
17
|
Li M, Anand RK. High-Throughput Selective Capture of Single Circulating Tumor Cells by Dielectrophoresis at a Wireless Electrode Array. J Am Chem Soc 2017; 139:8950-8959. [PMID: 28609630 DOI: 10.1021/jacs.7b03288] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We demonstrate continuous high-throughput selective capture of circulating tumor cells by dielectrophoresis at arrays of wireless electrodes (bipolar electrodes, BPEs). The use of BPEs removes the requirement of ohmic contact to individual array elements, thus enabling otherwise unattainable device formats. Capacitive charging of the electrical double layer at opposing ends of each BPE allows an AC electric field to be transmitted across the entire device. Here, two such designs are described and evaluated. In the first design, BPEs interconnect parallel microchannels. Pockets extruding from either side of the microchannels volumetrically control the number of cells captured at each BPE tip and enhance trapping. High-fidelity single-cell capture was achieved when the pocket dimensions were matched to those of the cells. A second, open design allows many non-targeted cells to pass through. These devices enable high-throughput capture of rare cells and single-cell analysis.
Collapse
Affiliation(s)
- Min Li
- Department of Chemistry, Iowa State University , Ames, Iowa 50010, United States
| | - Robbyn K Anand
- Department of Chemistry, Iowa State University , Ames, Iowa 50010, United States
| |
Collapse
|
18
|
Zhang X, Zhai Q, Xing H, Li J, Wang E. Bipolar Electrodes with 100% Current Efficiency for Sensors. ACS Sens 2017; 2:320-326. [PMID: 28723210 DOI: 10.1021/acssensors.7b00031] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A bipolar electrode (BPE) is an electron conductor that is embedded in the electrolyte solution without the direct connection with the external power source (driving electrode). When the sufficient voltage was provided, the two poles of BPE promote different oxidation and reduction reactions. During the past few years, BPEs with wireless feature and easy integration showed great promise in the various fields including asymmetric modification/synthesis, motion control, targets enrichment/separation, and chemical sensing/biosensing combined with the quantitative relationship between two poles of BPE. In this perspective paper, we first describe the concept and history of the BPE for analytical chemistry and then review the recent developments in the application of BPEs for sensing with ultrahigh current efficiency (ηc = iBPE/ichannel) including the open and closed bipolar system. Finally, we offer the guide for possible challenge faced and solution in the future.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Qingfeng Zhai
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Huanhuan Xing
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Jing Li
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Erkang Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| |
Collapse
|