1
|
Sun B, Li G, Wu Y, Gai J, Zhu M, Ji W, Wang X, Zhang F, Li W, Hu J, Lou Y, Feng G, Han X, Dong J, Peng J, Pei J, Wan Y, Li Y, Ma L. Ce-MOF@Au-Based Electrochemical Immunosensor for Apolipoprotein A1 Detection Using Nanobody Technology. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58405-58416. [PMID: 39413767 DOI: 10.1021/acsami.4c14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Apolipoprotein A1 (Apo-A1) is a well-recognized biomarker in tissues, closely associated with cardiovascular diseases such as atherosclerosis, coronary artery disease, and heart failure. However, existing methods for Apo-A1 determination are limited by costly equipment and intricate operational procedures. Given the distinct advantages of electrochemical immunosensors, including affordability and high sensitivity, along with the unique attributes of nanobodies (Nbs), such as enhanced specificity and better tissue permeability, we developed an electrochemical immunosensor for Apo-A1 detection utilizing Nb technology. In our study, Ce-MOF@AuNPs nanocomposites were synthesized by using ultrasonic methods and applied to modify a glassy carbon electrode. The Nb6, screened from an Apo-A1 immunized phage library, was immobilized onto the nanocomposite material, establishing a robust binding interaction with Apo-A1. The recorded peak current values demonstrated a logarithmic increase corresponding to Apo-A1 concentrations ranging from 1 to 100,000 pg/mL, with a detection limit of 36 fg/mL. Additionally, the developed immunosensors demonstrated high selectivity, good stability, and reproducibility. Our methodology was also effectively utilized for serum sample analysis, showing good performance in clinical assessments. This electrochemical immunosensor represents a promising tool for Apo-A1 detection, with significant potential for advancing cardiovascular disease diagnostics.
Collapse
Affiliation(s)
- Baihe Sun
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai 201318, China
| | - Yue Wu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junwei Gai
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai 201318, China
| | - Min Zhu
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai 201318, China
| | - Weiwei Ji
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai 201318, China
| | - Xiaoying Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Fenghua Zhang
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Wanting Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jingjin Hu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yuxin Lou
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Gusheng Feng
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Xijun Han
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jinwen Dong
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jiayuan Peng
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jiawei Pei
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai 201318, China
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Linlin Ma
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| |
Collapse
|
2
|
Ono T, Okuda S, Ushiba S, Kanai Y, Matsumoto K. Challenges for Field-Effect-Transistor-Based Graphene Biosensors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:333. [PMID: 38255502 PMCID: PMC10817696 DOI: 10.3390/ma17020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024]
Abstract
Owing to its outstanding physical properties, graphene has attracted attention as a promising biosensor material. Field-effect-transistor (FET)-based biosensors are particularly promising because of their high sensitivity that is achieved through the high carrier mobility of graphene. However, graphene-FET biosensors have not yet reached widespread practical applications owing to several problems. In this review, the authors focus on graphene-FET biosensors and discuss their advantages, the challenges to their development, and the solutions to the challenges. The problem of Debye screening, in which the surface charges of the detection target are shielded and undetectable, can be solved by using small-molecule receptors and their deformations and by using enzyme reaction products. To address the complexity of sample components and the detection mechanisms of graphene-FET biosensors, the authors outline measures against nonspecific adsorption and the remaining problems related to the detection mechanism itself. The authors also introduce a solution with which the molecular species that can reach the sensor surfaces are limited. Finally, the authors present multifaceted approaches to the sensor surfaces that provide much information to corroborate the results of electrical measurements. The measures and solutions introduced bring us closer to the practical realization of stable biosensors utilizing the superior characteristics of graphene.
Collapse
Affiliation(s)
- Takao Ono
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Satoshi Okuda
- High Frequency & Optical Device Works, Mitsubishi Electric Corporation, 4-1 Mizuhara, Itami, Sendai 664-8641, Japan
| | - Shota Ushiba
- Murata Manufacturing Co., Ltd., 1-10-1 Higashikotari, Kyoto 617-8555, Japan
| | - Yasushi Kanai
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | |
Collapse
|
3
|
Ionescu RE. Ultrasensitive Electrochemical Immunosensors Using Nanobodies as Biocompatible Sniffer Tools of Agricultural Contaminants and Human Disease Biomarkers. MICROMACHINES 2023; 14:1486. [PMID: 37630022 PMCID: PMC10456424 DOI: 10.3390/mi14081486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Nanobodies (Nbs) are known as camelid single-domain fragments or variable heavy chain antibodies (VHH) that in vitro recognize the antigens (Ag) similar to full-size antibodies (Abs) and in vivo allow immunoreactions with biomolecule cavities inaccessible to conventional Abs. Currently, Nbs are widely used for clinical treatments due to their remarkably improved performance, ease of production, thermal robustness, superior physical and chemical properties. Interestingly, Nbs are also very promising bioreceptors for future rapid and portable immunoassays, compared to those using unstable full-size antibodies. For all these reasons, Nbs are excellent candidates in ecological risk assessments and advanced medicine, enabling the development of ultrasensitive biosensing platforms. In this review, immobilization strategies of Nbs on conductive supports for enhanced electrochemical immune detection of food contaminants (Fcont) and human biomarkers (Hbio) are discussed. In the case of Fcont, the direct competitive immunoassay detection using coating antigen solid surface is the most commonly used approach for efficient Nbs capture which was characterized with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) when the signal decays for increasing concentrations of free antigen prepared in aqueous solutions. In contrast, for the Hbio investigations on thiolated gold electrodes, increases in amperometric and electrochemical impedance spectroscopy (EIS) signals were recorded, with increases in the antigen concentrations prepared in PBS or spiked real human samples.
Collapse
Affiliation(s)
- Rodica Elena Ionescu
- Light, Nanomaterials and Nanotechnology (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 Rue Marie Curie CS 42060, 10004 Troyes, France
| |
Collapse
|
4
|
Su R, Wu Y, Doulkeridou S, Qiu X, Sørensen TJ, Susumu K, Medintz IL, van Bergen en Henegouwen PMP, Hildebrandt N. A Nanobody‐on‐Quantum Dot Displacement Assay for Rapid and Sensitive Quantification of the Epidermal Growth Factor Receptor (EGFR). Angew Chem Int Ed Engl 2022; 61:e202207797. [PMID: 35759268 PMCID: PMC9542526 DOI: 10.1002/anie.202207797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/26/2022]
Abstract
Biosensing approaches that combine small, engineered antibodies (nanobodies) with nanoparticles are often complicated. Here, we show that nanobodies with different C‐terminal tags can be efficiently attached to a range of the most widely used biocompatible semiconductor quantum dots (QDs). Direct implementation into simplified assay formats was demonstrated by designing a rapid and wash‐free mix‐and‐measure immunoassay for the epidermal growth factor receptor (EGFR). Terbium complex (Tb)‐labeled hexahistidine‐tagged nanobodies were specifically displaced from QD surfaces via EGFR‐nanobody binding, leading to an EGFR concentration‐dependent decrease of the Tb‐to‐QD Förster resonance energy transfer (FRET) signal. The detection limit of 80±20 pM (16±4 ng mL−1) was 3‐fold lower than the clinical cut‐off concentration for soluble EGFR and up to 10‐fold lower compared to conventional sandwich FRET assays that required a pair of different nanobodies.
Collapse
Affiliation(s)
- Ruifang Su
- nanoFRET.comLaboratoire COBRA (UMR6014 & FR3038)Université de Rouen Normandie, CNRS, INSANormandie Université76000RouenFrance
- Nano-Science Center & Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100CopenhagenDenmark
| | - Yu‐Tang Wu
- Université Paris-Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)91198Gif-sur-YvetteFrance
| | - Sofia Doulkeridou
- Cell BiologyNeurobiology and BiophysicsDepartment of BiologyScience FacultyUtrecht University3508 TBUtrechtThe Netherlands
- Princess Maxima CenterHeidelberglaan 253584CSUtrechtThe Netherlands
| | - Xue Qiu
- Université Paris-Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)91198Gif-sur-YvetteFrance
- Key Laboratory of Marine DrugMinistry of EducationSchool of Medicine and PharmacyOcean University of China266003QingdaoChina
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology266237QingdaoChina
| | - Thomas Just Sørensen
- Nano-Science Center & Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100CopenhagenDenmark
| | - Kimihiro Susumu
- Jacobs CorporationHanoverMD 21076USA
- Optical Sciences Division, Code 5600, Code 6900U.S. Naval Research LaboratoryWashingtonDC 20375USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashingtonDC 20375USA
| | | | - Niko Hildebrandt
- nanoFRET.comLaboratoire COBRA (UMR6014 & FR3038)Université de Rouen Normandie, CNRS, INSANormandie Université76000RouenFrance
- Université Paris-Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)91198Gif-sur-YvetteFrance
- Department of ChemistrySeoul National UniversitySeoul08826South Korea
| |
Collapse
|
5
|
Su R, Wu Y, Doulkeridou S, Qiu X, Sørensen TJ, Susumu K, Medintz IL, van Bergen en Henegouwen PMP, Hildebrandt N. A Nanobody‐on‐Quantum Dot Displacement Assay for Rapid and Sensitive Quantification of the Epidermal Growth Factor Receptor (EGFR). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruifang Su
- nanoFRET.com Laboratoire COBRA (UMR6014 & FR3038) Université de Rouen Normandie, CNRS, INSA Normandie Université 76000 Rouen France
- Nano-Science Center & Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Yu‐Tang Wu
- Université Paris-Saclay, CEA, CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Sofia Doulkeridou
- Cell Biology Neurobiology and Biophysics Department of Biology Science Faculty Utrecht University 3508 TB Utrecht The Netherlands
- Princess Maxima Center Heidelberglaan 25 3584CS Utrecht The Netherlands
| | - Xue Qiu
- Université Paris-Saclay, CEA, CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
- Key Laboratory of Marine Drug Ministry of Education School of Medicine and Pharmacy Ocean University of China 266003 Qingdao China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology 266237 Qingdao China
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Kimihiro Susumu
- Jacobs Corporation Hanover MD 21076 USA
- Optical Sciences Division, Code 5600, Code 6900 U.S. Naval Research Laboratory Washington DC 20375 USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900 U.S. Naval Research Laboratory Washington DC 20375 USA
| | | | - Niko Hildebrandt
- nanoFRET.com Laboratoire COBRA (UMR6014 & FR3038) Université de Rouen Normandie, CNRS, INSA Normandie Université 76000 Rouen France
- Université Paris-Saclay, CEA, CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
- Department of Chemistry Seoul National University Seoul 08826 South Korea
| |
Collapse
|
6
|
Yu Y, Han J, Yin J, Huang J, Liu J, Geng L, Sun X, Zhao W. Dual-Target Electrochemical Sensor Based on 3D MoS2-rGO and Aptamer Functionalized Probes for Simultaneous Detection of Mycotoxins. Front Chem 2022; 10:932954. [PMID: 35836672 PMCID: PMC9274162 DOI: 10.3389/fchem.2022.932954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/10/2022] [Indexed: 12/03/2022] Open
Abstract
A dual-target aptamer functionalized probes (DTAFP) was applied for the detection of aflatoxin B1 (AFB1) and zearalenone (ZEN) simultaneously, which has not been reported. Meanwhile, two functional materials for signal amplification of the DTAFP were synthesized: 1) a three-dimensional molybdenum disulfide-reduced graphene oxide (MoS2-rGO) as a favorable loading interface; 2) a double-probes gold nanoparticles (AuNPs) modified by Thionin (Thi) and 6-(Ferrocenyl) hexanethiol (FC6S) as distinguishable and non-interfering signals. Mycotoxins on the electrode surface release into solution under the function of the DTAFP, leading a reduction of the differential peak impulse in signal response. Under the optimum conditions, the aptasensor exhibited a detection range of 1.0 pg mL−1–100 ng mL−1 for AFB1 and ZEN, with no observable cross reactivity. In addition, the aptasensor performed excellent stability, reproducibility, specificity, and favorable recovery in the detection of edible oil. This work demonstrated a novel method for the construction of a simple, rapid, and sensitive aptasensor in the detection of multiple mycotoxins simultaneously.
Collapse
Affiliation(s)
- Yanyang Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Jie Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Jiaqi Yin
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Jing Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
| | - Wenping Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo, China
- *Correspondence: Wenping Zhao,
| |
Collapse
|
7
|
Chen Y, Duan W, Xu L, Li G, Wan Y, Li H. Nanobody-based label-free photoelectrochemical immunoassay for highly sensitive detection of SARS-CoV-2 spike protein. Anal Chim Acta 2022; 1211:339904. [PMID: 35589224 PMCID: PMC9062376 DOI: 10.1016/j.aca.2022.339904] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/30/2022]
Abstract
Until now, COVID-19 caused by SARS-CoV-2 is engulfing the worldwide and still ranging to date, continuing to threaten the public health. The main challenge facing COVID-19 epidemic is short of fast-response and high-efficiency methods to determine SARS-CoV-2 viral pathogens. Herein, a nanobody-based label-free photoelectrochemical (PEC) immunosensor has been fabricated for rapidly detecting SARS-CoV-2 spike protein. As a small-size and high-stability antibody, nanobody was directly and well immobilized with Au nanoparticles and TiO2 spheres by the interaction. Au deposited TiO2 nanomaterial possessed 8.5 times photoelectric performance in comparison with TiO2 in the presence of electron donor owing to surface plasma resonance effect of Au. Based on the steric hindrance effect, this immunoassay platform realized the linear detection from 0.015 to 15000 pg mL−1, and a limit of detection was low as 5 fg mL−1. The label-free PEC immunoassay design provides a new idea for convenient, rapid, and efficient test of SARS-CoV-2 spike protein and broadens further application of nanobody as an identification agent to specific biomarkers.
Collapse
Affiliation(s)
- Yun Chen
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China
| | - Wei Duan
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, 201318, China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, 201318, China.
| | - Henan Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
8
|
Poly(Thionine)-Modified Screen-Printed Electrodes for CA 19-9 Detection and Its Properties in Raman Spectroscopy. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polythionine (PTH) is an electroactive compound known for its excellent electron transfer capacity. It has stable and redox centers in its structure, and it can also be generated by electropolymerization of thionine (TH). Due to its properties, it has been used in a large number of applications, including the construction of electrochemical biosensors. In this work, PTH is explored for its ability to generate electrons, which allows it to act as an electrochemical probe in a biosensor that detects CA 19-9 on two different substrates, carbon and gold, using differential pulse voltammetry (DPV) as a reading technique in phosphate buffer (PhB). The analytical features of the resulting electrodes are given, showing linear ranges from 0.010 to 10 U/mL. The Raman spectra of PTH films on gold (substrates or nanostars) and carbon (substrates) are also presented and discussed as a potential use for SERS readings as complementary information to electrochemical data.
Collapse
|
9
|
Feng J, Chu C, Ma Z. Electrochemical Signal Substance for Multiplexed Immunosensing Interface Construction: A Mini Review. Molecules 2022; 27:267. [PMID: 35011499 PMCID: PMC8746521 DOI: 10.3390/molecules27010267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Appropriate labeling method of signal substance is necessary for the construction of multiplexed electrochemical immunosensing interface to enhance the specificity for the diagnosis of cancer. So far, various electrochemical substances, including organic molecules, metal ions, metal nanoparticles, Prussian blue, and other methods for an electrochemical signal generation have been successfully applied in multiplexed biosensor designing. However, few works have been reported on the summary of electrochemical signal substance applied in constructing multiplexed immunosensing interface. Herein, according to the classification of labeled electrochemical signal substance, this review has summarized the recent state-of-art development for the designing of electrochemical immunosensing interface for simultaneous detection of multiple tumor markers. After that, the conclusion and prospects for future applications of electrochemical signal substances in multiplexed immunosensors are also discussed. The current review can provide a comprehensive summary of signal substance selection for workers researched in electrochemical sensors, and further, make contributions for the designing of multiplexed electrochemical immunosensing interface with well signal.
Collapse
Affiliation(s)
| | | | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China; (J.F.); (C.C.)
| |
Collapse
|
10
|
Peltomaa R, Barderas R, Benito-Peña E, Moreno-Bondi MC. Recombinant antibodies and their use for food immunoanalysis. Anal Bioanal Chem 2022; 414:193-217. [PMID: 34417836 PMCID: PMC8380008 DOI: 10.1007/s00216-021-03619-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022]
Abstract
Antibodies are widely employed as biorecognition elements for the detection of a plethora of compounds including food and environmental contaminants, biomarkers, or illicit drugs. They are also applied in therapeutics for the treatment of several disorders. Recent recommendations from the EU on animal protection and the replacement of animal-derived antibodies by non-animal-derived ones have raised a great controversy in the scientific community. The application of recombinant antibodies is expected to achieve a high growth rate in the years to come thanks to their versatility and beneficial characteristics in comparison to monoclonal and polyclonal antibodies, such as stability in harsh conditions, small size, relatively low production costs, and batch-to-batch reproducibility. This review describes the characteristics, advantages, and disadvantages of recombinant antibodies including antigen-binding fragments (Fab), single-chain fragment variable (scFv), and single-domain antibodies (VHH) and their application in food analysis with especial emphasis on the analysis of biotoxins, antibiotics, pesticides, and foodborne pathogens. Although the wide application of recombinant antibodies has been hampered by a number of challenges, this review demonstrates their potential for the sensitive, selective, and rapid detection of food contaminants.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Life Sciences, University of Turku, 20014, Turku, Finland
- Turku Collegium for Science and Medicine, University of Turku, 20014, Turku, Finland
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
11
|
Szunerits S, Pagneux Q, Swaidan A, Mishyn V, Roussel A, Cambillau C, Devos D, Engelmann I, Alidjinou EK, Happy H, Boukherroub R. The role of the surface ligand on the performance of electrochemical SARS-CoV-2 antigen biosensors. Anal Bioanal Chem 2022; 414:103-113. [PMID: 33616686 PMCID: PMC7897554 DOI: 10.1007/s00216-020-03137-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023]
Abstract
Point-of-care (POC) technologies and testing programs hold great potential to significantly improve diagnosis and disease surveillance. POC tests have the intrinsic advantage of being able to be performed near the patient or treatment facility, owing to their portable character. With rapid results often in minutes, these diagnostic platforms have a high positive impact on disease management. POC tests are, in addition, advantageous in situations of a shortage of skilled personnel and restricted availability of laboratory-based analytics. While POC testing programs are widely considered in addressing health care challenges in low-income health systems, the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections could largely benefit from fast, efficient, accurate, and cost-effective point-of-care testing (POCT) devices for limiting COVID-19 spreading. The unrestrained availability of SARS-CoV-2 POC tests is indeed one of the adequate means of better managing the COVID-19 outbreak. A large number of novel and innovative solutions to address this medical need have emerged over the last months. Here, we critically elaborate the role of the surface ligands in the design of biosensors to cope with the current viral outbreak situation. Their notable effect on electrical and electrochemical sensors' design will be discussed in some given examples. Graphical abstract.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France.
| | - Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Abir Swaidan
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Vladyslav Mishyn
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, CEDEX 20, 13020, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, CEDEX 20, 13020, Marseille, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, CEDEX 20, 13020, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, CEDEX 20, 13020, Marseille, France
| | - David Devos
- Univ. Lille, CHU-Lille, Inserm, U1172, Lille Neuroscience & Cognition, LICEND, 59000, Lille, France
| | - Ilka Engelmann
- Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, 59000, Lille, France
| | | | - Henri Happy
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| |
Collapse
|
12
|
Tao D, Xie C, Fu S, Rong S, Song S, Ye H, Jaffrezic-Renault N, Guo Z. Thionine-functionalized three-dimensional carbon nanomaterial-based aptasensor for analysis of Aβ oligomers in serum. Anal Chim Acta 2021; 1183:338990. [PMID: 34627525 DOI: 10.1016/j.aca.2021.338990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 01/07/2023]
Abstract
How to sensitively detect early biomarkers of Alzheimer's disease (AD) is nowadays, one of the major challenges. In this work, Aβ oligomers (AβO), one of the AD biomarkers, was analyzed using an electrochemical aptasensor, which was prepared based on thionine (Th) - functionalized three - dimensional carbon nanomaterials (reduced graphene oxide (rGO) and multi-wall carbon nanotubes (MWCNTs)) immobilized DNA-aptamer. Th, a positively charged planar aromatic molecule, form many π - π conjugated structures with rGO and MWCNTs, then improving the structural stability, electron transfer and the capacitive properties of Th-rGO-MWCNTs nanocomposites. Under the optimal conditions, differential pulse voltammetry (DPV) current responses decreased with the increase of AβO concentration. The obtained AβO aptasensor presented a wide linear range of 0.0443 pM-443.00 pM and limit of detection (LOD) was 10 fM. Meanwhile, AβO aptasensor displayed remarkable stability and selectivity. It has a great potential for early diagnosis of AD in human real serum samples.
Collapse
Affiliation(s)
- Dan Tao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, PR China; Resources and Environmental Engineering College, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Chang Xie
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Sinan Fu
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Shizhen Song
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, PR China; Resources and Environmental Engineering College, Wuhan University of Science and Technology, Wuhan, 430081, PR China; School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Huarong Ye
- China Resources & Wisco General Hospital, Wuhan, 430080, PR China.
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5 La Doua Street, Villeurbanne, 69100, France.
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, PR China.
| |
Collapse
|
13
|
Faheem A, Qin Y, Nan W, Hu Y. Advances in the Immunoassays for Detection of Bacillus thuringiensis Crystalline Toxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10407-10418. [PMID: 34319733 DOI: 10.1021/acs.jafc.1c02195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insect-resistant genetically modified organisms have been globally commercialized for the last 2 decades. Among them, transgenic crops based on Bacillus thuringiensis crystalline (Cry) toxins are extensively used for commercial agricultural applications. However, less emphasis is laid on quantifying Cry toxins because there might be unforeseen health and environmental concerns. Immunoassays, being the preferred method for detection of Cry toxins, are reviewed in this study. Owing to limitations of traditional colorimetric enzyme-linked immunosorbent assay, the trend of detection strategies shifts to modified immunoassays based on nanomaterials, which provide ultrasensitive detection capacity. This review assessed and compared the properties of the recent advances in immunoassays, including colorimetric, fluorescence, chemiluminescence, surface-enhanced Raman scattering, surface plasmon resonance, and electrochemical approaches. Thus, the ultimate aim of this study is to identify research gaps and infer future prospects of current approaches for the development of novel immunosensors to monitor Cry toxins in food and the environment.
Collapse
Affiliation(s)
- Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yuqing Qin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Wenrui Nan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yonggang Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
14
|
Wei T, Xu Q, Zou C, He Z, Tang Y, Gao T, Han M, Dai Z. A boronate-modified renewable nanointerface for ultrasensitive electrochemical assay of cellulase activity. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Yu S, Xiong G, Zhao S, Tang Y, Tang H, Wang K, Liu H, Lan K, Bi X, Duan S. Nanobodies targeting immune checkpoint molecules for tumor immunotherapy and immunoimaging (Review). Int J Mol Med 2020; 47:444-454. [PMID: 33416134 PMCID: PMC7797440 DOI: 10.3892/ijmm.2020.4817] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
The immune checkpoint blockade is an effective strategy to enhance the anti-tumor T cell effector activity, thus becoming one of the most promising immunotherapeutic strategies in the history of cancer treatment. Several immune checkpoint inhibitor have been approved by the FDA, such as anti-CTLA-4, anti-PD-1, anti-PD-L1 monoclonal antibodies. Most tumor patients benefitted from these antibodies, but some of the patients did not respond to them. To increase the effectiveness of immunotherapy, including immune checkpoint blockade therapies, miniaturization of antibodies has been introduced. A single-domain antibody, also known as nanobody, is an attractive reagent for immunotherapy and immunoimaging thanks to its unique structural characteristic consisting of a variable region of a single heavy chain antibody. This structure confers to the nanobody a light molecular weight, making it smaller than conventional antibodies, although remaining able to bind to a specific antigen. Therefore, this review summarizes the production of nanobodies targeting immune checkpoint molecules and the application of nanobodies targeting immune checkpoint molecules in immunotherapy and immunoimaging.
Collapse
Affiliation(s)
- Sheng Yu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Gui Xiong
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shimei Zhao
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Yanbo Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545001, P.R. China
| | - Hua Tang
- Department of Clinical Laboratory, The Second Clinical Medical College of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545006, P.R. China
| | - Kaili Wang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Hongjing Liu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Ke Lan
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Xiongjie Bi
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545001, P.R. China
| | - Siliang Duan
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| |
Collapse
|
16
|
Bastos-Soares EA, Sousa RMO, Gómez AF, Alfonso J, Kayano AM, Zanchi FB, Funes-Huacca ME, Stábeli RG, Soares AM, Pereira SS, Fernandes CFC. Single domain antibodies in the development of immunosensors for diagnostics. Int J Biol Macromol 2020; 165:2244-2252. [DOI: 10.1016/j.ijbiomac.2020.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/26/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
|
17
|
Zhou Y, Yin H, Zhao WW, Ai S. Electrochemical, electrochemiluminescent and photoelectrochemical bioanalysis of epigenetic modifiers: A comprehensive review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213519] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Liao X, Zhang C, Machuki JO, Wen X, Tang Q, Shi H, Gao F. Proximity hybridization-triggered DNA assembly for label-free surface-enhanced Raman spectroscopic bioanalysis. Anal Chim Acta 2020; 1139:42-49. [PMID: 33190708 DOI: 10.1016/j.aca.2020.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/01/2020] [Accepted: 09/13/2020] [Indexed: 11/24/2022]
Abstract
We have developed a versatile label-free surface-enhanced Raman spectroscopic platform for detecting various biotargets via proximity hybridization-triggered DNA assembly based on the 736 cm-1 Raman peak of adenine breathing mode. We initially immobilized the first probe to AuNPs and modified the second with poly adenine. Presence of target DNA or protein molecules assembled a sandwich complex that brought the poly adenine close to the AuNPs surface, generating Raman signals, that were proportional to target molecule concentration. These approach exhibits high sensitivity, with a detection limit of 5.4 pM, 47 fM, and 0.51 pg/mL for target DNA, thrombin and CEA, respectively. Owing to a one step proximity dependent complex formation, this technique is simple and can be completed within 40 min, making it a promising candidate for point-of-care testing applications.
Collapse
Affiliation(s)
- Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 221004, Xuzhou, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Xiaoqing Wen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Qianli Tang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China.
| | - Hengliang Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
19
|
Development of a lateral flow test strip for simultaneous detection of BT-Cry1Ab, BT-Cry1Ac and CP4 EPSPS proteins in genetically modified crops. Food Chem 2020; 335:127627. [PMID: 32738534 DOI: 10.1016/j.foodchem.2020.127627] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 11/24/2022]
Abstract
A colloidal gold immunochromatographic strip (ICS) for simultaneous detection of multiple transgenic proteins, including CP4 EPSPS, BT-Cry1Ab and BT-Cry1Ac, was developed in this study. The sensitivity of the strip to the target protein was 5 ng/mL for CP4 EPSPS, 100 ng/mL for BT-Cry1Ab and Cry1Ac, respectively. Parallel analysis for maize, soybean, sugar beet and cotton showed the strip could detect 1% of transgenic content in crops containing BT-Cry1Ab and Cry1Ac, and, at least, 0.1% of content in crops containing CP4 EPSPS. The detection results for seed samples indicated the multicomponent analysis ICS had good accuracy. The analysis could be completed within 10 min and had the advantages of being high-throughput, easy to operate and visual detection. This is the first report of semi-quantitative ICS for detecting three transgenic proteins simultaneously. The developed approach may provide insights into the development of ICS for analyzing simultaneously multiple components in genetically modified crops.
Collapse
|
20
|
Chen Z, Liu X, Liu D, Li F, Wang L, Liu S. Ultrasensitive Electrochemical DNA Biosensor Fabrication by Coupling an Integral Multifunctional Zirconia-Reduced Graphene Oxide-Thionine Nanocomposite and Exonuclease I-Assisted Cleavage. Front Chem 2020; 8:521. [PMID: 32733846 PMCID: PMC7363972 DOI: 10.3389/fchem.2020.00521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022] Open
Abstract
In this work, a simple but sensitive electrochemical DNA biosensor for nucleic acid detection was developed by taking advantage of exonuclease (Exo) I-assisted cleavage for background reduction and zirconia-reduced graphene oxide-thionine (ZrO2-rGO-Thi) nanocomposite for integral DNA recognition, signal amplification, and reporting. The ZrO2-rGO nanocomposite was obtained by a one-step hydrothermal synthesis method. Then, thionine was adsorbed onto the rGO surface, via π-π stacking, as an excellent electrochemical probe. The biosensor fabrication is very simple, with probe DNA immobilization and hybridization recognition with the target nucleic acid. Then, the ZrO2-rGO-Thi nanocomposite was captured onto an electrode via the multicoordinative interaction of ZrO2 with the phosphate group on the DNA skeleton. The adsorbed abundant thionine molecules onto the ZrO2-rGO nanocomposite facilitated an amplified electrochemical response related with the target DNA. Since upon the interaction of the ZrO2-rGO-Thi nanocomposite with the probe DNA an immobilized electrode may also occur, an Exo I-assisted cleavage was combined to remove the unhybridized probe DNA for background reduction. With the current proposed strategy, the target DNA related with P53 gene could be sensitively assayed, with a wide linear detection range from 100 fM to 10 nM and an attractive low detection limit of 24 fM. Also, the developed DNA biosensor could differentiate the mismatched targets from complementary target DNA. Therefore, it offers a simple but effective biosensor fabrication strategy and is anticipated to show potential for applications in bioanalysis and medical diagnosis.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xueqian Liu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Dengren Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Fang Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Li Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Shufeng Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
21
|
Cho IH, Kim DH, Park S. Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res 2020; 24:6. [PMID: 32042441 PMCID: PMC7001310 DOI: 10.1186/s40824-019-0181-y] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/29/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The electrochemical biosensor is one of the typical sensing devices based on transducing the biochemical events to electrical signals. In this type of sensor, an electrode is a key component that is employed as a solid support for immobilization of biomolecules and electron movement. Thanks to numerous nanomaterials that possess the large surface area, synergic effects are enabled by improving loading capacity and the mass transport of reactants for achieving high performance in terms of analytical sensitivity. MAIN BODY We categorized the current electrochemical biosensors into two groups, carbon-based (carbon nanotubes and graphene) and non-carbon-based nanomaterials (metallic and silica nanoparticles, nanowire, and indium tin oxide, organic materials). The carbon allotropes can be employed as an electrode and supporting scaffolds due to their large active surface area as well as an effective electron transfer rate. We also discussed the non-carbon nanomaterials that are used as alternative supporting components of the electrode for improving the electrochemical properties of biosensors. CONCLUSION Although several functional nanomaterials have provided the innovative solid substrate for high performances, developing on-site version of biosensor that meets enough sensitivity along with high reproducibility still remains a challenge. In particular, the matrix interference from real samples which seriously affects the biomolecular interaction still remains the most critical issues that need to be solved for practical aspect in the electrochemical biosensor.
Collapse
Affiliation(s)
- Il-Hoon Cho
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, 13135 Republic of Korea
| | - Dong Hyung Kim
- Division of Advanced Instrumentation Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113 Republic of Korea
| | - Sangsoo Park
- Department of Biomedical Engineering, College of Health Science, Eulji University, Seongnam, 13135 Republic of Korea
| |
Collapse
|
22
|
Song Z, Ma Y, Ye J. Preparation of stable black phosphorus nanosheets and their electrochemical catalytic study. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Ding C, Wang X, Luo X. Dual-Mode Electrochemical Assay of Prostate-Specific Antigen Based on Antifouling Peptides Functionalized with Electrochemical Probes and Internal References. Anal Chem 2019; 91:15846-15852. [PMID: 31736309 DOI: 10.1021/acs.analchem.9b04206] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sensitive and selective detection of target analytes in complex biological samples is currently a major challenge. Herein we constructed a dual-mode antifouling electrochemical sensing platform for the detection of prostate-specific antigen (PSA) based on two kinds of antifouling peptides functionalized with a graphene oxide-Fe3O4-thionine (GO-Fe3O4-Thi) probe and internal reference ferrocene (Fc), respectively. The longer peptide (Pep1) modified with the GO-Fe3O4-Thi probe was designed to contain a peptide sequence (HSSKLQK) capable of being recognized and cut by PSA. The GO-Fe3O4-Thi probe functions not only as a peroxidase mimick (GO-Fe3O4) but also works as an electrochemical probe due to the presence of thionine (Thi). The concentration of PSA can be measured through both the increase of differential pulse voltammetry (DPV) signal change of Thi and the decrease of chronoamperometry (CA) signal of the reduction of H2O2 electrocatalyzed by GO-Fe3O4. The shorter peptide (Pep2) was tagged with Fc, whose DPV signal remained constant and was independent of the presence of PSA, and it was used as an internal reference to ensure the reliability and accuracy of the measurement. The dual-mode PSA sensor exhibits a wide linear range from 5 pg/mL to 10 ng/mL, with low detection limits of 0.76 and 0.42 pg/mL through DPV and CA modes, respectively. More importantly, owing to the antifouling capability of the designed peptides, the biosensor performances remained operable even in human serum, indicating feasibility of the electrochemical biosensor for practical PSA quantification in complex samples.
Collapse
Affiliation(s)
- Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P.R. China
| | - Xinyan Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P.R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P.R. China
| |
Collapse
|
24
|
Zhou Q, Li G, Chen K, Yang H, Yang M, Zhang Y, Wan Y, Shen Y, Zhang Y. Simultaneous Unlocking Optoelectronic and Interfacial Properties of C60 for Ultrasensitive Immunosensing by Coupling to Metal–Organic Framework. Anal Chem 2019; 92:983-990. [DOI: 10.1021/acs.analchem.9b03915] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Qing Zhou
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai 201203, China
| | - Kaiyang Chen
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Mengran Yang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yuye Zhang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai 201203, China
| | - Yanfei Shen
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| |
Collapse
|
25
|
Han Z, Tang Z, Jiang K, Huang Q, Meng J, Nie D, Zhao Z. Dual-target electrochemical aptasensor based on co-reduced molybdenum disulfide and Au NPs (rMoS 2-Au) for multiplex detection of mycotoxins. Biosens Bioelectron 2019; 150:111894. [PMID: 31761484 DOI: 10.1016/j.bios.2019.111894] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
Multiple mycotoxin contamination has posed health risks in the area of food safety. In this study, co-reduced molybdenum disulfide and gold nanoparticles (rMoS2-Au) were designed and used for the first time as an efficient platform endowing electrochemical electrodes with superior electron transfer rates, large surface areas and strong abilities to firmly couple with large amounts of different aptamers. After further modification with thionine (Thi) and 6-(Ferrocenyl) hexanethiol (FC6S), a platform enabling sensitive, selective and simultaneous determination of two important mycotoxins, zearalenone (ZEN) and fumonisin B1 (FB1), was achieved. The established aptasensor showed excellent linear relationships (R2 > 0.99) when ZEN and FB1 concentrations were in the range of 1 × 10-3-10 ng mL-1 and 1 × 10-3-1 × 102 ng mL-1, respectively. High sensitivity of ZEN and FB1 with a limit of detection as low as 5 × 10-4 ng mL-1 was obtained with excellent selectivity and stability. The effectiveness of the aptasensor was verified in real maize samples, and satisfactory recoveries were attained. The established platform could be easily expanded to other aptamer-based multiplex screening protocols in biochemical research and clinical diagnosis.
Collapse
Affiliation(s)
- Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Zhanmin Tang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Keqiu Jiang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
26
|
Ghafary Z, Hallaj R, Salimi A, Akhtari K. A Novel Immunosensing Method Based on the Capture and Enzymatic Release of Sandwich-Type Covalently Conjugated Thionine-Gold Nanoparticles as a New Fluorescence Label Used for Ultrasensitive Detection of Hepatitis B Virus Surface Antigen. ACS OMEGA 2019; 4:15323-15336. [PMID: 31572831 PMCID: PMC6761744 DOI: 10.1021/acsomega.9b00713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/22/2019] [Indexed: 05/05/2023]
Abstract
A novel ultrasensitive and simple amplified immunosensing strategy is designed based on a surface-enhanced fluorescence (SEF) nanohybrid made from covalently conjugated thionine-gold nanoparticles (GNP-Th), as a novel amplified fluorescence label, and magnetic nanoparticles (MNPs), as a biological carrier, used for hepatitis B virus surface antigen (HBsAg) detection. This immunosensing strategy operates on the basis of the capture and then release of the amplified fluorescence label. Capturing of the antiHBs-antibody (Ab)-modified GNP-thionine hybrid (GNP-Th-Ab) is carried out through the formation of a two-dimensional (sandwich) probe between this amplified label and antiHBs-antibody-modified magnetic nanoparticles (MNP-Ab), in the presence of a target antigen and using an external magnetic force. Afterward, releasing of the captured fluorescence label is performed using a protease enzyme (pepsin) by a digestion mechanism of grafted antibodies on the GNP-thionine hybrid. As a result of antibody digestion, the amplified fluorescent hybrids (labels) are released into the solution. To understand the mechanism of enhanced fluorescence, the nature of the interaction between thionine and gold nanoparticles is studied using the B3LYP density functional method. In such a methodology, several new mechanisms and structures are used simultaneously, including a SEF-based metal nanoparticle-organic dye hybrid, dual signal amplification in a two-dimensional probe between the GNP-thionine hybrid and MNPs, and a novel releasing method using protease enzymes. These factors improve the sensitivity and speed, along with the simplicity of the procedure. Under optimal conditions, the fluorescence signal increases with the increment of HBs antigen concentration in the linear dynamic range of 4.6 × 10-9 to 0.012 ng/mL with a detection limit (LOD) of 4.6 × 10-9 ng/mL. The proposed immunosensor has great potential in developing ultrasensitive and rapid diagnostic platforms.
Collapse
Affiliation(s)
- Zhaleh Ghafary
- Department of Chemistry, Nanotechnology Research Center, and Department of
Physics, University of Kurdistan, P.O. Box 416, Sanandaj 6617715175, Iran
| | - Rahman Hallaj
- Department of Chemistry, Nanotechnology Research Center, and Department of
Physics, University of Kurdistan, P.O. Box 416, Sanandaj 6617715175, Iran
| | - Abdollah Salimi
- Department of Chemistry, Nanotechnology Research Center, and Department of
Physics, University of Kurdistan, P.O. Box 416, Sanandaj 6617715175, Iran
| | - Keivan Akhtari
- Department of Chemistry, Nanotechnology Research Center, and Department of
Physics, University of Kurdistan, P.O. Box 416, Sanandaj 6617715175, Iran
| |
Collapse
|
27
|
Dong P, Zhu L, Huang J, Ren J, Lei J. Electrocatalysis of cerium metal-organic frameworks for ratiometric electrochemical detection of telomerase activity. Biosens Bioelectron 2019; 138:111313. [PMID: 31108380 DOI: 10.1016/j.bios.2019.05.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 01/13/2023]
Abstract
A ratiometric electrochemical biosensor was constructed to detect telomerase activity based on electrocatalysis of cerium-based metal-organic frameworks (CeMOFs) and conformation switch of hairpin DNA. First, the CeMOFs were synthesized using Ce as nodes and 1,3,5-benzenetricarboxylic acid as linker in a green method, and then functionalized with gold nanoparticles. The resulted Au@CeMOF tags demonstrated an excellent electrocatalysis toward hydroquinone oxidation. Meanwhile, a methylene blue (MB) modified hairpin probe was designed with telomerase primer (TP) hybridized "stem" and immobilized on the electrode surface via Au-S chemistry. In the presence of the dNTPs and telomerase, the extended TP can open the hairpin DNA and keep the MB away from the electrode surface, resulting in a decrease of electrochemical signal. In the meantime, the TP-extended part could capture the Au@CeMOF-cDNA tags on the electrode surface via hybridization, leading to the increase electrochemical signal of hydroquinone oxidation catalyzed by Au@CeMOF-cDNA tags. Thus, a ratiometric signal output mode was developed for the electrochemical detection of telomerase activity. This biosensor showed wide dynamic correlation of telomerase activity from 2 × 102 to 2 × 106 cells mL-1 with the limit of detection of 27 cells mL-1, and was applied to evaluate telomerase activity in single cell. The ratiometric electrochemical strategy based on the catalysis of MOFs provides a new avenue on signal transduction in telomerase detection.
Collapse
Affiliation(s)
- Pengfei Dong
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Longyi Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jujie Ren
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China.
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
28
|
Huang Q, Zhao Z, Nie D, Jiang K, Guo W, Fan K, Zhang Z, Meng J, Wu Y, Han Z. Molecularly Imprinted Poly(thionine)-Based Electrochemical Sensing Platform for Fast and Selective Ultratrace Determination of Patulin. Anal Chem 2019; 91:4116-4123. [PMID: 30793880 DOI: 10.1021/acs.analchem.8b05791] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An innovative approach based on a surface functional monomer-directing strategy for the construction of a sensitive and selective molecularly imprinted electrochemical sensor for patulin recognition is described. A patulin imprinted platinum nanoparticle (PtNP)-coated poly(thionine) film was grown on a preformed thionine tailed surface of PtNP-nitrogen-doped graphene (NGE) by electropolymerization, which provided high capacity and fast kinetics to uptake patulin molecules. Thionine acted not only as a functional monomer for molecularly imprinted polymer (MIP), but also as a signal indicator. Enhanced sensitivity was obtained by combining the excellent electric conductivity of PtNPs, NGE, and thionine with multisignal amplification. The designed sensor displayed excellent performance for patulin detection over the range of 0.002-2 ng mL-1 (R2 = 0.995) with a detection limit of 0.001 ng mL-1 for patulin. In addition, the resulting sensor showed good stability and high repeatability and selectivity. Furthermore, the feasibility of its applications has also been demonstrated in the analysis of real samples, providing novel tactics for the rational design of MIP-based electrochemical sensors to detect a growing number of deleterious substances.
Collapse
Affiliation(s)
- Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China.,College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , P. R. China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China
| | - Keqiu Jiang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China.,College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , P. R. China
| | - Wenbo Guo
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China
| | - Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China
| | - Zhiqi Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China
| | - Yongjiang Wu
- College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , P. R. China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China
| |
Collapse
|
29
|
Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 2019; 9:8778-8881. [PMID: 35517682 PMCID: PMC9062009 DOI: 10.1039/c8ra09577a] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Biosensors with high sensitivity, selectivity and a low limit of detection, reaching nano/picomolar concentrations of biomolecules, are important to the medical sciences and healthcare industry for evaluating physiological and metabolic parameters.
Collapse
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física
- Benemérita Universidad Autónoma de Puebla
- Puebla 72570
- Mexico
| | - Eric Singh
- Department of Computer Science
- Stanford University
- Stanford
- USA
| | - Pragya Singh
- Department of Electrical Engineering and Computer Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Meyya Meyyappan
- Center for Nanotechnology
- NASA Ames Research Center
- Moffett Field
- Mountain View
- USA
| | | |
Collapse
|
30
|
Fang Y, Li Y, Zhang M, Cui B, Hu Q, Wang L. A novel electrochemical strategy based on porous 3D graphene-starch architecture and silver deposition for ultrasensitive detection of neuron-specific enolase. Analyst 2019; 144:2186-2194. [DOI: 10.1039/c8an02230e] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This work was aimed at designing a novel and ultrasensitive electrochemical immunoassay strategy to detect neuron-specific enolase (NSE) with a triple signal amplification strategy.
Collapse
Affiliation(s)
- Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan
- China
| | - Yanping Li
- School of Food Science and Engineering
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan 250353
- China
| | - Ming Zhang
- School of Food Science and Engineering
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan 250353
- China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan
- China
| | - Qiong Hu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| |
Collapse
|
31
|
Fu X, Wang Y, Liu Y, Liu H, Fu L, Wen J, Li J, Wei P, Chen L. A graphene oxide/gold nanoparticle-based amplification method for SERS immunoassay of cardiac troponin I. Analyst 2019; 144:1582-1589. [DOI: 10.1039/c8an02022a] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A multiple signal amplification of a SERS biosensor was developed for sensitive detection of cTnI with the aid of GO/AuNP complexes.
Collapse
Affiliation(s)
- Xiuli Fu
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Yunqing Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Yongming Liu
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Huitao Liu
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Longwen Fu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Jiahui Wen
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Jingwen Li
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Peihai Wei
- School of Chemistry and Chemical Engineering
- Qilu Normal University
- Jinan 250013
- China
| | - Lingxin Chen
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
| |
Collapse
|
32
|
Chen Z, Liu Y, Hao L, Zhu Z, Li F, Liu S. Reduced Graphene Oxide-Zirconium Dioxide–Thionine Nanocomposite Integrating Recognition, Amplification, and Signaling for an Electrochemical Assay of Protein Kinase Activity and Inhibitor Screening. ACS APPLIED BIO MATERIALS 2018; 1:1557-1565. [DOI: 10.1021/acsabm.8b00451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiqiang Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Ying Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Lijie Hao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Zhencai Zhu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Fang Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Shufeng Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| |
Collapse
|
33
|
Liu X, Wang D, Chu J, Xu Y, Wang W. Sandwich pair nanobodies, a potential tool for electrochemical immunosensing serum prostate-specific antigen with preferable specificity. J Pharm Biomed Anal 2018; 158:361-369. [PMID: 29935325 DOI: 10.1016/j.jpba.2018.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023]
Abstract
Prostate-Specific Antigen (PSA) is a crucial biomarker for screening prostate cancer, but a sensitive and selective immunosensor for rapid quantification of serum PSA remains to be developed. In this study, a sandwich pair of nanobodies (Nbs) (i.e., Nb2 and Nb40) against PSA surface antigen was obtained from an alpaca-derived immune phage display library. A sandwich-type immunosensor for the sensitive and selective detection of PSA in serum samples was ingeniously designed based on the pair of Nbs. The small size of Nb40 allowed high capture densities on the surface of reduced graphene oxide (rGO) nanocomposed with massive Au nanoparticles (rGO@AuNPs), which significantly improved the conductivity and provided a large area to anchor many primary antibodies. The secondary antibody Nb2 fused with streptavidin -binding peptide (SBP) cooperated with Nb40 for PSA sandwiching. Accompanying introduction of horseradish peroxidase-streptavidin (HRP-SA) coupled with Nb2-SBP, the faradaic current was linearly correlated with the logarithm of PSA concentration in a range of 0.1-100 ng mL-1. More importantly, this immunosensor exhibited excellent selectivity, stability, and reproducibility due to the sandwich pair Nbs. The proposed immunosensor was successfully applied in determining PSA in serum samples and could be used for the sensitive and specific detection of PSA.
Collapse
Affiliation(s)
- Xin Liu
- Key Lab for Agro-Product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dan Wang
- Key Lab for Agro-Product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinshen Chu
- Department of Clinical Laboratory, Jiujiang NO.1 People's Hospital, Jiujiang 332000, China
| | - Yang Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenjun Wang
- Key Lab for Agro-Product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
34
|
Hu H, Pan D, Xue H, Zhang M, Zhang Y, Shen Y. A photoelectrochemical immunoassay for tumor necrosis factor-α using a GO-PTCNH2 nanohybrid as a probe. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.07.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Liu X, Wang D, Chu J, Xu Y, Wang W. Sandwich pair nanobodies, a potential tool for electrochemical immunosensing serum prostate-specific antigen with preferable specificity. J Pharm Biomed Anal 2018. [DOI: https://doi.org/10.1016/j.jpba.2018.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Zhou Q, Xue H, Zhang Y, Lv Y, Li H, Liu S, Shen Y, Zhang Y. Metal-Free All-Carbon Nanohybrid for Ultrasensitive Photoelectrochemical Immunosensing of alpha-Fetoprotein. ACS Sens 2018; 3:1385-1391. [PMID: 29972020 DOI: 10.1021/acssensors.8b00307] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
C60 can accept up to six electrons reversibly and show exceptional light absorption over the entire UV-vis spectrum, making it a potential photoactive probe for photoelectrochemical (PEC) bioassay. However, few successful works have been reported to apply fullerenes in PEC biosensing, partially because of the low electronic conductivity and poor interfacial interactions with targeted biomolecules. Herein, we report the addressing of these two obstacles by coupling high conductive graphite flake (Gr), graphene oxide (GO) with sufficient oxygen-containing functional groups, and an alkylated C60 (AC60) into a metal-free all-carbon nanohybrid (AC60-Gr-GO) via harnessing delicate noncovalent interactions among them through a facile mechanical grinding. It was revealed that the as-obtained AC60-Gr-GO nanohybrid not only showed conspicuous enhancement of photocurrent up to 35 times but also offered rich anchors for bioconjugation. With detection of alpha-fetoprotein as an example, the AC60-Gr-GO based PEC immunosensor demonstrated a broad linear detection range (1 pg·mL-1 to 100 ng·mL-1) and a detection limit as low as 0.54 pg·mL-1, superior/competitive to PEC immunosensors for AFP in previous reports. By a proper reinforcement in conductivity and biointerface engineering, this work may provide a new way to use fullerenes as photoactive materials in more general PEC biosensing.
Collapse
Affiliation(s)
- Qing Zhou
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Huaijia Xue
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yuye Zhang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yanqin Lv
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Hongguang Li
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Songqin Liu
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yanfei Shen
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| |
Collapse
|
37
|
Pan D, Li G, Hu H, Xue H, Zhang M, Zhu M, Gong X, Zhang Y, Wan Y, Shen Y. Direct Immunoassay for Facile and Sensitive Detection of Small Molecule Aflatoxin B 1 based on Nanobody. Chemistry 2018; 24:9869-9876. [PMID: 29766584 DOI: 10.1002/chem.201801202] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/14/2018] [Indexed: 01/07/2023]
Abstract
Aflatoxin B1 (AFB1 ), one of the most toxic mycotoxins, is classified as a group I carcinogen and ubiquitous in various foods and agriproducts. Thus, accurate and sensitive determination of AFB1 is of great significance to meet the criteria of food safety. Direct detection of AFB1 is difficult by monoclonal antibody (mAb) with large molecular size (≈150 kD) since the target is too small to produce a detectable signal change. Herein, by combining the electrochemical properties of nanomaterials and the advantages of nanobodies, we developed a direct, highly selective and sensitive electrochemical immunosensor for small molecule detection. The proposed immunosensor had a wide calibration range of 0.01 to 100 ng mL-1 and a low detection limit of 3.3 pg mL-1 (S/N=3). Compared with the immunosensor prepared with mAb which was applied in the typical indirect immunoassay, the immunosensor in this work possessed two orders of magnitudes wider linear range and 10-fold more sensitivity. The as-obtained immunosensor was further successfully applied for sensing AFB1 in real samples. This proposed assay would provide a simple, highly sensitive and selective approach for the direct immunoassay of small molecule AFB1 , and is extendable to the development of direct immunosensing systems for other small molecules detection by coupling nanocarbon and nanobody.
Collapse
Affiliation(s)
- Deng Pan
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, 210009, Nanjing, China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd., 201203, Shanghai, China
| | - Huizhen Hu
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, 210009, Nanjing, China
| | - Huaijia Xue
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, 210009, Nanjing, China
| | - Mingming Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, 210009, Nanjing, China
| | - Min Zhu
- Shanghai Novamab Biopharmaceuticals Co., Ltd., 201203, Shanghai, China
| | - Xue Gong
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, 210009, Nanjing, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, 210009, Nanjing, China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd., 201203, Shanghai, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, 210009, Nanjing, China
| |
Collapse
|
38
|
Ma J, Song L, Shi H, Yang H, Ye W, Guo X, Luan S, Yin J. Development of hierarchical Fe 3O 4 magnetic microspheres as solid substrates for high sensitive immunoassays. J Mater Chem B 2018; 6:3762-3769. [PMID: 32254838 DOI: 10.1039/c8tb00846a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improving the detection sensitivity of enzyme linked immunosorbent assay (ELISA) is of the utmost importance for meeting the demand of early disease diagnosis. In this work, a sensitive solid substrate for ELISA, i.e., hierarchical iron oxide magnetic microspheres, Fe3O4@mSiO2@poly[poly(ethylene glycol) methacrylate-co-glycidyl methacrylate], was developed via a novel surface-initiated photoiniferter-mediated polymerization (SI-PIMP) strategy. The magnetic microspheres consist of a magnetic Fe3O4 core that gives a high magnetic response, a 3D backbone, a mesoporous SiO2 middle layer, that facilitates microsphere stability and provides anchoring sites, and polymer brushes, that serve as an antifouling and oriented antibody immobilization layer. As a result, the as-prepared microspheres possess a high antibody loading capacity, an enhanced detection signal and a dramatically improved sensitivity, resulting in a 25-fold improvement over conventional ELISA solid substrates.
Collapse
Affiliation(s)
- Jiao Ma
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Liang J, Zhang Z, Zhao H, Wan S, Zhai X, Zhou J, Liang R, Deng Q, Wu Y, Lin G. Simple and rapid monitoring of doxorubicin using streptavidin-modified microparticle-based time-resolved fluorescence immunoassay. RSC Adv 2018; 8:15621-15631. [PMID: 35539486 PMCID: PMC9080157 DOI: 10.1039/c8ra01807c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
Developing a simple analytical method suitable for therapeutic drug monitoring in a clinical setting is key to establishing guidelines on accurate dose administration and the advancement of precision medicine. We devised a simple rapid analytical method through the combination of streptavidin-modified microparticles and a time-resolved fluorescence immunoassay for therapeutic drug monitoring. The analytical performance of this method was investigated and validated using clinical samples. By determination of doxorubicin concentration, the proposed assay has shown a satisfactory linear range of detection (3.8-3000 ng mL-1) with a limit of detection of 3.8 ng mL-1 and an IC50 of 903.9 ng mL-1. The intra and inter-assay coefficients of variation were 4.12-5.72% and 5.48-6.91%, respectively, and the recovery was acceptable. The applicability of the proposed assay was assessed by comparing the determined results with those measured by LC-MS/MS, presenting a satisfactory correlation (R 2 = 0.9868). The proposed assay, which shows satisfactory analytical performance, has great potential for application in the field of TDM in the future.
Collapse
Affiliation(s)
- Junyu Liang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University Guangzhou China +86-20-37247604 +86-20-62789355
| | - Zhigao Zhang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University Guangzhou China +86-20-37247604 +86-20-62789355
| | - Hui Zhao
- Department of Plastic and Aesthetic Surgery, Third Affiliated Hospital, Sun Yat-Sen University Guangzhou China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University Guangzhou China
| | - Xiangming Zhai
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University Guangzhou China +86-20-37247604 +86-20-62789355
| | - Jianwei Zhou
- Guangzhou Darui Biotechnology Co. LTD Guangzhou China
| | - Rongliang Liang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University Guangzhou China +86-20-37247604 +86-20-62789355
| | - Qiaoting Deng
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University Guangzhou China +86-20-37247604 +86-20-62789355
| | - Yingsong Wu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University Guangzhou China +86-20-37247604 +86-20-62789355
| | - Guanfeng Lin
- Experimental Center of Teaching and Scientific Research, School of Laboratory Medicine and Biotechnology, Southern Medical University Guangzhou China +86-20-37247604 +86-20-62789356
| |
Collapse
|
40
|
Zhang M, Li G, Zhou Q, Pan D, Zhu M, Xiao R, Zhang Y, Wu G, Wan Y, Shen Y. Boosted Electrochemical Immunosensing of Genetically Modified Crop Markers Using Nanobody and Mesoporous Carbon. ACS Sens 2018; 3:684-691. [PMID: 29457451 DOI: 10.1021/acssensors.8b00011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The problems of environmental security and the potential risks of human health caused by transgenic crops have attracted much attention. Recent studies reveal 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium sp. strain CP4 protein (CP4-EPSPS), which shows very high resistance to herbicide glyphosate, is a typical biomarker of genetically modified (GM) crops. For this reason, it is highly anticipated to devise a sensitive and convenient strategy to detect CP4-EPSPS protein in crops. Herein, we report a simple electrochemical immunosensor by coupling nanobody, ordered mesoporous carbon (OMC), and thionine (Th). As a capture agent, the nanobody was screened out from an immunized Bactrian camel, and exhibited superior properties with respect to conventional antibody, such as higher stability and stronger heat resistance. Moreover, OMC offered an effective platform with high surface area, electrical conductivity, and biocompatibility, which greatly facilitated the assembly of redox probe Th, and further coupling of large amount of capture nanobodies. As a result, the CP4-EPSPS protein could be determined with high sensitivity and efficiency by differential pulse voltammetry (DPV) in a wide linear range from 0.001 to 100 ng·mL-1 with a low detection limit of 0.72 pg·mL-1, which was more than 3 orders of magnitude lower than those of previously reported works. As an example, the proposed electrochemical immunosensor was successfully applied to spiked samples, demonstrating its great potential in CP4-EPSPS screening and detection.
Collapse
Affiliation(s)
- Mingming Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 210009, China
- Center of Clinical Laboratory Medicine of Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai 201203, China
| | - Qing Zhou
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 210009, China
| | - Deng Pan
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 210009, China
| | - Min Zhu
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai 201203, China
| | - Runyu Xiao
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 210009, China
| | - Guoqiu Wu
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 210009, China
- Center of Clinical Laboratory Medicine of Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai 201203, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
41
|
Zhong W, Li G, Yu X, Zhu M, Gong L, Wan Y. Sensitive detection of Bacillus thuringiensis Cry1B toxin based on camel single-domain antibodies. Microbiologyopen 2018; 7:e00581. [PMID: 29476614 PMCID: PMC6079177 DOI: 10.1002/mbo3.581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/08/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Bt Cry1B toxin, a residue in insect-resistant transgenic plants, has been identified to be harmful to human health. Therefore, it is urgent to detect the Cry1B toxin level in each kind of transgenic plant. Nbs, with prominently unique physiochemical properties, are becoming more and more promising tools in the detection of target antigens. In this study, an immune phage display library that was of high quality was successfully constructed for the screening of Cry1B-specific Nbs with excellent specificity, affinity, and thermostable. Subsequently, a novel sandwich ELISA for Cry1B detection was established, which was based on the biotin-streptavidin system using these aforementioned Nbs. This established detection system presented a linear working range from 5 to 1000 ng ml-1 and a low detection limit of 3.46 ng ml-1 . The recoveries from spiked samples were in the range of 82.51%-113.56% with a relative standard deviation (RSD) lower than 5.00%. Taken together, the proposed sandwich ELISA would be a potential method for the detection of Cry1B toxin in transgenic Bt plants specifically and sensitively.
Collapse
Affiliation(s)
- Wenjing Zhong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guanghui Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| | - Xiaolu Yu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| | - Min Zhu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| | - Likun Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| | - Yakun Wan
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
42
|
Farzin L, Sadjadi S, Shamsipur M, Chabok A, Sheibani S. A sandwich-type electrochemical aptasensor for determination of MUC 1 tumor marker based on PSMA-capped PFBT dots platform and high conductive rGO-N′,N′ -dihydroxymalonimidamide/thionine nanocomposite as a signal tag. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Chang WC, Cheng SC, Chiang WH, Liao JL, Ho RM, Hsiao TC, Tsai DH. Quantifying Surface Area of Nanosheet Graphene Oxide Colloid Using a Gas-Phase Electrostatic Approach. Anal Chem 2017; 89:12217-12222. [PMID: 29086566 DOI: 10.1021/acs.analchem.7b02969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We demonstrate a new, facile gas-phase electrostatic approach to successfully quantify equivalent surface area of graphene oxide (GO) colloid on a number basis. Mobility diameter (dp,m)-based distribution and the corresponding equivalent surface area (SA) of GO colloids (i.e., with different lateral aspect ratios) were able to be identified by electrospray-differential mobility analysis (ES-DMA) coupled to a condensation particle counter (CPC) and an aerosol surface area analyzer (ASAA). A correlation of SA ∝ dp,m2.0 was established using the ES-DMA-CPC/ASAA, which is consistent with the observation by the 2-dimensional image analysis of size-selected GOs. An ultrafast surface area measurement of GO colloid was achieved via a direct coupling of ES with a combination of ASAA and CPC (i.e., measurement time was 2 min per sample; without size classification). The measured equivalent surface area of GO was ∼202 ± 7 m2 g-1, which is comparable to Brunauer-Emmett-Teller (BET) surface area, ∼240 ± 59 m2 g-1. The gas-phase electrostatic approach proposed in this study has the superior advantages of being fast, requiring no elaborate drying process, and requiring only a very small amount of sample (i.e., <0.01 mg). To the best of our knowledge, this is the first study of using an aerosol-based electrostatic coupling technique to obtain the equivalent surface area of graphene oxide on a number basis with a high precision of measurement.
Collapse
Affiliation(s)
- Wei-Chang Chang
- Department of Chemical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan, Republic of China
| | - Shiuh-Cherng Cheng
- Department of Chemical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan, Republic of China
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology , Taipei 10607, Taiwan, Republic of China
| | - Jia-Liang Liao
- Department of Chemical Engineering, National Taiwan University of Science and Technology , Taipei 10607, Taiwan, Republic of China
| | - Rong-Ming Ho
- Department of Chemical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan, Republic of China
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Central University , Zhoung-Li 32001, Taiwan, Republic of China
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan, Republic of China
| |
Collapse
|
44
|
Dong XX, Yuan LP, Liu YX, Wu MF, Liu B, Sun YM, Shen YD, Xu ZL. Development of a progesterone immunosensor based on thionine-graphene oxide composites platforms: Improvement by biotin-streptavidin-amplified system. Talanta 2017; 170:502-508. [DOI: 10.1016/j.talanta.2017.04.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 01/06/2023]
|
45
|
Zheng YY, Li CX, Ding XT, Yang Q, Qi YM, Zhang HM, Qu LT. Detection of dopamine at graphene-ZIF-8 nanocomposite modified electrode. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
46
|
Site-saturation mutagenesis library construction and screening for specific broad-spectrum single-domain antibodies against multiple Cry1 toxins. Appl Microbiol Biotechnol 2017; 101:6071-6082. [DOI: 10.1007/s00253-017-8347-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
|
47
|
Li H, Zhu M, Wang S, Chen W, Liu Q, Qian J, Hao N, Wang K. Synergy effect of specific electrons and surface plasmonic resonance enhanced visible-light photoelectrochemical sensing for sensitive analysis of the CaMV 35S promoter. J Mater Chem B 2017; 5:8999-9005. [DOI: 10.1039/c7tb02265d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A Ag/TiO2/N-GNR ternary composite-based photoelectrochemical sensor for sensitive analysis of the CaMV 35S promoter.
Collapse
Affiliation(s)
- Henan Li
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Mingyue Zhu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Shanshan Wang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Wei Chen
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Qian Liu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Jing Qian
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Nan Hao
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
48
|
Han J, Zhang M, Chen G, Zhang Y, Wei Q, Zhuo Y, Xie G, Yuan R, Chen S. Ferrocene covalently confined in porous MOF as signal tag for highly sensitive electrochemical immunoassay of amyloid-β. J Mater Chem B 2017; 5:8330-8336. [DOI: 10.1039/c7tb02240a] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This work provides a universal strategy to attain precise modification of MOF signal tags for sensitive electrochemical detection of proteins.
Collapse
Affiliation(s)
- Jing Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| | - Mengfei Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| | - Guojun Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| | - Yongqing Zhang
- Respiratory Hospital
- Shaanxi Province People's Hospital
- Xi'an 710068
- China
| | - Qing Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| |
Collapse
|
49
|
Krzyszkowska E, Walkowiak-Kulikowska J, Stienen S, Wojcik A. Thionine–graphene oxide covalent hybrid and its interaction with light. Phys Chem Chem Phys 2017; 19:14412-14423. [DOI: 10.1039/c7cp01267e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quenching of the thionine singlet excited state in covalently functionalized graphene oxide with an efficient back electron transfer process.
Collapse
Affiliation(s)
| | | | - Sven Stienen
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Ion Beam Physics and Materials Research
- 01328 Dresden
- Germany
| | | |
Collapse
|
50
|
Affiliation(s)
- Wei Wen
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Xu Yan
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States.,Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan, Hubei 430079, P.R. China
| | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|