1
|
Skok A, Vishnikin A, Bazel Y, Toth J. Determination of Rhodamine 6G with direct immersion single-drop microextraction combined with an optical probe. PLoS One 2024; 19:e0309121. [PMID: 39159159 PMCID: PMC11332950 DOI: 10.1371/journal.pone.0309121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024] Open
Abstract
The combination of an optical probe and single-drop direct immersion microextraction (DI-SDME-OP) was used for the preconcentration and subsequent spectrophotometric determination of rhodamine 6G (Rh6G). The developed method is based on the formation of an ionic associate between Rh6G and picric acid at pH 3.0 and its extraction with amyl acetate. A microdrop of the organic phase was stably placed in the hole of an optical probe immersed in the sample solution. The absorbance of the extraction phase was monitored at 534 nm. The proposed method combines in a single step several stages of the analytical procedure, such as pre-concentration, phase separation, transfer of the extraction phase to the instrument and online measurement. The sensitivity of the proposed approach is not inferior to existing microextraction methods involving the combination of liquid-phase or solid-phase extraction with spectrophotometry or HPLC with a UV-Vis detector. The evaluation of the greenness of the developed method carried out by the AGREE method (0.58 points) showed that it outperforms other similar existing techniques using this parameter. The calibration plot for the determination of Rh6G by the DI-SDME-OP method was linear over the range of 10-500 nM with a correlation coefficient of 0.9956. The limit of detection was 3.4 nM. The accuracy and applicability of the method were evaluated by the determination of Rh6G in natural waters and lipstick.
Collapse
Affiliation(s)
- Arina Skok
- Department of Analytical Chemistry, Faculty of Chemistry, Oles Honchar Dnipro National University, Dnipro, Ukraine
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Andriy Vishnikin
- Department of Analytical Chemistry, Faculty of Chemistry, Oles Honchar Dnipro National University, Dnipro, Ukraine
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Ján Toth
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| |
Collapse
|
2
|
Skok A, Bazel Y, Vishnikin A, Toth J. Direct immersion single-drop microextraction combined with fluorescence detection using an optical probe. Application for highly sensitive determination of rhodamine 6G. Talanta 2024; 269:125511. [PMID: 38056415 DOI: 10.1016/j.talanta.2023.125511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
The use of an optical probe for fluorescence detection combined with direct immersion single-drop microextraction has been demonstrated as an innovative approach. The optical probe served both as a drop holder for extractant and as a measuring device which made it possible to eliminate the use of cuvettes. A laser and a light emitting diode (LED) were tested as possible light sources. Both of them showed comparable results. However, given the much smaller half-band width of the laser radiation, its use has proven to be preferable since background correction can be eliminated. Direct immersion single-drop microextraction of an ionic association complex of rhodamine 6G with picric acid with subsequent fluorescent detection (λex was 532 nm and 525 nm for laser and LED, respectively; λem was 560 nm for both laser and LED) was used a model system to evaluate the new approach. The extractant phase was a 55 μL amyl acetate microdrop fixed in the optical part of the probe. LOD, LOQ and linear calibration range were found as 0.14, 0.48 and 0.5-10 nmol L-1, and 0.15, 0.50 and 0.5-5 nmol L-1 for laser and LED light sources, respectively. The accuracy of the method was assessed by analyzing real water samples.
Collapse
Affiliation(s)
- Arina Skok
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic.
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic.
| | - Andriy Vishnikin
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic; Department of Analytical Chemistry, Faculty of Chemistry, Oles Honchar Dnipro National University, Gagarin Av. 72, 49010, Dnipro, Ukraine
| | - Ján Toth
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic; Department of Technical Disciplines in Health Care, Faculty of Health Care, University of Prešov, Prešov, Slovak Republic
| |
Collapse
|
3
|
Zhu J, Yu H, Chang C, Liang B, Li Q, Dai K, Jiang C. Background-Free and Reversible Upconversion Hydrogel Sensing Platform for Visual Monitoring of Sulfite. Anal Chem 2024; 96:2711-2718. [PMID: 38301229 DOI: 10.1021/acs.analchem.3c05711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Excessive sulfite usage in food and pharmaceutical production causes respiratory and neurological diseases, underscoring the need for a sensitive and rapid quantification strategy. The portable sensing platform based on a luminescent hydrogel sensor is a powerful tool for the on-site, real-time detection of sulfite ions. However, the lack of recyclability in almost all reaction-based hydrogel sensors increases the application cost. This study constructed a reversible and upconversion nanoprobe combining upconversion nanoparticles (UCNPs) and pararosaniline (PAR) for sulfite detection. The upconversion nanoprobe was further encapsulated in a three-dimensional polyacrylamide hydrogel matrix to create a background-free, reversible hydrogel sensor. The near-infrared excitation of UCNPs avoids the autofluorescence in the hydrogel and real samples. Meanwhile, PAR serves as a specific recognition unit for sulfite ions. After the addition of sulfites, a specific reaction occurs between PAR and sulfites, leading to the recovery of characteristic emission at 540 nm, achieving sensitive detection of sulfite ions. Importantly, this specific reaction is reversible under thermal treatment, allowing the hydrogel sensor to return to its initial state and thus enabling reversible detection of sulfite ions. Furthermore, a portable sensing platform is developed to realize point-of-care, real-time quantitative detection of sulfite ions. The proposed upconversion reversible hydrogel sensor provides a new sensing strategy for the detection of hazardous substances in food and offers new insights into the preparation of reversible, highly sensitive hydrogel sensors.
Collapse
Affiliation(s)
- Jiawei Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, China
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, China
| | - Hao Yu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, China
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, China
| | - Caidie Chang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, China
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, China
| | - Boyi Liang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, China
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, China
| | - Qiang Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, China
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, China
| | - Kai Dai
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, China
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, China
| | - Changlong Jiang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
4
|
Wang B, Pu S, Xia C, Hou X, Xu K. Enhancing peroxidase-like activity of AuNPs through headspace reaction: A signal amplification strategy for colorimetric and fluorescent sensing of trace Hg 2. Anal Chim Acta 2024; 1287:342132. [PMID: 38182354 DOI: 10.1016/j.aca.2023.342132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/24/2023] [Accepted: 12/09/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Recently, headspace single-drop microextraction (HS-SDME) has attracted some attention for developing sensitive and selective colorimetric assays due to its excellent capability to reduce matrix interference and enrich analytes. However, the single droplet limits direct visual observation of color change and its quantitative measurement suffers from reduced optical path length. Therefore, amplifying the detection signals in both volume and intensity is an important and challenging task for improving the sensitivity, stability, and accuracy of such colorimetric analysis. RESULTS In this study, a "headspace-nanoenzyme" (HS-NE) strategy was proposed that successfully addressed these challenges and enabled the colorimetric and fluorescent dual-mode detection of trace Hg2+. Atomic Hg0, generated via chemical vapor generation (CVG), underwent headspace reaction with AuNPs droplet to form Au@HgNPs, thus catalyzing the oxidation of o-phenylenediamine (OPD) in the presence of H2O2. The absorbance and fluorescence intensity of oxidized OPD were proportion to the concentration of Hg2+ in the sample solution. Due to the greatly enhanced peroxidase-like activity by Au@HgNPs, the limit of detection was as low as 0.98 nM and 0.21 nM for the colorimetric and fluorescent modes, respectively. The applicability of this assay was further demonstrated with determination of Hg2+ in real environmental and biological samples. Moreover, a convenient and cost-effective paper-based sensing platform was fabricated for rapid on-site detection of Hg2+. SIGNIFICANCE AND NOVELTY This novel HS-NE strategy combines HS-SDME and nanoenzyme-based sensing to achieve dual effects of eliminating matrix interference and amplifying the measurement signal, resulting in improved accuracy, enhanced stability, high sensitivity, and exceptional selectivity, with great potential for on-site determination of trace Hg2+.
Collapse
Affiliation(s)
- Bodong Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Shan Pu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Chengyan Xia
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Kailai Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
5
|
Conrado JAM, Araújo DAG, Petruci JFDS. Combination of headspace single-drop microextraction (HS-SDME) with a nickel-embedded paper-based analytical device for cyanide quantification. Anal Chim Acta 2023; 1281:341882. [PMID: 38783736 DOI: 10.1016/j.aca.2023.341882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Cyanide anion can be found in foodstuffs, tobacco smoke and a variety of types of waters, mainly originating from anthropogenic activities. Due to its highly toxic nature, several agencies have established limits for cyanide levels in water. Additionally, monitoring cyanide levels in biological samples, such as blood and urine, is crucial for obtaining clinical information about the health condition of patients. Therefore, there is a pressing need for the development of simple, cost-effective, and reliable analytical methods capable of quantifying cyanide at low concentrations. RESULTS This study presents a novel analytical method for the selective and sensitive determination of cyanide based on analyte volatilization, pre-concentration via single-drop microextraction (SDME) using a selective reagent, and colorimetric quantification using a paper-based analytical device. For this, 10 mL of a liquid sample was acidified with phosphoric acid and the generated HCN was collected using a single drop of 3 μL of a palladium dimethylglyoximate solution (Pd (DMG)22-) positioned in the flask headspace using a syringe. The reaction of Pd (DMG)22- leads to the formation of Pd(CN)42- and the demasking of the organic ligand. After 15 min of extraction time, the reagent drop was added to a paper-based analytical device that has been previously impregnated with 3 μL of nickel chloride, resulting in the formation of a red precipitate of nickel (II) dimethylglyoximate. Digital images of the paper-based device were captured and the red channel (R) was used for quantification purposes. Under optimized conditions, the method demonstrates a suitable linear relation (r2 > 0.99) ranging from 26 to 286 μg L-1 and a limit of detection of 5 μg L-1. SIGNIFICANCE As a proof of concept, cyanide levels were quantified in water and urine samples using this method. The proposed approach offers high sensitivity and selectivity while requiring only a small volume of reagents. Furthermore, it exhibits a high degree of portability for in-situ applications.
Collapse
Affiliation(s)
- Josiele A M Conrado
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, MG, 38408-902, Brazil
| | - Diele A G Araújo
- Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
6
|
JAGIRANI MS, SOYLAK M. Arsenic speciation by using emerging sample preparation techniques: a review. Turk J Chem 2023; 47:991-1006. [PMID: 38173749 PMCID: PMC10760823 DOI: 10.55730/1300-0527.3590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/31/2023] [Accepted: 06/23/2023] [Indexed: 01/05/2024] Open
Abstract
Arsenic is a hazardous element that causes environmental pollution. Due to its toxicological effects, it is crucial to quantify and minimize the hazardous impact on the ecology. Despite the significant advances in analytical techniques, sample preparation is still crucial for determining target analytes in complex matrices. Several factors affect the direct analysis, such as trace-level analysis, advanced regulatory requirements, complexity of sample matrices, and incompatible with analytical instrumentation. Along with the development in the sample preparation process, microextraction methods play an essential role in the sample preparation process. Microextraction techniques (METs) are the newest green approach that replaces traditional sample preparation and preconcentration methods. METs have minimized the limitation of conventional sample preparation methods while keeping all their benefits. METs improve extraction efficacy, are fast, automated, use less amount of solvents, and are suitable for the environment. Microextraction techniques with less solvent consumption, such as solid phase microextraction (SPME) solvent-free methods, and liquid phase microextraction (LPME), are widely used in modern analytical procedures. SPME development focuses on synthesizing new sorbents and applying online sample preparation, whereas LPME research investigates the utilization of new solvents.
Collapse
Affiliation(s)
- Muhammad Saqaf JAGIRANI
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri,
Turkiye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R.
China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, P. R.
China
- National Center of Excellence in Analytical Chemistry University of Sindh, Kayseri,
Turkiye
| | - Mustafa SOYLAK
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri,
Turkiye
- Technology Research and Application Center (ERUTAUM), Erciyes University, Kayseri,
Turkiye
- Turkish Academy of Sciences (TÜBA), Ankara,
Turkiye
| |
Collapse
|
7
|
Zhou J, Lin X, Zhao L, Huang K, Yang Q, Yu H, Xiong X. Headspace single drop microextraction based visual colorimetry for highly sensitive, selective and matrix interference-resistant determination of sulfur dioxide in food samples. Food Chem 2023; 426:136659. [PMID: 37356248 DOI: 10.1016/j.foodchem.2023.136659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Excessive intake of SO2, a widely-used food additive, is able to cause respiratory, cardiovascular and neurological disease. For effectively monitoring SO2 level, we have developed a headspace single drop microextraction based visual colorimetry for highly sensitive and selective sensing of SO2 with TMB (3,3',5,5'-tetramethylbenzidine) as a classic chromogenic reagent. A combination of single drop and headspace microextraction integrated merits of high extraction efficiency, low consumption of reagents and excellent matrix interference-resistant ability. The colorimetric principle was based on oxidation of TMB, and SO2 could compete with TMB to preferentially react with ·OH, resulting in the fading of color blue that could be easily read out by naked eye. LOD was calculated to be 0.53 μM and 5 μM by UV-vis and naked eye, respectively. The method was successfully utilized to analysis of food samples, and the experimental device was miniaturized and easy to construct, thus showing a promising potential in field analysis.
Collapse
Affiliation(s)
- Jie Zhou
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Xiaojie Lin
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Li Zhao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Qing Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Huimin Yu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Xiaoli Xiong
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| |
Collapse
|
8
|
Kannouma RE, Hammad MA, Kamal AH, Mansour FR. Miniaturization of Liquid-Liquid extraction; the barriers and the enablers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Skok A, Vishnikin A, Bazel Y. A new approach for sulfite determination by headspace liquid-phase microextraction with an optical probe. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3299-3306. [PMID: 35968635 DOI: 10.1039/d2ay00943a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A new approach of headspace liquid-phase microextraction with an optical probe (HS-LPME-OP), which solves the problem of the extraction phase retention in the hole of the optical probe and provides the possibility of simpler, more precise and reliable online processing of the analytical signal, was used for sulfite determination. A 1 × 10-4 M 5,5'-dithiobis-(2-nitrobenzoic) acid (DTNB) solution was used as an acceptor phase. It was placed in a plastic vial fixed in the headspace above the analyte solution. An optical probe immersed in the acceptor phase was used to monitor the analytical signal. Sulfite determination is based on the release of sulfur dioxide from the sample after the addition of ortho-phosphoric acid, followed by its extraction with an aqueous solution of DTNB at pH 7.0. The absorbance was measured at 412 nm. The calibration graph was linear in the range from 32 to 320 μg L-1 with a detection limit of 14 μg L-1. The developed method is sensitive, highly selective and reproducible. It was successfully applied for the sulfite determination in juice, alcoholic beverages and jam.
Collapse
Affiliation(s)
- Arina Skok
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, University of Pavol Jozef Šafárik in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic.
| | - Andriy Vishnikin
- Department of Analytical Chemistry, Oles Honchar Dnipro National University, Gagarin Avenue 72, 49010, Dnipro, Ukraine
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, University of Pavol Jozef Šafárik in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic.
| |
Collapse
|
10
|
Gu YX, Yan TC, Yue ZX, Liu FM, Cao J, Ye LH. Recent developments and applications in the microextraction and separation technology of harmful substances in a complex matrix. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Villarino N, Pena-Pereira F, Lavilla I, Bendicho C. Waterproof Cellulose-Based Substrates for In-Drop Plasmonic Colorimetric Sensing of Volatiles: Application to Acid-Labile Sulfide Determination in Waters. ACS Sens 2022; 7:839-848. [PMID: 35285629 PMCID: PMC8961881 DOI: 10.1021/acssensors.1c02585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/04/2022] [Indexed: 11/28/2022]
Abstract
The present work reports on the assessment of widely available waterproof cellulose-based substrates for the development of sensitive in-drop plasmonic sensing approaches. The applicability of three inexpensive substrates, namely, Whatman 1PS, polyethylene-coated filter paper, and tracing paper, as holders for microvolumes of colloidal solutions was evaluated. Waterproof cellulose-based substrates demonstrated to be highly convenient platforms for analytical purposes, as they enabled in situ generation of volatiles and syringeless drop exposure unlike conventional single-drop microextraction approaches and can behave as sample compartments for smartphone-based colorimetric sensing in an integrated way. Remarkably, large drop volumes (≥20 μL) of colloidal solutions can be employed for enrichment processes when using Whatman 1PS as holder. In addition, the stability and potential applicability of spherical, rod-shaped, and core-shell metallic NPs onto waterproof cellulose-based substrates was evaluated. In particular, Au@AgNPs showed potential for the colorimetric detection of in situ generated H2S, I2, and Br2, whereas AuNRs hold promise for I2, Br2, and Hg0 colorimetric sensing. As a proof of concept, a smartphone-based colorimetric assay for determination of acid-labile sulfide in environmental water samples was developed with the proposed approach taking advantage of the ability of Au@AgNPs for H2S sensing. The assay showed a limit of detection of 0.46 μM and a repeatability of 4.4% (N = 8), yielding satisfactory recoveries (91-107%) when applied to the analysis of environmental waters.
Collapse
Affiliation(s)
- Nerea Villarino
- Centro de Investigación Mariña,
Universidade de Vigo, Departamento de
Química Analítica e alimentaria, Grupo QA2, Edificio CC Experimentais, Campus
de Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Francisco Pena-Pereira
- Centro de Investigación Mariña,
Universidade de Vigo, Departamento de
Química Analítica e alimentaria, Grupo QA2, Edificio CC Experimentais, Campus
de Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Isela Lavilla
- Centro de Investigación Mariña,
Universidade de Vigo, Departamento de
Química Analítica e alimentaria, Grupo QA2, Edificio CC Experimentais, Campus
de Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Carlos Bendicho
- Centro de Investigación Mariña,
Universidade de Vigo, Departamento de
Química Analítica e alimentaria, Grupo QA2, Edificio CC Experimentais, Campus
de Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain
| |
Collapse
|
12
|
Khamkhajorn C, Pencharee S, Jakmunee J, Youngvises N. Smartphone-based colorimetric method for determining sulfites in wine using a universal clamp sample holder and microfluidic cotton swab-based analytical device. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Skok A, Bazel Y, Vishnikin A. New analytical methods for the determination of sulfur species with microextraction techniques: a review. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2045294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Arina Skok
- Department of Analytical Chemistry, Institute of Chemistry, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Andriy Vishnikin
- Department of Analytical Chemistry, Oles Honchar National University, Dnipro, Ukraine
| |
Collapse
|
14
|
Sun W, Xu H, Bao S, Yang W, Shen W, Hu G. A novel fluorescent probe based on triphenylamine for detecting sulfur dioxide derivatives. NEW J CHEM 2022. [DOI: 10.1039/d1nj06099f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
According to the nucleophilicity of sulfur dioxide derivatives, a reactive fluorescent probe was designed and synthesized by linking triphenylamine with benzoindole.
Collapse
Affiliation(s)
- Wei Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Hanhan Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Shuqin Bao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Wenge Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Weiliang Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| | - Guoxing Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
15
|
Liu Z, Li W, Zhu X, Hua R, Wu X, Xue J. Combination of polyurethane and polymethyl methacrylate thin films as a microextraction sorbent for rapid adsorption and sensitive determination of neonicotinoid insecticides in fruit juice and tea by ultra high performance liquid chromatography with tandem mass spectrometry. J Chromatogr A 2021; 1659:462646. [PMID: 34735961 DOI: 10.1016/j.chroma.2021.462646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022]
Abstract
An economical and effective thin film microextraction (TFME) for simultaneous analysis of ten neonicotinoid insecticides and metabolites in fruit juice and tea, was developed based on the combination of polyurethane (PU) and polymethyl methacrylate (PMMA) films as the sorbent followed by ultra high performance liquid chromatography with tandem mass spectrometry. The PU/PMMA composite was evidenced to possess rapid adsorption and strong accumulation towards neonicotinoids compared with the films used alone. A series of parameters were optimized, and the agitation mode, film size, ionic strength, desorption solvent and sample pH were found to dominate the microextraction process rather than the extraction temperature, agitation time and sample volume. The thin films are cost effective and efficient for single use analysis, but still can be reused at least 8 times with no significant loss in performance. The ten neonicotinoids were measured with good recoveries (81.1-107.9%), high enrichment factors (up to 135), low limits of detection (0.001-0.1 µg L-1), and wide linearity range (1-500 µg L-1, r2>0.9981) in fruit juice (apple, lemon, and pomegranate) and tea (green tea and black tea) samples. The proposed method was successfully applied to commercial fruit and tea drinks, and no samples were tested positive on target neonicotinoids. The PU/PMMA based TFME has shown great potential as an alternative to exhaustive extraction techniques for routine screening of trace neonicotinoids in fruit juice and tea by simplifying the analytical procedure, shortening the operation time, and lowering the material expense.
Collapse
Affiliation(s)
- Zikun Liu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, P. R. China
| | - Wenhui Li
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, P. R. China
| | - Xianbin Zhu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, P. R. China
| | - Rimao Hua
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, P. R. China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, P. R. China
| | - Jiaying Xue
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, P. R. China.
| |
Collapse
|
16
|
Leng G, Lin L, Worsfold PJ, Xu W, Luo X, Chang L, Li W, Zhang X, Xia C. A simple and rapid head space-single drop microextraction-‘spectro-pipette’ (HS-SDME-SP) method for the on-site measurement of arsenic species in natural waters. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Tamen AE, Vishnikin A. In-vessel headspace liquid-phase microextraction. Anal Chim Acta 2021; 1172:338670. [PMID: 34119018 DOI: 10.1016/j.aca.2021.338670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
A new mode of headspace liquid-phase microextraction termed in-vessel headspace liquid-phase microextraction (IV-HS-LPME) has been developed. A plastic vessel was used as a holder for an extraction phase. Problems with drop stability, limitations in the stirring speed, and too little volume of the acceptor phase have been completely eliminated. The proposed approach is fully compatible with ordinary instruments and microcuvettes used in spectrophotometry. The potential of the method was evaluated by determining the iodide concentration in various samples. Iodide in the donor phase was converted to volatile I2 by oxidation with 1 mmol L-1 K2Cr2O7. The reaction mixture was agitated on a magnetic stirrer for 30 min at a stirring speed of 1200 rpm. A 1% (w/v) aqueous solution of KI was used as the acceptor phase. The absorbance of the I3- ion formed in the acceptor phase was measured in a 50 μL microcuvette at 350 nm. For the case of extraction from 10 mL donor solution into 50 μL of acceptor phase, the calibration graph is linear in the range of 20-400 μg L-1 (as I-) with a detection limit of 6 μg L-1. The developed method has a high precision comparable to conventional spectrophotometric methods (0.6-1.5%). The extraction efficiency obtained in the optimal conditions was 10.5%. The distribution constants for equilibria between the donor solution and the headspace and between the headspace and the acceptor solution are 0.8 ± 0.1 and 16 ± 2, respectively. The developed method was successfully applied to determine the iodine content in natural waters, medicines and algae.
Collapse
Affiliation(s)
- Aimad-Eddine Tamen
- Department of Analytical Chemistry, Faculty of Chemistry, Oles Honchar Dnipro National University, 72 Gagarin Avenue, Dnipro, 49010, Ukraine
| | - Andriy Vishnikin
- Department of Analytical Chemistry, Faculty of Chemistry, Oles Honchar Dnipro National University, 72 Gagarin Avenue, Dnipro, 49010, Ukraine.
| |
Collapse
|
18
|
You JB, Lohse D, Zhang X. Surface nanodroplet-based nanoextraction from sub-milliliter volumes of dense suspensions. LAB ON A CHIP 2021; 21:2574-2585. [PMID: 34008650 DOI: 10.1039/d1lc00139f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A greener analytical technique for quantifying compounds in dense suspensions is needed for wastewater and environmental analysis, chemical or bio-conversion process monitoring, biomedical diagnostics, and food quality control, among others. In this work, we introduce a green, fast, one-step method called nanoextraction for extraction and detection of target analytes from sub-milliliter dense suspensions using surface nanodroplets without toxic solvents and pre-removal of the solid contents. With nanoextraction, we achieve a limit of detection (LOD) of 10-9 M for a fluorescent model analyte obtained from a particle suspension sample. The LOD is lower than that in water without particles (10-8 M), potentially due to the interaction of particles and the analyte. The high particle concentration in the suspension sample, thus, does not reduce the extraction efficiency, although the extraction process was slowed down up to 5 min. As a proof of principle, we demonstrate the nanoextraction for the quantification of model compounds in wastewater slurry containing 30 wt% solids and oily components (i.e. heavy oils). The nanoextraction and detection technology developed in this work may be used in fast analytical technologies for complex slurry samples in the environment, industrial waste, or in biomedical diagnostics.
Collapse
Affiliation(s)
- Jae Bem You
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada. and Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada. and Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|
19
|
Tóth J, Bazeľ Y, Balogh I. A fully automated system with an optical immersion probe (OIP) for high-precision spectrophotometric measurements. Talanta 2021; 226:122185. [PMID: 33676716 DOI: 10.1016/j.talanta.2021.122185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 11/30/2022]
Abstract
A new and fully automated system with the interconnection of an Optical Immersion Probe (OIP) - pH meter - peristaltic pump was used to study the spectral and protolytic properties of carbocyanine the dyes 1,1',3,3,3',3'-hexamethylindocarbocyanine chloride (HIC); 1,1',3,3,3',3'-hexamethylindodicarbocyanine iodide (HIDC); and 3,3'-diethyloxadicarbocyanine iodide (DODC). This system can measure a large number of experimental points in a short time period. The effect of 32 various organic solvents on the UV-ViS spectra of the dyes was studied. The solvatochromic behaviour of studied dyes was characterized by positive solvatochromism for HIDC and negative solvatochromism for HIC and DODC. Through the application of a large number of experimental points, the protonation and hydrolysis constants of dyes were determined with high precision, where the confidence interval of the рK values is ±(0.001-0.005), compared with a confidence interval of ±(0.04-0.10) for standard procedures. The fully automated system presented is accurate, fast, environmentally friendly and promising for multiple analytical applications.
Collapse
Affiliation(s)
- J Tóth
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, University of Pavol Jozef Šafárik in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic.
| | - Y Bazeľ
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, University of Pavol Jozef Šafárik in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - I Balogh
- Department of Chemistry, College of Nyíregyháza, HU-4400, Nyíregyháza, Hungary
| |
Collapse
|
20
|
Responsive small-molecule luminescence probes for sulfite/bisulfite detection in food samples. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116199] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Delove Tegladza I, Qi T, Chen T, Alorku K, Tang S, Shen W, Kong D, Yuan A, Liu J, Lee HK. Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122403. [PMID: 32126428 DOI: 10.1016/j.jhazmat.2020.122403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Single-drop microextraction (SDME) techniques are efficient approaches to pretreatment of aqueous samples. The main advantage of SDME lies in the miniaturization of the solvent extraction process, minimizing the hazards associated with the use of toxic organic solvents. Thus, SDME techniques are cost-effective, and represent less harm to the environment, subscribing to green analytical chemistry principles. In practice, two main approaches can be used to perform SDME - direct immersion (DI)-SDME and headspace (HS)-SDME. Even though the DI-SDME has been shown to be quite effective for extraction and enrichment of various organic compounds, applications of DI-SDME are normally more suitable for moderately polar and non-polar semi-volatile organic compounds (SVOCs) using organic solvents which are immiscible with water. In this review, we present a historical overview and current advances in DI-SDME, including the common analytical tools which are usually coupled with DI-SDME. The review also focuses on applications concerning SVOCs in environmental samples. Currents trends in DI-SDME and possible future direction of the procedure are discussed.
Collapse
Affiliation(s)
- Isaac Delove Tegladza
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tong Qi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Kingdom Alorku
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Jianfeng Liu
- Shanghai Waigaoqiao Shipbuilding Co., Ltd, Shanghai, 200137, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
22
|
Venkatachalam K, Asaithambi G, Rajasekaran D, Periasamy V. A novel ratiometric fluorescent probe for "naked-eye" detection of sulfite ion: Applications in detection of biological SO 32- ions in food and live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117788. [PMID: 31757702 DOI: 10.1016/j.saa.2019.117788] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/25/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
A new "turn-on" luminescent probe PI has been designed and synthesized for the selective detection of sulfite ions based on the mechanism of nucleophilic addition. The designed probe PI owns naked eye detection, excellent selectivity, sensitivity, rapid response (150 s) and low limits of detection (LOD) of 0.57 μM, which is an agreeable limit by the world wide expert food additive committees. Furthermore, the probe PI was used to recognize the sulfite ions level in realistic samples and live cells.
Collapse
Affiliation(s)
| | - Gomathi Asaithambi
- Department of Chemistry, Periyar University, Salem, Tamil Nadu 636011, India
| | - Dhivya Rajasekaran
- Department of Chemistry, Periyar University, Salem, Tamil Nadu 636011, India
| | | |
Collapse
|
23
|
Tóth J, Bazeľ Y. Development of a New Kinetic Spectrophotometric Method for the Determination of Chromium with an Optical Probe. APPLIED SPECTROSCOPY 2019; 73:492-502. [PMID: 30350718 DOI: 10.1177/0003702818812401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aim of this work is the development, optimization, and validation of a new spectrophotometric kinetic method for the determination of dissolved chromium species in water samples with the use of the polymethine dye Astra Phloxine FF. The progress of the chemical reaction was simple, effective, and precisely monitored from the start of the reaction using an optical probe. The method is based on the impact of Cr(VI) concentration on the rate of decrease in the Astra Phloxine FF concentration. The experimental data were evaluated using four experimental data analysis methods, namely with the initial rate method, the average rate method, the fixed time method, and the absorption peak volume change method. Under the optimal reaction conditions, the best results were achieved using the method of the average rate constant for evaluating the experimental data. Using this data evaluation method for the determination of Cr(VI), the LoD was found to be 1.87 µg L-1 and RSD ( n = 6; 0.2 mg L-1 Cr) 3.59%. The presented work was used for the determination of chromium in model samples-CRM material and tap and waste water-and with the calibration line method and the standard additions method.
Collapse
Affiliation(s)
- Ján Tóth
- Department of Analytical Chemistry, Faculty of Science, University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| | - Yaroslav Bazeľ
- Department of Analytical Chemistry, Faculty of Science, University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| |
Collapse
|
24
|
Shahvar A, Saraji M, Gordan H, Shamsaei D. Combination of paper-based thin film microextraction with smartphone-based sensing for sulfite assay in food samples. Talanta 2019; 197:578-583. [DOI: 10.1016/j.talanta.2019.01.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 11/15/2022]
|
25
|
Tang S, Qi T, Xia D, Xu M, Xu M, Zhu A, Shen W, Lee HK. Smartphone Nanocolorimetric Determination of Hydrogen Sulfide in Biosamples after Silver-Gold Core-Shell Nanoprism-Based Headspace Single-Drop Microextraction. Anal Chem 2019; 91:5888-5895. [PMID: 30985100 DOI: 10.1021/acs.analchem.9b00255] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, the sensitive detection of hydrogen sulfide (H2S) was realized at low cost and high efficiency through the application of silver-gold core-shell nanoprism (Ag@Au-np) combined with headspace single-drop microextraction (HS-SDME). After SDME, smartphone nanocolorimetry (SNC), with the aid of a smartphone camera and color picker software, was used to detect and quantify the H2S. The method took advantage of the inhibition of the ultraviolet-visible (UV-vis) signal caused by H2S etching of the Ag@Au-np preadded to the SDME solvent to measure the H2S concentration. The coating of the gold layer not only ensured the high stability of the nanomaterial but also enhanced the selectivity toward H2S. The HS-SDME method was simple to process and required only a droplet of solvent for analysis to be realized. This HS-SDME-SCN approach exhibited a calibration graph linearity of between 0.1 and 100 μM and a limit of detection of 65 nM (relative standard deviations of N% ( n = 3) < 4.80). A comparison with UV-vis spectrophotometry was conducted. The practical applicability of HS-SDME-SNC was successfully demonstrated by determining H2S in genuine biosamples (egg and milk).
Collapse
Affiliation(s)
- Sheng Tang
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212003 , Jiangsu Province , PR China
| | - Tong Qi
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212003 , Jiangsu Province , PR China
| | - Dasha Xia
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212003 , Jiangsu Province , PR China
| | - Mengchan Xu
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212003 , Jiangsu Province , PR China
| | - Mengyuan Xu
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212003 , Jiangsu Province , PR China
| | - Anni Zhu
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212003 , Jiangsu Province , PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212003 , Jiangsu Province , PR China
| | - Hian Kee Lee
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore.,National University of Singapore Environmental Research Institute , T-Lab Building #02-01, 5A Engineering Drive 1 , Singapore 117411 , Singapore.,Tropical Marine Science Institute, National University of Singapore , S2S Building, 18 Kent Ridge Road , Singapore 119227 , Singapore
| |
Collapse
|
26
|
Yamini Y, Rezazadeh M, Seidi S. Liquid-phase microextraction – The different principles and configurations. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.06.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Leng G, Hu Q, He WF, Liu Z, Chen WJ, Xu WB, Yang QH, Sun J. A simple field method for the determination of sulfite in natural waters: Based on automated dispersive liquid-liquid microextraction coupled with ultraviolet-visible spectrophotometry. J Chromatogr A 2019; 1584:72-79. [DOI: 10.1016/j.chroma.2018.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/24/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022]
|
28
|
Afshar Mogaddam MR, Mohebbi A, Pazhohan A, Khodadadeian F, Farajzadeh MA. Headspace mode of liquid phase microextraction: A review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Campillo N, López-García I, Hernández-Córdoba M, Viñas P. Food and beverage applications of liquid-phase microextraction. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Tang S, Qi T, Ansah PD, Nalouzebi Fouemina JC, Shen W, Basheer C, Lee HK. Single-drop microextraction. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Use of sequential injection analysis with lab-at-valve and an optical probe for simultaneous spectrophotometric determination of ascorbic acid and cysteine by mean centering of ratio kinetic profiles. Talanta 2018; 188:99-106. [DOI: 10.1016/j.talanta.2018.05.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/17/2018] [Accepted: 05/16/2018] [Indexed: 11/24/2022]
|
32
|
Li D, Duan H, Ma Y, Deng W. Headspace-Sampling Paper-Based Analytical Device for Colorimetric/Surface-Enhanced Raman Scattering Dual Sensing of Sulfur Dioxide in Wine. Anal Chem 2018; 90:5719-5727. [PMID: 29648444 DOI: 10.1021/acs.analchem.8b00016] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study demonstrates a novel strategy for colorimetric/surface-enhanced Raman scattering (SERS) dual-mode sensing of sulfur dioxide (SO2) by coupling headspace sampling (HS) with paper-based analytical device (PAD). The smart and multifunctional PAD is fabricated with a vacuum filtration method in which 4-mercaptopyridine (Mpy)-modified gold nanorods (GNRs)-reduced graphene oxide (rGO) hybrids (rGO/MPy-GNRs), anhydrous methanol, and starch-iodine complex are immobilized into cellulose-based filter papers. The resultant PAD exhibits a deep-blue color with a strong absorption peak at 600 nm due to the formation of an intermolecular charge-transfer complex between starch and iodine. However, the addition of SO2 induces the Karl Fischer reaction, resulting in the decrease of color and increase of SERS signals. Therefore, the PAD can be used not only as a naked-eye indicator of SO2 changed from blue to colorless but also as a highly sensitive SERS substrates because of the SO2-triggered conversion of Mpy to pyridine methyl sulfate on the GNRs. A distinguishable change in the color was observed at a SO2 concentration of 5 μM by the naked eye, and a detection limit as low as 1.45 μM was obtained by virtue of UV-vis spectroscopy. The PAD-based SERS method is effective over a wide range of concentrations (1 μM to 2000 μM) for SO2, and the detection limit for SO2 is found to be 1 μM. The HS-PAD based colorimetric/SERS method is applied for the determination of SO2 in wine, and the detection results match well with those obtained from the traditional Monier-Williams method. This study not only offers a new method for on-site monitoring of SO2 but also provides a new strategy for designing of paper-based sensing platform for a wide range of field-test applications.
Collapse
Affiliation(s)
- Dan Li
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , 100 Haiquan Road , Shanghai 201418 , P. R. China
| | - Huazhen Duan
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , 100 Haiquan Road , Shanghai 201418 , P. R. China
| | - Yadan Ma
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , 100 Haiquan Road , Shanghai 201418 , P. R. China
| | - Wei Deng
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , 100 Haiquan Road , Shanghai 201418 , P. R. China
| |
Collapse
|
33
|
Xu B, Zhou H, Mei Q, Tang W, Sun Y, Gao M, Zhang C, Deng S, Zhang Y. Real-Time Visualization of Cysteine Metabolism in Living Cells with Ratiometric Fluorescence Probes. Anal Chem 2018; 90:2686-2691. [DOI: 10.1021/acs.analchem.7b04493] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bingying Xu
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Haibo Zhou
- Institute
of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qingsong Mei
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Wei Tang
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yilun Sun
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Mengping Gao
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Cuilan Zhang
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shengsong Deng
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yong Zhang
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
34
|
Headspace single-drop microextraction coupled with microvolume fluorospectrometry for highly sensitive determination of bromide. Talanta 2017; 170:9-14. [DOI: 10.1016/j.talanta.2017.03.090] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 11/18/2022]
|
35
|
Pochivalov A, Vakh C, Andruch V, Moskvin L, Bulatov A. Automated alkaline-induced salting-out homogeneous liquid-liquid extraction coupled with in-line organic-phase detection by an optical probe for the determination of diclofenac. Talanta 2017; 169:156-162. [DOI: 10.1016/j.talanta.2017.03.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/24/2017] [Indexed: 12/11/2022]
|
36
|
A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent Ag nanoclusters and temperature gradient headspace single drop microextraction. Biosens Bioelectron 2017; 91:155-161. [DOI: 10.1016/j.bios.2016.11.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/15/2016] [Accepted: 11/27/2016] [Indexed: 01/27/2023]
|
37
|
Zaruba S, Vishnikin AB, Škrlíková J, Diuzheva A, Ozimaničová I, Gavazov K, Andruch V. A two-in-one device for online monitoring of direct immersion single-drop microextraction: an optical probe as both microdrop holder and measuring cell. RSC Adv 2017. [DOI: 10.1039/c7ra02326j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
For the first time an optical probe is proposed as the microdrop holder and simultaneously the measuring cell in a direct immersion single-drop microextraction (DI-SDME) procedure.
Collapse
Affiliation(s)
- Serhii Zaruba
- Department of Analytical Chemistry
- Faculty of Chemistry
- Oles Honchar Dnipropetrovsk National University
- Dnipro
- Ukraine
| | - Andriy B. Vishnikin
- Department of Analytical Chemistry
- Faculty of Chemistry
- Oles Honchar Dnipropetrovsk National University
- Dnipro
- Ukraine
| | - Jana Škrlíková
- Department of Analytical Chemistry
- Faculty of Science
- Pavol Jozef Šafárik University in Košice
- SK-04154 Košice
- Slovak Republic
| | - Alina Diuzheva
- Department of Analytical Chemistry
- Faculty of Science
- Pavol Jozef Šafárik University in Košice
- SK-04154 Košice
- Slovak Republic
| | - Ivana Ozimaničová
- Department of Analytical Chemistry
- Faculty of Science
- Pavol Jozef Šafárik University in Košice
- SK-04154 Košice
- Slovak Republic
| | - Kiril Gavazov
- Faculty of Chemistry
- University of Plovdiv Paisii Hilendarski
- Plovdiv 4000
- Bulgaria
- Faculty of Pharmacy
| | - Vasil Andruch
- Department of Analytical Chemistry
- Faculty of Science
- Pavol Jozef Šafárik University in Košice
- SK-04154 Košice
- Slovak Republic
| |
Collapse
|