1
|
Sun YL, Cheng J, Liu BB, Qiao JQ, Zhao LY, Lian HZ, Mao L. Aptamer based hybrid monolithic pipette tips supported by melamine sponge for enrichment of proteins. Anal Chim Acta 2024; 1312:342780. [PMID: 38834272 DOI: 10.1016/j.aca.2024.342780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The convenient preparation and application of functionalized organic-inorganic hybrid monolithic materials have obtained substantial interest in the pretreatment of complex samples by solid-phase extraction (SPE). Compared to the in-tube solid-phase microextraction in fused-silica capillaries, micro SPE in plastic pipette tips have fascinating merits for the easily operated enrichment of trace target analytes from biological samples. However, the poor compatibility of organic-inorganic hybrid monoliths with plastics leads to the rare appearance of commercial hybrid monolithic pipette tips (HMPTs). Therefore, how to synthesize the organic-inorganic hybrid monolithic materials with better extraction performance in plastic pipette tips becomes a challenge. RESULTS We develop a facile and cheap strategy to immobilize organic-inorganic hybrid monoliths in pipette tips. Melamine sponge was employed as the supporting skeleton to in situ assemble amine- and thiol-bifunctionalized hybrid monolithic material via "one pot" in a pipette tip, and gold nanoparticles (GNPs) and thiol-modified aptamer against human α-thrombin were sequentially attached to the hybrid monolith within the HMPTs. The average coverage density of the aptamer with GNPs as an intermediary reached as high as 818.5 pmol μL-1. The enriched thrombin concentration was determined by a sensitive enzymatic chromogenic assay with the limit of detection of 2 nM. The extraction recovery of thrombin at 10 nM in human serum was 86.1 % with a relative standard deviation of 6.1 %. This proposed protocol has been applied to the enrichment and determination of thrombin in real serum sample with strong anti-interference ability, low limit of detection and high recovery. SIGNIFICANCE The amine- and thiol-bifunctionalized HMPTs prepared with sponge as the skeleton frame provided a novel substrate material to decorate aptamers for efficient enrichment of proteins. This enlightens us that we can take advantage of the tunability of sponge assisted HMPTs to produce and tailor a variety of micro SPE pipette tips for broader applications on the analysis of trace targets in complex biological, clinic and environmental samples.
Collapse
Affiliation(s)
- Yue-Lun Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Jie Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Bin-Bin Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Jun-Qin Qiao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Ling-Yu Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China.
| | - Li Mao
- Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Dong W, Wen H, Du X, Li L, Li Z. Electrochemical sensing of tetracycline based on Au NPs@MoS2/Ch hybrid structures. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Li Y, Gao Y, Jia J, Deng Y, Zhang K, Yan B, Zhou X. Protein corona-induced extraction coupled to Fenton oxidation for selective and non-destructive preconcentration of Ag 2S nanoparticles from waters. WATER RESEARCH 2022; 224:119042. [PMID: 36103778 DOI: 10.1016/j.watres.2022.119042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Sulfidation of silver nanoparticles (AgNPs) to generate silver sulfide nanoparticles (Ag2S-NPs) significantly influences their fate and toxicity in natural environments. However, the correlational research in this field was limited by the lack of methods for speciation analysis of Ag2S-NPs. To address this challenge, a novel protocol for the selective Ag2S-NP extraction from real waters was developed using protein corona-induced extraction coupled to Fenton oxidation of AgNPs with Fe3+/H2O2 reagents. The ability of various concentrations of Fe3+/H2O2 to selectively dissociate AgNPs into ions was first evaluated. Then, selective separation and preconcentration of the remaining Ag2S-NPs was established by optimizing the parameters that may affect the protein corona-induced extraction efficiency, followed by quantification with inductively coupled plasma mass spectrometry (ICP-MS), enabling an ultrahigh enrichment factor of 10,000 and extremely low detection limit (LOD) of 1.8 ng/L. The presence of humic acid (HA), inorganic salts and particles at the environmentally relevant levels had limited effects on Ag2S-NP extraction. As demonstrated by transmission electron microscopy (TEM) analysis and single particle ICP-MS (spICP-MS), the sizes, shapes, and compositions of Ag2S-NPs extracted with the proposed method remain in intact. Good recoveries of 83.7-105% were achieved for the Ag2S-NPs spiked in four natural waters at the level of 97.8 ng/L. Due to the high yields and applicability to Ag2S-NPs at environmentally relevant concentrations, this proposed method is particularly suitable to track the generation and transformation of Ag2S-NPs in various scenarios.
Collapse
Affiliation(s)
- Yingjie Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yan Gao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Youwei Deng
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Kena Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Yan X, Li H, Yin T, Jie G, Zhou H. Photoelectrochemical biosensing platform based on in situ generated ultrathin covalent organic framework film and AgInS 2 QDs for dual target detection of HIV and CEA. Biosens Bioelectron 2022; 217:114694. [PMID: 36113299 DOI: 10.1016/j.bios.2022.114694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/02/2022]
Abstract
In this work, a new photoelectrochemical (PEC) biosensing platform based on an ordered two-dimensional (2D) ultrathin covalent organic framework (COF) film and AgInS2 quantum dots (QDs) has been developed to enable dual-target detection of HIV and CEA. The porous COF film was firstly in situ generated on ITO, displaying super-stable and intense photocurrent with excellent repeatability. Moreover, an effective PEC quenching probe was specifically designed by loading large number of AgInS2 QDs on Au nanoparticles (NPs). After target HIV-induced cyclic amplification process to generate abundant DNA S0, the Au NPs-AgInS2 QDs probe was binded to the COF film through DNA hybridization, enabling PEC signal of the COF film to turn "off" for ultra-sensitive detection of HIV. Furthermore, when CEA as the second target specifically binded to its aptamer, the Au NPs-AgInS2 QDs quenching probe was released, achieving PEC signal "on" of the T-DA COF film for ultra-sensitive detection of CEA. This work opened a unique 2-D COF film-based PEC biosensing platform with excellent signal for rapid detection of dual targets, which can effectively avoid false positives and negatives and shows promising application for early prevention and detection of cancer diseases.
Collapse
Affiliation(s)
- Xiaoshi Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Tengyue Yin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
5
|
Jiang C, Liu S, Zhang T, Liu Q, Alvarez PJJ, Chen W. Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7426-7447. [PMID: 35584364 DOI: 10.1021/acs.est.1c08011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Analysis and characterization of naturally occurring and engineered nanomaterials in the environment are critical for understanding their environmental behaviors and defining real exposure scenarios for environmental risk assessment. However, this is challenging primarily due to the low concentration, structural heterogeneity, and dynamic transformation of nanomaterials in complex environmental matrices. In this critical review, we first summarize sample pretreatment methods developed for separation and preconcentration of nanomaterials from environmental samples, including natural waters, wastewater, soils, sediments, and biological media. Then, we review the state-of-the-art microscopic, spectroscopic, mass spectrometric, electrochemical, and size-fractionation methods for determination of mass and number abundance, as well as the morphological, compositional, and structural properties of nanomaterials, with discussion on their advantages and limitations. Despite recent advances in detecting and characterizing nanomaterials in the environment, challenges remain to improve the analytical sensitivity and resolution and to expand the method applications. It is important to develop methods for simultaneous determination of multifaceted nanomaterial properties for in situ analysis and characterization of nanomaterials under dynamic environmental conditions and for detection of nanoscale contaminants of emerging concern (e.g., nanoplastics and biological nanoparticles), which will greatly facilitate the standardization of nanomaterial analysis and characterization methods for environmental samples.
Collapse
Affiliation(s)
- Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Songlin Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| |
Collapse
|
6
|
Zhou XX, Jiang LW, Wang DJ, He S, Li CJ, Yan B. Speciation Analysis of Ag2S and ZnS Nanoparticles at the ng/L Level in Environmental Waters by Cloud Point Extraction Coupled with LC-ICPMS. Anal Chem 2020; 92:4765-4770. [DOI: 10.1021/acs.analchem.0c00262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao-Xia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Li-Wen Jiang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Du-Jia Wang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Shuai He
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Cheng-Jun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, People’s Republic of China
| |
Collapse
|
7
|
Xia L, Yang J, Su R, Zhou W, Zhang Y, Zhong Y, Huang S, Chen Y, Li G. Recent Progress in Fast Sample Preparation Techniques. Anal Chem 2019; 92:34-48. [DOI: 10.1021/acs.analchem.9b04735] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiani Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Rihui Su
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Wanjun Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanshu Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanhui Zhong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Simin Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanlong Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Liu S, Lämmerhofer M. Functionalized gold nanoparticles for sample preparation: A review. Electrophoresis 2019; 40:2438-2461. [PMID: 31056767 DOI: 10.1002/elps.201900111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
Abstract
Sample preparation is a crucial step for the reliable and accurate analysis of both small molecule and biopolymers which often involves processes such as isolation, pre-concentration, removal of interferences (purification), and pre-processing (e.g., enzymatic digestion) of targets from a complex matrix. Gold nanoparticle (GNP)-assisted sample preparation and pre-concentration has been extensively applied in many analytical procedures in recent years due to the favorable and unique properties of GNPs such as size-controlled synthesis, large surface-to-volume ratio, surface inertness, straightforward surface modification, easy separation requiring minimal manipulation of samples. This review article primarily focuses on applications of GNPs in sample preparation, in particular for bioaffinity capture and biocatalysis. In addition, their most common synthesis, surface modification and characterization methods are briefly summarized. Proper surface modification for GNPs designed in accordance to their target application directly influence their functionalities, e.g., extraction efficiencies, and catalytic efficiencies. Characterization of GNPs after synthesis and modification is worthwhile for monitoring and controlling the fabrication process to ensure proper quality and functionality. Parameters such as morphology, colloidal stability, and physical/chemical properties can be assessed by methods such as surface plasmon resonance, dynamic light scattering, ζ-potential determinations, transmission electron microscopy, Taylor dispersion analysis, and resonant mass measurement, among others. The accurate determination of the surface coverage appears to be also mandatory for the quality control of functionality of the nanoparticles. Some promising applications of (functionalized) GNPs for bioanalysis and sample preparation are described herein.
Collapse
Affiliation(s)
- Siyao Liu
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Liu X, He M, Chen B, Hu B. Monolithic capillary microextraction combined with ICP-MS for the determination of TiO2 NPs in environmental water samples. Talanta 2019; 197:334-340. [DOI: 10.1016/j.talanta.2019.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 01/05/2019] [Accepted: 01/09/2019] [Indexed: 12/19/2022]
|
10
|
Wang MM, Li N, Ai LF, Li L, Chen XL, Jia YQ, Wang XS. Poly[(2-(acryloyloxy) ethyl]trimethylammonium chloride-co
-ethylene dimethacrylate monolith on-line solid-phase extraction coupled with liquid chromatography and tandem mass spectrometry for the fast determination of salicylic acid in foodstuffs. J Sep Sci 2018; 41:3432-3440. [DOI: 10.1002/jssc.201800464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Man-Man Wang
- School of Public Health; North China University of Science and Technology; Tangshan Hebei China
| | - Na Li
- School of Public Health; North China University of Science and Technology; Tangshan Hebei China
| | - Lian-Feng Ai
- Hebei Entry-Exit Inspection and Quarantine Bureau; Shijiazhuang Hebei China
| | - Li Li
- School of Public Health; North China University of Science and Technology; Tangshan Hebei China
| | - Xue-Lei Chen
- School of Public Health; North China University of Science and Technology; Tangshan Hebei China
| | - Ye-Qing Jia
- School of Public Health; North China University of Science and Technology; Tangshan Hebei China
| | - Xue-Sheng Wang
- School of Public Health; North China University of Science and Technology; Tangshan Hebei China
| |
Collapse
|
11
|
Zhou XX, Lai YJ, Liu R, Li SS, Xu JW, Liu JF. Polyvinylidene Fluoride Micropore Membranes as Solid-Phase Extraction Disk for Preconcentration of Nanoparticulate Silver in Environmental Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13816-13824. [PMID: 29121473 DOI: 10.1021/acs.est.7b04055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Efficient separation and preconcentration of trace nanoparticulate silver (NAg) from large-volume environmental waters is a prerequisite for reliable analysis and therefore understanding the environmental processes of silver nanoparticles (AgNPs). Herein, we report the novel use of polyvinylidene fluoride (PVDF) filter membrane for disk-based solid phase extraction (SPE) of NAg in 1 L of water samples with the disk-based SPE system, which consists of a syringe pump and a syringe filter holder to embed the filter membrane. While the PVDF membrane can selectively adsorb NAg in the presence of Ag+, aqueous solution of 2% (m/v) FL-70 is found to efficiently elute NAg. Analysis of NAg is performed following optimization of filter membrane and elution conditions with an enrichment factor of 1000. Additionally, transmission electron microscopy (TEM), UV-vis spectroscopy, and size-exclusion chromatography coupled with ICP-MS (SEC-ICP-MS) analysis showed that the extraction gives rise to no change in NAg size or shape, making this method attractive for practical applications. Furthermore, feasibility of the protocol is verified by applying it to extract NAg in four real waters with recoveries of 62.2-80.2% at 0.056-0.58 μg/L spiked levels. This work will facilitate robust studies of trace NAg transformation and their hazard assessments in the environment.
Collapse
Affiliation(s)
- Xiao-Xia Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | - Yu-Jian Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | - Sha-Sha Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jing-Wen Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- College of Environment, Liaoning University , Shenyang 110036, China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|