1
|
Cunha DR, Segundo MA, Quinaz MB. Electrochemical methods for evaluation of therapeutic monoclonal antibodies: A review. Biosens Bioelectron 2025; 271:116988. [PMID: 39642528 DOI: 10.1016/j.bios.2024.116988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Biopharmaceuticals are complex pharmaceutical drug products produced by biotechnology in living systems. Small changes in the production process can induce differences in the structure of the active ingredient, which may have a strong impact on its pharmacological properties. Therefore, quality assurance of biopharmaceuticals results in a high analytical effort. Strict quality and stability monitoring of potentially critical quality attributes (CQAs) is required. Electrochemical methods have been contributing to the expansion of sensors and biosensors due to their advantages, such as cost-effectiveness and easy operation. Here, we discuss the recent developments in sensors and biosensors using electrochemical techniques employed for the determination of biopharmaceuticals, namely monoclonal antibodies (mAb) and fragments of mAbs. In the frame of this information, this review aims to critically address electrochemical sensors and biosensors for the analysis of biopharmaceuticals reported since 2016. Electrochemical bio(sensors) development has been mainly based on gold and aptamers, respectively, as the most used electrode material and biorecognition element. Also, Bevacizumab (BEVA) was the main therapeutic mAb detected and 69% of the works described a (bio)sensor) that can be applied to therapeutic drug monitoring.
Collapse
Affiliation(s)
- Diana R Cunha
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Marcela A Segundo
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - M Beatriz Quinaz
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Wan J, Wang M, Chen S, Zhang X, Xu W, Wu D, Hu Q, Niu L. Biologically-driven RAFT polymerization-amplified platform for electrochemical detection of antibody drugs. Talanta 2024; 285:127431. [PMID: 39709831 DOI: 10.1016/j.talanta.2024.127431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The individualized administration and pharmacokinetics profiling are integral to the safe use of antibody drugs in immunotherapy. Here, we propose an electrochemical platform for the highly sensitive and selective detection of antibody drugs, taking advantage of the affinity capture by the peptide mimotopes together with the signal amplification by the biologically-driven RAFT polymerization (BDRP). Briefly, the BDRP-based platform involves the capture of antibody drugs by peptide mimotopes, the labeling of multiple reversible addition-fragmentation chain-transfer (RAFT) agents to the glycan chains of antibody drugs, and the BDRP-enabled controlled recruitment of numerous redox labels. The BDRP-based signal amplification relies on the reduction of RAFT agents by NADH coenzymes into the carbon-centered radicals, which can propagate efficiently into long polymer chains by reacting with the ferrocene-derivated monomers, recruiting numerous redox labels to the glycan chains of antibody drugs. The BDRP is conducted at the physiological temperature (i.e., 37 °C) and in the absence of external stimuli or radical sources, holding the advantages of biological compatibility and desirable simplicity over conventional RAFT polymerization approaches. The developed platform is highly selective and the detection limit in the presence of rituximab as the target was determined to be 0.14 ng/mL. Moreover, the applicability of the BDRP-based platform in the sensitive assay of antibody drugs in serum samples has been validated. In view of the biocompatibility, desirable simplicity, and cost-effectiveness, the BDRP-based platform shows great promise in the quantitative assay of antibody drugs.
Collapse
Affiliation(s)
- Jianwen Wan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Mengge Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Songmin Chen
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Xiyao Zhang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Wenhui Xu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Di Wu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Qiong Hu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| |
Collapse
|
3
|
Brycht M, Poltorak L, Baluchová S, Sipa K, Borgul P, Rudnicki K, Skrzypek S. Electrochemistry as a Powerful Tool for Investigations of Antineoplastic Agents: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1017-1108. [PMID: 35968923 DOI: 10.1080/10408347.2022.2106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cancer is most frequently treated with antineoplastic agents (ANAs) that are hazardous to patients undergoing chemotherapy and the healthcare workers who handle ANAs in the course of their duties. All aspects related to hazardous oncological drugs illustrate that the monitoring of ANAs is essential to minimize the risks associated with these drugs. Among all analytical techniques used to test ANAs, electrochemistry holds an important position. This review, for the first time, comprehensively describes the progress done in electrochemistry of ANAs by means of a variety of bare or modified (bio)sensors over the last four decades (in the period of 1982-2021). Attention is paid not only to the development of electrochemical sensing protocols of ANAs in various biological, environmental, and pharmaceutical matrices but also to achievements of electrochemical techniques in the examination of the interactions of ANAs with deoxyribonucleic acid (DNA), carcinogenic cells, biomimetic membranes, peptides, and enzymes. Other aspects, including the enantiopurity studies, differentiation between single-stranded and double-stranded DNA without using any label or tag, studies on ANAs degradation, and their pharmacokinetics, by means of electrochemical techniques are also commented. Finally, concluding remarks that underline the existence of a significant niche for the basic electrochemical research that should be filled in the future are presented.
Collapse
Affiliation(s)
- Mariola Brycht
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Lukasz Poltorak
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Simona Baluchová
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czechia
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
| | - Karolina Sipa
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Paulina Borgul
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Konrad Rudnicki
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Sławomira Skrzypek
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Fan J, Arrazolo LK, Du J, Xu H, Fang S, Liu Y, Wu Z, Kim JH, Wu X. Effects of Ionic Interferents on Electrocatalytic Nitrate Reduction: Mechanistic Insight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12823-12845. [PMID: 38954631 DOI: 10.1021/acs.est.4c03949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Nitrate, a prevalent water pollutant, poses substantial public health concerns and environmental risks. Electrochemical reduction of nitrate (eNO3RR) has emerged as an effective alternative to conventional biological treatments. While extensive lab work has focused on designing efficient electrocatalysts, implementation of eNO3RR in practical wastewater settings requires careful consideration of the effects of various constituents in real wastewater. In this critical review, we examine the interference of ionic species commonly encountered in electrocatalytic systems and universally present in wastewater, such as halogen ions, alkali metal cations, and other divalent/trivalent ions (Ca2+, Mg2+, HCO3-/CO32-, SO42-, and PO43-). Notably, we categorize and discuss the interfering mechanisms into four groups: (1) loss of active catalytic sites caused by competitive adsorption and precipitation, (2) electrostatic interactions in the electric double layer (EDL), including ion pairs and the shielding effect, (3) effects on the selectivity of N intermediates and final products (N2 or NH3), and (4) complications by the hydrogen evolution reaction (HER) and localized pH on the cathode surface. Finally, we summarize the competition among different mechanisms and propose future directions for a deeper mechanistic understanding of ionic impacts on eNO3RR.
Collapse
Affiliation(s)
- Jinling Fan
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Leslie K Arrazolo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jiaxin Du
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Huimin Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Siyu Fang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yue Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
5
|
Gevaerd A, Carneiro EA, Gogola JL, Nicollete DRP, Santiago EB, Riedi HP, Timm A, Predebon JV, Hartmann LF, Ribeiro VHA, Rochitti C, Marques GL, Loesch MMON, de Almeida BMM, Rogal-Junior S, Figueredo MVM. Utilizing COVID-19 as a Model for Diagnostics Using an Electrochemical Sensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:3772. [PMID: 38931556 PMCID: PMC11207896 DOI: 10.3390/s24123772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
This paper reports a rapid and sensitive sensor for the detection and quantification of the COVID-19 N-protein (N-PROT) via an electrochemical mechanism. Single-frequency electrochemical impedance spectroscopy was used as a transduction method for real-time measurement of the N-PROT in an immunosensor system based on gold-conjugate-modified carbon screen-printed electrodes (Cov-Ag-SPE). The system presents high selectivity attained through an optimal stimulation signal composed of a 0.0 V DC potential and 10 mV RMS-1 AC signal at 100 Hz over 300 s. The Cov-Ag-SPE showed a log response toward N-PROT detection at concentrations from 1.0 ng mL-1 to 10.0 μg mL-1, with a 0.977 correlation coefficient for the phase (θ) variation. An ML-based approach could be created using some aspects observed from the positive and negative samples; hence, it was possible to classify 252 samples, reaching 83.0, 96.2 and 91.3% sensitivity, specificity, and accuracy, respectively, with confidence intervals (CI) ranging from 73.0 to 100.0%. Because impedance spectroscopy measurements can be performed with low-cost portable instruments, the immunosensor proposed here can be applied in point-of-care diagnostics for mass testing, even in places with limited resources, as an alternative to the common diagnostics methods.
Collapse
Affiliation(s)
- Ava Gevaerd
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Emmanuelle A. Carneiro
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Jeferson L. Gogola
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Diego R. P. Nicollete
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Erika B. Santiago
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Halanna P. Riedi
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Adriano Timm
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - João V. Predebon
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Luis F. Hartmann
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Victor H. A. Ribeiro
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Carlos Rochitti
- School of Medicine—Campus PUCPR, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Parana 80215-901, Brazil
| | - Gustavo L. Marques
- School of Medicine—Campus PUCPR, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Parana 80215-901, Brazil
| | - Maira M. O. N. Loesch
- School of Medicine—Campus PUCPR, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Parana 80215-901, Brazil
| | - Bernardo M. M. de Almeida
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Sérgio Rogal-Junior
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Marcus V. M. Figueredo
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| |
Collapse
|
6
|
Wan J, Tian Y, Wu D, Ye Z, Chen S, Hu Q, Wang M, Lv J, Xu W, Zhang X, Han D, Niu L. Site-Directed Electrochemical Grafting for Amplified Detection of Antibody Pharmaceuticals. Anal Chem 2024; 96:9278-9284. [PMID: 38768425 DOI: 10.1021/acs.analchem.4c01798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Antibody pharmaceuticals have become the most popular immunotherapeutic drugs and are often administered with low serum drug dosages. Hence, the development of a highly sensitive method for the quantitative assay of antibody levels is of great importance to individualized therapy. On the basis of the dual signal amplification by the glycan-initiated site-directed electrochemical grafting of polymer chains (glyGPC), we report herein a novel strategy for the amplified electrochemical detection of antibody pharmaceuticals. The target of interest was affinity captured by a DNA aptamer ligand, and then the glycans of antibody pharmaceuticals were decorated with the alkyl halide initiators (AHIs) via boronate cross-linking, followed by the electrochemical grafting of the ferrocenyl polymer chains from the glycans of antibody pharmaceuticals through the electrochemically controlled atom transfer radical polymerization (eATRP). As the glycans can be decorated with multiple AHIs and the grafted polymer chains are composed of tens to hundreds of electroactive tags, the glyGPC-based strategy permits the dually amplified electrochemical detection of antibody pharmaceuticals. In the presence of trastuzumab (Herceptin) as the target, the glyGPC-based strategy achieved a detection limit of 71.5 pg/mL. Moreover, the developed method is highly selective, and the results of the quantitative assay of trastuzumab levels in human serum are satisfactory. Owing to its uncomplicated operation and cost-effectiveness, the glyGPC-based strategy shows great promise in the amplified electrochemical detection of antibody pharmaceuticals.
Collapse
Affiliation(s)
- Jianwen Wan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yiyan Tian
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Di Wu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhuojun Ye
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Songmin Chen
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Qiong Hu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, P. R. China
| | - Mengge Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Junpeng Lv
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wenhui Xu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiyao Zhang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
7
|
Wan J, Liang Y, Hu Q, Liang Z, Feng W, Tian Y, Li S, Ye Z, Hong M, Han D, Niu L. Amplification-Free Ratiometric Electrochemical Aptasensor for Point-of-Care Detection of Therapeutic Monoclonal Antibodies. Anal Chem 2023; 95:14094-14100. [PMID: 37672684 DOI: 10.1021/acs.analchem.3c03052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The rapid quantification of therapeutic monoclonal antibodies (mAbs) is of great significance to their pharmacokinetics/pharmacodynamics (PK/PD) research and the personalized medication for disease treatment. Taking advantage of the direct decoration of tens of redox tags to the target of interest, we illustrate herein an amplification-free ratiometric electrochemical aptasensor for the point-of-care (POC) detection of trace amounts of therapeutic mAbs. The POC detection of therapeutic mAbs involved the use of the methylene blue (MB)-conjugated aptamer as the affinity element and the decoration of therapeutic mAbs with ferrocene (Fc) tags via the boronate crosslinking, in which the MB-derived peak current was used as the reference signal, and the peak current of the Fc tag was used as the output signal. As each therapeutic mAb carries tens of diol sites for the site-specific decoration of the Fc output tags, the boronate crosslinking enabled the amplification-free detection, which is cost-effective and quite simple in operation. In the presence of bevacizumab (BevMab) as the target, the resulting ratiometric signal (i.e., the IFc/IMB value) exhibited a good linear response over the range of 0.025-2.5 μg/mL, and the limit of detection (LOD) of the electrochemical aptasensor was 6.5 ng/mL. Results indicated that the aptamer-based affinity recognition endowed the detection of therapeutic mAbs with high selectivity, while the ratiometric readout exhibited satisfactory reproducibility and robustness. Moreover, the ratiometric electrochemical aptasensor is applicable to the detection of therapeutic mAbs in serum samples. Taking together, the amplification-free ratiometric electrochemical aptasensor holds great promise in the POC detection of therapeutic mAbs.
Collapse
Affiliation(s)
- Jianwen Wan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yiyi Liang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Qiong Hu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhiwen Liang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wenxing Feng
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yiyan Tian
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shiqi Li
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhuojun Ye
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Mingru Hong
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
8
|
Shoute LCT, Abdelrasoul GN, Ma Y, Duarte PA, Edwards C, Zhuo R, Zeng J, Feng Y, Charlton CL, Kanji JN, Babiuk S, Chen J. Label-free impedimetric immunosensor for point-of-care detection of COVID-19 antibodies. MICROSYSTEMS & NANOENGINEERING 2023; 9:3. [PMID: 36597510 PMCID: PMC9805445 DOI: 10.1038/s41378-022-00460-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/06/2022] [Accepted: 09/25/2022] [Indexed: 05/28/2023]
Abstract
The COVID-19 pandemic has posed enormous challenges for existing diagnostic tools to detect and monitor pathogens. Therefore, there is a need to develop point-of-care (POC) devices to perform fast, accurate, and accessible diagnostic methods to detect infections and monitor immune responses. Devices most amenable to miniaturization and suitable for POC applications are biosensors based on electrochemical detection. We have developed an impedimetric immunosensor based on an interdigitated microelectrode array (IMA) to detect and monitor SARS-CoV-2 antibodies in human serum. Conjugation chemistry was applied to functionalize and covalently immobilize the spike protein (S-protein) of SARS-CoV-2 on the surface of the IMA to serve as the recognition layer and specifically bind anti-spike antibodies. Antibodies bound to the S-proteins in the recognition layer result in an increase in capacitance and a consequent change in the impedance of the system. The impedimetric immunosensor is label-free and uses non-Faradaic impedance with low nonperturbing AC voltage for detection. The sensitivity of a capacitive immunosensor can be enhanced by simply tuning the ionic strength of the sample solution. The device exhibits an LOD of 0.4 BAU/ml, as determined from the standard curve using WHO IS for anti-SARS-CoV-2 immunoglobulins; this LOD is similar to the corresponding LODs reported for all validated and established commercial assays, which range from 0.41 to 4.81 BAU/ml. The proof-of-concept biosensor has been demonstrated to detect anti-spike antibodies in sera from patients infected with COVID-19 within 1 h. Photolithographically microfabricated interdigitated microelectrode array sensor chips & label-free impedimetric detection of COVID-19 antibody.
Collapse
Affiliation(s)
- Lian C. T. Shoute
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Gaser N. Abdelrasoul
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Yuhao Ma
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Pedro A. Duarte
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Cole Edwards
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB Canada
| | - Ran Zhuo
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB Canada
| | - Jie Zeng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Yiwei Feng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Carmen L. Charlton
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7 Canada
- Li Ka Shing Institute for Virology, University of Alberta, Edmonton, AB Canada
| | - Jamil N. Kanji
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7 Canada
- Division of Infectious Diseases, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
- Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB Canada
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2R3 Canada
| |
Collapse
|
9
|
Berwanger JD, Tan HY, Jokhadze G, Bruening ML. Determination of the Serum Concentrations of the Monoclonal Antibodies Bevacizumab, Rituximab, and Panitumumab Using Porous Membranes Containing Immobilized Peptide Mimotopes. Anal Chem 2021; 93:7562-7570. [PMID: 33999602 DOI: 10.1021/acs.analchem.0c04903] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effective monoclonal antibody (mAb) therapies require a threshold mAb concentration in patient serum. Moreover, the serum concentration of the mAb Bevacizumab should reside in a specific range to avoid side effects. Methods for conveniently determining the levels of mAbs in patient sera could allow for personalized dosage schedules that lead to more successful treatments. This work utilizes microporous nylon membranes functionalized with antibody-binding peptides to capture Bevacizumab, Rituximab, or Panitumumab from diluted (25%) serum. Modification of the capture-peptide terminus is often crucial to creating the affinity necessary for effective binding. The high purity of eluted mAbs allows for their quantitation using native fluorescence, and membranes are effective in spin devices that can be used in any laboratory. The technique is effective over the therapeutic range of Bevacizumab concentrations. Future work aims at further modifications to develop rapid point-of-care devices and decrease detection limits.
Collapse
Affiliation(s)
- Joshua D Berwanger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hui Yin Tan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Gia Jokhadze
- Takara Bio USA, Inc., Mountain View, California 94043, United States
| | - Merlin L Bruening
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
10
|
Panahi Z, Merrill MA, Halpern JM. Reusable Cyclodextrin-Based Electrochemical Platform for Detection of trans-Resveratrol. ACS APPLIED POLYMER MATERIALS 2020; 2:5086-5093. [PMID: 34651131 PMCID: PMC8513772 DOI: 10.1021/acsapm.0c00866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A reusable sensor architecture, through the combination of self-assembled monolayers and cyclodextrin supramolecular interactions, is demonstrated for class recognition of hydrophobic analytes demonstrated with trans-resveratrol. The reloadable sensor is based on reversible immobilization of α-cyclodextrin on polyethylene glycol surface. α-cyclodextrins complexes with polyethylene glycols and causes the polymer chains to change their surface configuration. The reproducibility and stability of the sur-face, in the detection of nanomolar concentrations of trans-resveratrol, can be demonstrated by electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and Attenuated total reflectance-Fourier transform infrared spectroscopy. We propose that during sensor operation, α-cyclodextrin decouples from the poly-ethylene glycol surface to complex with trans-resveratrol in solution, and after use, the surface regeneration is conducted with a simple α-cyclodextrin soak. To test the nonspecific response, the sensor was also tested with trans-resveratrol spiked human urine.
Collapse
|
11
|
Huang S, Tang R, Zhang T, Zhao J, Jiang Z, Wang Q. Anti-fouling poly adenine coating combined with highly specific CD20 epitope mimetic peptide for rituximab detection in clinical patients' plasma. Biosens Bioelectron 2020; 171:112678. [PMID: 33113382 DOI: 10.1016/j.bios.2020.112678] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
In this study, a high-performance anti-fouling coating based on poly adenine (polyAn) as well as a highly specific cluster of differentiation 20 (CD20) epitope mimetic peptide (CN14) were employed to synergistically construct a facile biosensor for the rapid and sensitive determination of rituximab in lymphoma patients' plasma. The well-designed and optimized polyAn coating displayed excellent stability, hydrophilicity, thanks to its intrinsic affinity with gold surface and thoroughly exposed hydrophilic phosphate groups. Moreover, the proposed strategy avoids the necessity to modify binding groups (e.g. thiol), making it more facile, repeatable and efficient. When dealing with complex clinical plasma samples, the polyAn coating demonstrated better anti-fouling performance and lower background signal in comparison with mercaptan and bovine serum albumin coatings. The dissociation constant (~60 nM) between CN14 and rituximab was measured by microscale thermophoresis and their binding mechanism was further explained using computer simulation. The constructed GE/CN14/polyA20 biosensor displayed satisfactory performance with detection limit of 35.26 ng/mL. Finally, the proposed biosensor was successfully applied for rapidly determining rituximab in lymphoma patients' plasma, and exhibited comparable accuracy to the commercial ELISA, but has advantages including a shorter detection time, wider detection range and lower cost. It's worth noting that the anti-fouling polyAn coating can be tailored according to the surface property of sensing interface and can be easily expanded to other gold electrode related biosensors.
Collapse
Affiliation(s)
- Shengfeng Huang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou, 510632, China.
| | - Rentao Tang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou, 510632, China
| | - Tingting Zhang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou, 510632, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou, 510632, China.
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
12
|
Peltomaa R, Fikacek S, Benito-Peña E, Barderas R, Head T, Deo S, Daunert S, Moreno-Bondi MC. Bioluminescent detection of zearalenone using recombinant peptidomimetic Gaussia luciferase fusion protein. Mikrochim Acta 2020; 187:547. [PMID: 32886242 DOI: 10.1007/s00604-020-04538-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022]
Abstract
The development of a bioluminescent immunosensor is reported for the determination of zearalenone (ZEA) based on a peptide mimetic identified by phage display. The peptide mimetic GW, with a peptide sequence GWWGPYGEIELL, was used to create recombinant fusion proteins with the bioluminescent Gaussia luciferase (GLuc) that were directly used as tracers for toxin detection in a competitive immunoassay without the need for secondary antibodies or further labeling. The bioluminescent sensor, based on protein G-coupled magnetic beads for antibody immobilization, enabled determination of ZEA with a detection limit of 4.2 ng mL-1 (corresponding to 420 μg kg-1 in food samples) and an IC50 value of 11.0 ng mL-1. The sensor performance was evaluated in spiked maize and wheat samples, with recoveries ranging from 87 to 106% (RSD < 20%, n = 3). Finally, the developed method was applied to the analysis of a naturally contaminated reference matrix material and good agreement with the reported concentrations was obtained.Graphical abstract.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Sabrina Fikacek
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km 2.2, 28220, Madrid, Spain
| | - Trajen Head
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Coral Gables, FL, 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Coral Gables, FL, 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Coral Gables, FL, 33136, USA.,University of Miami Clinical and Translational Science Institute, University of Miami, Miami, FL, 33136, USA
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
13
|
An antifouling peptide-based biosensor for determination of Streptococcus pneumonia markers in human serum. Biosens Bioelectron 2019; 151:111969. [PMID: 31999579 DOI: 10.1016/j.bios.2019.111969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/26/2022]
Abstract
We report a peptide-based sensor that involves a multivalent interaction with L-ascorbate 6-phosphate lactonase (UlaG), a protein marker of Streptococcus pneumonia. By integrating the antifouling feature of the sensor, we significantly improved the signal-to-noise ratio of UlaG detection. The antifouling surface was fabricated via electrodeposition using an equivalent mixture of 4-amino-N,N,N-trimethylanilinium and 4-aminobenzenesulfonate. This antifouling layer not only effectively reduces the non-specific adsorption on the biosensor but also decreases the charge transfer resistance (Rct) of the screen-printed carbon electrode. The aniline-modified S7 peptide, an UlaG-binding peptide, was pre-synthesized and further electrochemically modified to bind onto the antifouling layer. Bio-electrochemical analysis confirms that the antifouling S7-peptide sensor binds strongly to the UlaG with a dissociation constant (Kd) = 0.5 nM. This strong interaction can be attributed to a multivalent interaction between the biosensor and the heximeric form of UlaG. To demonstrate the potential for clinical application, further detection of Streptococcus pneumonia from 50 to 5×104 CFU/mL were successfully performed in 25% human serum.
Collapse
|
14
|
Peltomaa R, Amaro-Torres F, Carrasco S, Orellana G, Benito-Peña E, Moreno-Bondi MC. Homogeneous Quenching Immunoassay for Fumonisin B 1 Based on Gold Nanoparticles and an Epitope-Mimicking Yellow Fluorescent Protein. ACS NANO 2018; 12:11333-11342. [PMID: 30481972 DOI: 10.1021/acsnano.8b06094] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Homogeneous immunoassays represent an attractive alternative to traditional heterogeneous assays due to their simplicity, sensitivity, and speed. On the basis of a previously identified epitope-mimicking peptide, or mimotope, we developed a homogeneous fluorescence quenching immunoassay based on gold nanoparticles (AuNPs) and a recombinant epitope-mimicking fusion protein for the detection of mycotoxin fumonisin B1 (FB1). The fumonisin mimotope was cloned as a fusion protein with a yellow fluorescent protein that could be used directly as the tracer for FB1 detection without the need of labeling or a secondary antibody. Furthermore, owing to the fluorescence quenching ability of AuNPs, a homogeneous immunoassay could be performed in a single step without washing steps to separate the unbound tracer. The homogeneous quenching assay showed negligible matrix effects in 5% wheat extract and high sensitivity for FB1 detection, with a dynamic range from 7.3 to 22.6 ng mL-1, a detection limit of 1.1 ng mL-1, and IC50 value of 12.9 ng mL-1, which was significantly lower than the IC50 value of the previously reported assay using the synthetic counterpart of the same mimotope in a microarray format. The homogeneous assay was demonstrated to be specific for fumonisins B1 and B2, as no significant cross-reactivity with other mycotoxins was observed, and acceptable recoveries (86% for FB1 2000 μg kg-1 and 103% for FB1 4000 μg kg-1), with relative standard deviation less than 6.5%, were reported from spiked wheat samples, proving that the method could provide a valuable tool for simple analysis of mycotoxin-contaminated food samples.
Collapse
|
15
|
Shoute LCT, Anwar A, MacKay S, Abdelrasoul GN, Lin D, Yan Z, Nguyen AH, McDermott MT, Shah MA, Yang J, Chen J, Li XS. Immuno-impedimetric Biosensor for Onsite Monitoring of Ascospores and Forecasting of Sclerotinia Stem Rot of Canola. Sci Rep 2018; 8:12396. [PMID: 30120328 PMCID: PMC6098051 DOI: 10.1038/s41598-018-30167-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 07/01/2018] [Indexed: 12/01/2022] Open
Abstract
Sclerotinia stem rot, caused by the fungal pathogen Sclerotinia sclerotiorum, is a destructive disease of canola and many other broadleaf crops. The primary inoculum responsible for initiating Sclerotinia epidemics is airborne ascospores released from the apothecia of sclerotia. Timely detection of the presence of airborne ascospores can serve as an early-warning system for forecasting and management of the disease. A major challenge is to develop a portable and automated device which can be deployed onsite to detect and quantify the presence of minute quantities of ascospores in the air and serves as a unit in a network of systems for forecasting of the epidemic. In this communication, we present the development of an impedimetric non-Faradaic biosensor based on anti-S. sclerotiorum polyclonal antibodies as probes to selectively capture the ascospores and sense their binding by an impedance based interdigitated electrode which was found to directly and unambiguously correlate the number of ascospores on sensor surface with the impedance response.
Collapse
Affiliation(s)
- Lian C T Shoute
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Afreen Anwar
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Scott MacKay
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Gaser N Abdelrasoul
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Donghai Lin
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Zhimin Yan
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, T6G 2M9, Canada
| | - Anh H Nguyen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Mark T McDermott
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, T6G 2M9, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Jian Yang
- InnoTech Alberta, Vegreville, AB, T9C 1T4, Canada
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, T6G 2M9, Canada
| | - Xiujie S Li
- InnoTech Alberta, Vegreville, AB, T9C 1T4, Canada.
| |
Collapse
|
16
|
Singh NK, Arya SK, Estrela P, Goswami P. Capacitive malaria aptasensor using Plasmodium falciparum glutamate dehydrogenase as target antigen in undiluted human serum. Biosens Bioelectron 2018; 117:246-252. [PMID: 29909195 DOI: 10.1016/j.bios.2018.06.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/02/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
A capacitive aptasensor for detecting the malaria biomarker, Plasmodium falciparum glutamate dehydrogenase (PfGDH), directly in human serum samples developed. A thiolated ssDNA aptamer (NG3) that binds specifically to PfGDH antigen with high affinity (Kd= 79 nM) was used to develop the aptasensor. The aptasensor produced capacitance response at an optimized frequency of 2 Hz in a non-Faradaic electrochemical impedance based signal transduction platform. The aptasensor exhibited a wide dynamic range of 100 fM-100 nM with a limits of detection of 0.77 pM in serum samples. The interference from other predominant malarial biomarkers, namely, Plasmodium falciparum -lactate dehydrogenase and -histidine rich protein-II on the aptasensor was negligible. This PfGDH aptasensor with highly sensitive and label free detection capability has great application potential for diagnosis of asymptotic malaria and monitoring the regression of malaria during treatment regime with antimalarial drugs.
Collapse
Affiliation(s)
- Naveen K Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039 Assam, India
| | - Sunil K Arya
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039 Assam, India.
| |
Collapse
|
17
|
Park JS, Kim HJ, Lee JH, Park JH, Kim J, Hwang KS, Lee BC. Amyloid Beta Detection by Faradaic Electrochemical Impedance Spectroscopy Using Interdigitated Microelectrodes. SENSORS (BASEL, SWITZERLAND) 2018; 18:E426. [PMID: 29389878 PMCID: PMC5855898 DOI: 10.3390/s18020426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 01/06/2023]
Abstract
Faradaic electrochemical impedance spectroscopy (f-EIS) in the presence of redox reagent, e.g., [Fe(CN)₆]3-/4-, is widely used in biosensors owing to its high sensitivity. However, in sensors detecting amyloid beta (Aβ), the redox reagent can cause the aggregation of Aβ, which is a disturbance factor in accurate detection. Here, we propose an interdigitated microelectrode (IME) based f-EIS technique that can alleviate the aggregation of Aβ and achieve high sensitivity by buffer control. The proposed method was verified by analyzing three different EIS-based sensors: non-faradaic EIS (nf-EIS), f-EIS, and the proposed f-EIS with buffer control. We analyzed the equivalent circuits of nf-EIS and f-EIS sensors. The dominant factors of sensitivity were analyzed, and the impedance change rates via Aβ reaction was compared. We measured the sensitivity of the IME sensors based on nf-EIS, f-EIS, and the proposed f-EIS. The results demonstrate that the proposed EIS-based IME sensor can detect Aβ with a sensitivity of 7.40-fold and 10.93-fold higher than the nf-EIS and the f-EIS sensors, respectively.
Collapse
Affiliation(s)
- Jin Soo Park
- Center for BioMicrosystems, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
- Department of Electrical Engineering, Korea University, Seoul 02841, Korea.
| | - Hye Jin Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Korea.
- Department of Electrical Engineering, Korea University, Seoul 02841, Korea.
| | - Ji-Hoon Lee
- Center for BioMicrosystems, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| | - Jung Ho Park
- Department of Electrical Engineering, Korea University, Seoul 02841, Korea.
| | - Jinsik Kim
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea.
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Byung Chul Lee
- Center for BioMicrosystems, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| |
Collapse
|