1
|
Yin P, Wang J, Li T, Pan Q, Zhu L, Yu F, Zhao YZ, Liu HB. A smartphone-based fluorescent sensor for rapid detection of multiple pathogenic bacteria. Biosens Bioelectron 2023; 242:115744. [PMID: 37826879 DOI: 10.1016/j.bios.2023.115744] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
In this study, we developed a fluorescent sensor for the sensitive detection of multiple pathogenic bacteria based on magnetic separation, fluorescent probes, and smartphone image processing. A microchannel device was assembled using high-transparency resin and 3D printing technology. This device was combined with a smartphone and an external lens to develop a fluorescent sensor for autonomous detection of multiple pathogenic bacteria. Three fluorescence probes with different fluorescence were synthesized from highly specific aptamers and tetraphenylethylene derivatives. These fluorescent probes can make Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa emit different colors of fluorescence. Using the enrichment performance of molecularly imprinted materials, separation and detection of bacteria can be achieved simultaneously. Finally, with the Red-Green-Blue (RGB) analysis functionality of a smartphone, real-time field detection was realized with a sensitivity of 102 CFU/mL and a detection time of 40 min. This work provides a simple, inexpensive, and real-time sensor for the detection of multiple pathogens in medical diagnostics, food testing, and environmental analyses.
Collapse
Affiliation(s)
- Pengchao Yin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China
| | - Ting Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China
| | - Qingbin Pan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China
| | - Linchen Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China
| | - Feifei Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China
| | - Yong-Zhen Zhao
- Guangxi Shrimp Breeding Engineering Technology Research Center, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China.
| |
Collapse
|
2
|
Wang D, Zhang J, huang Z, Yang Y, Fu T, Yang Y, Lyu Y, Jiang J, Qiu L, Cao Z, Zhang X, You Q, Lin Y, Zhao Z, Tan W. Robust Covalent Aptamer Strategy Enables Sensitive Detection and Enhanced Inhibition of SARS-CoV-2 Proteins. ACS CENTRAL SCIENCE 2023; 9:72-83. [PMID: 36712483 PMCID: PMC9881204 DOI: 10.1021/acscentsci.2c01263] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Indexed: 06/18/2023]
Abstract
Aptamer-based detection and therapy have made substantial progress with cost control and easy modification. However, the conformation lability of an aptamer typically causes the dissociation of aptamer-target complexes during harsh washes and other environmental stresses, resulting in only moderate detection sensitivity and a decreasing therapeutic effect. Herein, we report a robust covalent aptamer strategy to sensitively detect nucleocapsid protein and potently neutralize spike protein receptor binding domain (RBD), two of the most important proteins of SARS-CoV-2, after testing different cross-link electrophilic groups via integrating the specificity and efficiency. Covalent aptamers can specifically convert aptamer-protein complexes from the dynamic equilibrium state to stable and irreversible covalent complexes even in harsh environments. Covalent aptamer-based ELISA detection of nucleocapsid protein can surpass the gold standard, antibody-based sandwich ELISA. Further, covalent aptamer performs enhanced functional inhibition to RBD protein even in a blood vessel-mimicking flowing circulation system. The robust covalent aptamer-based strategy is expected to inspire more applications in accurate molecular modification, disease biomarker discovery, and other theranostic fields.
Collapse
Affiliation(s)
- Dan Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- LIMES
Chemical Biology Unit, Universität
Bonn, 53121 Bonn, Germany
| | - Jing Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong huang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuhang Yang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ting Fu
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yu Yang
- Institute
of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University
School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifan Lyu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jianhui Jiang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zehui Cao
- Institute
of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University
School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaobing Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qimin You
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Ustar
Biotechnologies (Hangzhou) Ltd., Hangzhou, Zhejiang 310053, China
| | - Yuankui Lin
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Ustar
Biotechnologies (Hangzhou) Ltd., Hangzhou, Zhejiang 310053, China
| | - Zilong Zhao
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute
of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University
School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Zhang J, Wang D, Chen H, Yuan X, Jiang X, Ai L, He J, Chen F, Xie S, Cui C, Tan W. A pH-Responsive Covalent Nanoscale Device Enhancing Temporal and Force Stability for Specific Tumor Imaging. NANO LETTERS 2022; 22:9441-9449. [PMID: 36442508 DOI: 10.1021/acs.nanolett.2c03487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Approaches to DNA probe-mediated precision medicine have been extensively explored for the diagnosis and treatment of diverse types of cancer. Despite this, simple nanoscale devices with the required recognition specificity and sensitivity for clinical application have remained elusive until now. Here, we report a pH-driven covalent nanoscale device that integrates pH-responsive, switchable structure and proximity-driven covalent cross-linking. A tumor acidic, pH-driven mechanism eliminates "on-target, off-tumor" nonspecific recognition. By manipulating covalent binding to target molecule on the cell surface, this nanodevice avoids binding-then-shedding to improve the sensitivity of tumor recognition. We envision that this pH-driven covalent nanoscale device will inspire more clinical applications toward specific, long-term tumor imaging in the cancer microenvironment.
Collapse
Affiliation(s)
- Jing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan410082, China
| | - Dan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan410082, China
| | - Hong Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan410082, China
| | - Xi Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan410082, China
| | - Xinyi Jiang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan410082, China
| | - Lili Ai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan410082, China
| | - Jiaxuan He
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang310022, China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan410082, China
| | - Sitao Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang310022, China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
4
|
Keijzer JF, Albada B. DNA-assisted site-selective protein modification. Biopolymers 2021; 113:e23483. [PMID: 34878181 PMCID: PMC9285461 DOI: 10.1002/bip.23483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022]
Abstract
Protein modification is important for various types of biomedical research, including proteomics and therapeutics. Many methodologies for protein modification exist, but not all possess the required level of efficiency and site selectivity. This review focuses on the use of DNA to achieve the desired conversions and levels of accuracy in protein modification by using DNA (i) as a template to help concentrate dilute reactants, (ii) as a guidance system to achieve selectivity by binding specific proteins, and (iii) even as catalytic entity or construct to enhance protein modification reactions.
Collapse
Affiliation(s)
- Jordi F Keijzer
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
Aptamer-Based Fluorescent Biosensor for the Rapid and Sensitive Detection of Allergens in Food Matrices. Foods 2021; 10:foods10112598. [PMID: 34828878 PMCID: PMC8623274 DOI: 10.3390/foods10112598] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Food allergies have seriously affected the life quality of some people and even endangered their lives. At present, there is still no effective cure for food allergies. Avoiding the intake of allergenic food is still the most effective way to prevent allergic diseases. Therefore, it is necessary to develop rapid, accurate, sensitive, and reliable analysis methods to detect food allergens from different sources. Aptamers are oligonucleotide sequences that can bind to a variety of targets with high specificity and selectivity, and they are often combined with different transduction technologies, thereby constructing various types of aptamer sensors. In recent years, with the development of technology and the application of new materials, the sensitivity, portability, and cost of fluorescence sensing technology have been greatly improved. Therefore, aptamer-based fluorescence sensing technology has been widely developed and applied in the specific recognition of food allergens. In this paper, the classification of major allergens and their characteristics in animal and plant foods were comprehensively reviewed, and the preparation principles and practical applications of aptamer-based fluorescence biosensors are summarized. In addition, we hope that this article can provide some strategies for the rapid and sensitive detection of allergens in food matrices.
Collapse
|
6
|
Yang W, Nan H, Xu Z, Huang Z, Chen S, Li J, Li J, Yang H. DNA-Templated Glycan Labeling for Monitoring Receptor Spatial Distribution in Living Cells. Anal Chem 2021; 93:12265-12272. [PMID: 34474560 DOI: 10.1021/acs.analchem.1c01815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tracking the spatial distribution of receptor tyrosine kinases in their native environment contributes to understanding the homeostatic or pathological states at a molecular level. Conjugation of DNA tags to a specific receptor is a powerful tool for monitoring receptor spatial distribution. However, long-term stable trafficking in live cells without interfering with the intrinsic receptor function remains a challenge. Here, we report a general DNA-templated glycan labeling strategy to track spatial distribution of a specific receptor in living cells. Different from existing target-selective covalent methods, the DNA tags were incorporated in glycan of a specific receptor via aptamer-assisted metabolic glycan labeling, thus resulting in minimal perturbation to the receptor's biological function. As proof of concept, covalent tagging of MET, HER2, and EGFR was achieved, and then the spatial distribution was successfully monitored, including homo-/heterodimerization and internalization. Overall, the proposed strategy will greatly aid in investigating receptor dynamics and is conducive to understanding their biological function in the native environment.
Collapse
Affiliation(s)
- Wen Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Hexin Nan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zhifei Xu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zixiang Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shan Chen
- Institute of Oceanography, Minjiang University, Fuzhou350108, Fujian, People's Republic of China
| | - Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
7
|
Kohata A, Ueki R, Okuro K, Hashim PK, Sando S, Aida T. Photoreactive Molecular Glue for Enhancing the Efficacy of DNA Aptamers by Temporary-to-Permanent Conjugation with Target Proteins. J Am Chem Soc 2021; 143:13937-13943. [PMID: 34424707 DOI: 10.1021/jacs.1c06816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a photoreactive molecular glue, BPGlue-N3, which can provide a universal strategy to enhance the efficacy of DNA aptamers by temporary-to-permanent stepwise stabilization of their conjugates with target proteins. As a proof-of-concept study, we applied BPGlue-N3 to the SL1 (DNA aptamer)/c-Met (target protein) conjugate system. BPGlue-N3 can adhere to and temporarily stabilize this aptamer/protein conjugate multivalently using its guanidinium ion (Gu+) pendants that form a salt bridge with oxyanionic moieties (e.g., carboxylate and phosphate) and benzophenone (BP) group that is highly affinitive to DNA duplexes. BPGlue-N3 is designed to carry a dual-mode photoreactivity; upon exposure to UV light, the temporarily stabilized aptamer/protein conjugate reacts with the photoexcited BP unit of adhering BPGlue-N3 and also a nitrene species, possibly generated by the BP-to-N3 energy transfer in BPGlue-N3. We confirmed that SL1, covalently conjugated with c-Met, hampered the binding of hepatocyte growth factor (HGF) onto c-Met, even when the SL1/c-Met conjugate was rinsed prior to the treatment with HGF, and suppressed cell migration caused by HGF-induced c-Met phosphorylation.
Collapse
Affiliation(s)
- Ai Kohata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryosuke Ueki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kou Okuro
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - P K Hashim
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
8
|
Zhang Y, Hu X, Wang Q. Review of microchip analytical methods for the determination of pathogenic Escherichia coli. Talanta 2021; 232:122410. [PMID: 34074400 DOI: 10.1016/j.talanta.2021.122410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/28/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Bacterial infections remain the principal cause of mortality worldwide, making the detection of pathogenic bacteria highly important, especially Escherichia coli (E. coli). Current E. coli detection methods are labour-intensive, time-consuming, or require expensive instrumentation, making it critical to develop new strategies that are sensitive and specific. Microchips are an automated analytical technique used to analyse food based on their separation efficiency and low analyte consumption, which make them the preferred method to detect pathogenic bacteria. This review presents an overview of microchip-based analytical methods for analysing E. coli, which were published in recent years. Specifically, this review focuses on current research based on microchips for the detection of E. coli and reviews the limitations of microchip-based methods and future perspectives for the analysis of pathogenic bacteria.
Collapse
Affiliation(s)
- Yan Zhang
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, China; School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xianzhi Hu
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
9
|
Jose J, Thomas AM, Mendonsa D, Al-Sanea MM, Uddin MS, Parambi DGT, Charyulu RN, Mathew B. Aptamers in Drug Design: An Emerging Weapon to Fight a Losing Battle. Curr Drug Targets 2020; 20:1624-1635. [PMID: 31362673 DOI: 10.2174/1389450120666190729121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
Implementation of novel and biocompatible polymers in drug design is an emerging and rapidly growing area of research. Even though we have a large number of polymer materials for various applications, the biocompatibility of these materials remains as a herculean task for researchers. Aptamers provide a vital and efficient solution to this problem. They are usually small (ranging from 20 to 60 nucleotides, single-stranded DNA or RNA oligonucleotides which are capable of binding to molecules possessing high affinity and other properties like specificity. This review focuses on different aspects of Aptamers in drug discovery, starting from its preparation methods and covering the recent scenario reported in the literature regarding their use in drug discovery. We address the limitations of Aptamers and provide valuable insights into their future potential in the areas regarding drug discovery research. Finally, we explained the major role of Aptamers like medical imaging techniques, application as synthetic antibodies, and the most recent application, which is in combination with nanomedicines.
Collapse
Affiliation(s)
- Jobin Jose
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Mangalore, India
| | - Aaron Mathew Thomas
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Mangalore, India
| | - Darewin Mendonsa
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Mangalore, India
| | - Mohammad M Al-Sanea
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Sakaka, Al Jouf-2014, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Sakaka, Al Jouf-2014, Saudi Arabia
| | - R Narayana Charyulu
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Mangalore, India
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad 678557, Kerala, India
| |
Collapse
|
10
|
Zhang J, Wang XY, Wang YH, Wang DD, Song Z, Zhang CD, Wang HS. Colorable Zeolitic Imidazolate Frameworks for Colorimetric Detection of Biomolecules. Anal Chem 2020; 92:12670-12677. [PMID: 32842725 DOI: 10.1021/acs.analchem.0c02895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a series of colorable zeolitic imidazolate framework (ZIF)-based nanomaterials prepared by encapsulating starches (amylopectin, dextrin, or amylose) or tannic acid in the frameworks of ZIFs and first applied them in colorimetric assay of microRNA/DNA by adding I2/KI or FeCl3 solutions as chromogenic reagents. We found that iodine molecules can lead to rapid degradation of the ZIF-8 framework, while ZIF-90 remains stable. Therefore, ZIF-90 was selected for encapsulating the starches or tannic acid, and then assembled with polyethylenimine (PEI) and aptamers of microRNA/DNA. After interacting with the target microRNA/DNA, the aptamers (Ap) move away from the surface of the prepared Ap-starch@ZIF-90 or Ap-tan@ZIF-90, and the I2/KI or FeCl3 solution is added into the system to interact the starches (amylopectin, dextrin, or amylose) or tannic acid to generate different colors. According to the absorbance spectra, good linear correlations between the logarithm of absorbance intensity and the concentration of microRNA (1-180 nM) can be observed, and the naked eye can distinguish the change from ∼60 to ∼180 nM with a concentration gradient of 20 nM. A similar colorimetric assay ability for pathogenic bacteria can also be realized by detecting the gene fragments IS200 and eaeA. The detection limits can be potentially optimized by changing the amount of adsorbed PEI and aptamers on the surface of Ap-starch@ZIF-90 (or Ap-tan@ZIF-90) nanoparticles. This method could be a promising alternative for simple and cost-effective assay of microRNA/DNA.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Xing-Yu Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Hui Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Dan-Dan Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Chang-Dong Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
11
|
Zhang J, Peng J, Huang Y, Meng L, Li Q, Xiong F, Li X. Identification of Histone deacetylase (HDAC)‐Associated Proteins with DNA‐Programmed Affinity Labeling. Angew Chem Int Ed Engl 2020; 59:17525-17532. [DOI: 10.1002/anie.202001205] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/14/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Jianfu Zhang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Jianzhao Peng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Ling Meng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Qingrong Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Feng Xiong
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| |
Collapse
|
12
|
Zhang J, Peng J, Huang Y, Meng L, Li Q, Xiong F, Li X. Identification of Histone deacetylase (HDAC)‐Associated Proteins with DNA‐Programmed Affinity Labeling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jianfu Zhang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Jianzhao Peng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Ling Meng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Qingrong Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Feng Xiong
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| |
Collapse
|
13
|
Chemical Modification of Aptamers for Increased Binding Affinity in Diagnostic Applications: Current Status and Future Prospects. Int J Mol Sci 2020; 21:ijms21124522. [PMID: 32630547 PMCID: PMC7350236 DOI: 10.3390/ijms21124522] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Aptamers are short single stranded DNA or RNA oligonucleotides that can recognize analytes with extraordinary target selectivity and affinity. Despite their promising properties and diagnostic potential, the number of commercial applications remains scarce. In order to endow them with novel recognition motifs and enhanced properties, chemical modification of aptamers has been pursued. This review focuses on chemical modifications, aimed at increasing the binding affinity for the aptamer's target either in a non-covalent or covalent fashion, hereby improving their application potential in a diagnostic context. An overview of current methodologies will be given, thereby distinguishing between pre- and post-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) modifications.
Collapse
|
14
|
Xiong H, Yan J, Cai S, He Q, Peng D, Liu Z, Liu Y. Cancer protein biomarker discovery based on nucleic acid aptamers. Int J Biol Macromol 2019; 132:190-202. [PMID: 30926499 DOI: 10.1016/j.ijbiomac.2019.03.165] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 01/11/2023]
Abstract
Identification of biomarkers is essential for diagnosis, targeted therapy and prognosis evaluation of diseases, especially cancers. Currently, the number of ideal clinical biomarkers is still limited partially because of lacking efficient methods in biomarker discovery. Nucleic acid aptamers are artificial single-stranded DNA or RNA sequences that can selectively bind to various targets with high specificity and affinity. Moreover, aptamers possess desirable advantages, including easy synthesis, convenient modification, relative chemical stability and low immunogenicity. Recently, different aptamer-based strategies have been developed to facilitate the discovery of biomarkers. Based on cell-SELEX technology, the selected aptamers can be used to identify cell-surface protein biomarkers of different cancer cells. SOMAscan can analyze thousands of proteins of different biological samples, which becomes a multiplexed protein biomarker discovery platform. Additionally, secreted protein biomarkers can be discovered by aptamers screened through secretome SELEX. In order to facilitate the identification of target proteins, several covalent cross-linking strategies have been developed, such as aptamer-based affinity labeling (ABAL), DNA-templated aptamer and protein-aptamer template (PAT). In this review, we mainly highlight the emerging nucleic acid aptamer-based biomarker discovery strategies and demonstrate their unique technological advantages in discovering cancer biomarkers. The challenges and perspectives of aptamer-based methods are also discussed.
Collapse
Affiliation(s)
- Hongjie Xiong
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Jianhua Yan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Shundong Cai
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Qunye He
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China.
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China.
| |
Collapse
|
15
|
Zhang Y, Zhu L, He P, Zi F, Hu X, Wang Q. Sensitive assay of Escherichia coli in food samples by microchip capillary electrophoresis based on specific aptamer binding strategy. Talanta 2019; 197:284-290. [PMID: 30771937 DOI: 10.1016/j.talanta.2019.01.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 11/30/2022]
Abstract
The rapid and cost-effective detection of bacteria is of great importance to ensuring food safety, preventing food poisoning. Herein, we developed a sensitive detection of Escherichia coli (E. coli) using bacteria-specific aptamer in conjunction with microchip capillary electrophoresis-coupled laser-induced fluorescence (MCE-LIF). Based on the differences between charge to mass ratios of free aptamer and bacteria-aptamer complex, which influence their electrophoretic mobilities, the separation of free aptamers and complex peaks by MCE could be achieved. Under optimal conditions, the sensitive detection of E. coli was achieved with a detection limit of 3.7 × 102 CFU mL-1, at a fast response of 135 s and a short detection length of 2.3 cm. The spiked recovery experiment showed that E. coli could be recovered from spiked drinking water and milk samples with recovery rates of 94.7% and 92.8%, respectively. This work demonstrates that the established detection strategy can be a useful tool for the detection and/or monitoring of E. coli in food and environment.
Collapse
Affiliation(s)
- Yan Zhang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China; School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Luqi Zhu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Futing Zi
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Xianzhi Hu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
16
|
Zhai G, Dong H, Guo Z, Feng W, Jin J, Zhang T, Chen C, Chen P, Tian S, Bai X, Shi L, Fan E, Zhang Y, Zhang K. An Efficient Approach for Selective Enrichment of Histone Modification Readers Using Self-Assembled Multivalent Photoaffinity Peptide Probes. Anal Chem 2018; 90:11385-11392. [PMID: 30188686 DOI: 10.1021/acs.analchem.8b02342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histone post-translational modifications (HPTMs) provide signaling platforms to recruit proteins or protein complexes (e.g., transcription factors, the so-called "readers" of the histone code), changing DNA accessibility in the regulation of gene expression. Thus, it is an essential task to identify HPTM readers for understanding of epigenetic regulation. Herein we designed and prepared a novel HPTM probe based on self-assembled multivalent photo-cross-linking technique for selective enrichment and identification of HPTM readers. By use of trimethylation of histone H3 lysine 4, we showcased that the functionalized HPTM probe was able to capture its reader with high enrichment efficiency and remarkable specificity even in a complex environment. Notably, this approach was readily applicable for exploring crosstalk among multiple HPTMs. Combining the probes with a mass spectrometry-based proteomic approach, our approach reached a fairly high coverage of known H3K4me3 readers. We further demonstrated that the HPTM probes can enrich a new type of HPTM readers and uncovered several novel putative binders of crotonylation of histone H3 lysine 9, expanding the repertoire of readers for this epigenetic mark. More broadly, our work provides a general strategy for rapid and robust interrogating HPTM readers and will be of great importance to elucidate epigenetic mechanism in regulating gene activity.
Collapse
Affiliation(s)
- Guijin Zhai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Hanyang Dong
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Zhenchang Guo
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Wei Feng
- School of Biomedical Engineering , Tianjin Medical University , Tianjin 300070 , China
| | - Jin Jin
- College of Pharmacy , Nankai University , Tianjin 300071 , China
| | - Tao Zhang
- School of Biomedical Engineering , Tianjin Medical University , Tianjin 300070 , China
| | - Cong Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Pu Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Shanshan Tian
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Xue Bai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Lei Shi
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Enguo Fan
- Institut für Biochemie und Molekularbiologie , Universität Freiburg , Stefan-Meier-Straße 17 , Freiburg 79104 , Germany
| | - Yukui Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| |
Collapse
|
17
|
Zheng B, Yang X, Li J, Shi CF, Wang ZL, Xia XH. Graphene Plasmon-Enhanced IR Biosensing for in Situ Detection of Aqueous-Phase Molecules with an Attenuated Total Reflection Mode. Anal Chem 2018; 90:10786-10794. [PMID: 30125489 DOI: 10.1021/acs.analchem.8b01715] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Graphene plasmon has attracted extensive interest due to the unprecedented electromagnetic confinement, long propagation distance, and tunable plasmonic frequency. Successful applications of graphene plasmon as infrared sensors have been recently demonstrated, yet they are mainly focused on solid/solid and solid/gas interfaces analysis. Herein, we, for the first time, propose a graphene plasmon-enhanced infrared sensor based on attenuated total reflection configuration for in situ analysis of aqueous-phase molecules. This IR sensor includes a boron-doped graphene (BG) nanodisk array fabricated on top of a ZnSe prism surface that supports attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRA). Our ATR-SEIRA platform is efficient and straightforward for in situ and label-free monitoring of the interaction of biomolecules without interference from the environments, allowing for the extraction of instant spectroscopic information in a complex biological event. Utilizing the near-field enhancement of graphene plasmon, the binding interaction of L-selectin with its aptamer as a demonstration has been investigated to evaluate the specific protein recognition process. The detection limit of the target protein reaches 0.5 nM. Our work demonstrates that chemical-doped graphene plasmon combined with ATR-SEIRA is a promising signal enhancement platform for in situ aqueous-phase biosensing.
Collapse
Affiliation(s)
- Bo Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Xin Yang
- School of Physics , Nanjing University , Nanjing 210093 , China
| | - Jian Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Cai-Feng Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Zhen-Lin Wang
- School of Physics , Nanjing University , Nanjing 210093 , China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
18
|
Zhang Y, Luo F, Zhang Y, Zhu L, Li Y, Zhao S, He P, Wang Q. A sensitive assay based on specific aptamer binding for the detection of Salmonella enterica serovar Typhimurium in milk samples by microchip capillary electrophoresis. J Chromatogr A 2017; 1534:188-194. [PMID: 29289340 DOI: 10.1016/j.chroma.2017.12.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 11/27/2022]
Abstract
The detection of Salmonella enterica serovar Typhimurium (S. Typhimurium) is very important for the prevention of food poisoning and other infectious diseases. Here we reported a simple and sensitive strategy to test S. Typhimurium by microchip capillary electrophoresis couple with laser-induced fluorescence (MCE-LIF) based on the specific reaction between the bacterium and corresponding aptamers. Based on the differences in charge to mass ratio between bacteria-aptamer complexes and free aptamers, a separation of the complexes and free aptamers could be obtained by MCE. The optimal parameters of the specific reaction including fluorescent dye concentration, Mg2+ concentration, incubation time, and pH of incubation solution were carefully investigated. Meanwhile, a non-specific DNA was exploited as a contrast for the detection of S. Typhimurium. Under the optimal conditions, a rapid separation of the bacteria-aptamer complex and free aptamers was achieved within 135 s with a limit of detection (S/N = 3) of 3.37 × 102 CFU mL-1. This method was applied for the detection of S. Typhimurium in fresh milk samples and a recovery rate of 95.8% was obtained. The experimental results indicated that the specific aptamers are of enough biostability and the established method could be used to analyze S. Typhimurium in foods.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Feifei Luo
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Yating Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Luqi Zhu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Yi Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Shuangli Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| |
Collapse
|