1
|
Zhang ML, Cao XQ, Cao C, Zheng TF, Xie X, Wen HR, Liu SJ. Highly stable Tb(III) metal-organic framework derived from a new benzothiadiazole functionalized ligand for fluorescence recognition of ascorbic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124898. [PMID: 39116597 DOI: 10.1016/j.saa.2024.124898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Because ascorbic acid (AA) is one of the basic elements to maintain the normal physiological functions of human body, it is urgent to develop a material that can achieve efficient, rapid and in-situ detection for AA. A new fluorescence organic compound 4',4'''-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis([1,1'-biphenyl]-4-carboxylic acid) (H2BTBC) based on benzothiadiazole group has been synthesized, which can detect Fe3+ ions by fluorescence turn-off effect with a detection limit of 0.015 μM, as well as recognize linear amines by fluorescence turn-on effect. Moreover, a highly stable Tb(III) metal-organic framework has been solvothermally prepared with H2BTBC, namely {[(CH3)2NH2]2[Tb2(BTBC)4]∙solvents}n (JXUST-39), which can selectively detect AA among biological fluids by fluorescence enhancement effect with a detection limit of 0.077 μM. In addition, the mechanism for JXUST-39 detecting AA is possibly the cooperative effect of absorbance-caused enhancement and charge transfer between JXUST-39 and AA. Moreover, LED lamp beads, fluorescent films and fluorescent detection test paper based on JXUST-39 were prepared to achieve portable detection via fluorescence enhancement effect.
Collapse
Affiliation(s)
- Man-Lian Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Xiao-Qin Cao
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Chen Cao
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China.
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Xin Xie
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, Jiangxi Province, PR China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China.
| |
Collapse
|
2
|
Zhang LL, Li L, Wang D, Hong Y, Tang K, Hong J, Chen Z, Yang W, Lu L, Duan LY. Rapid redox-response featured visual ascorbic acid sensor based on simple-assembled europium metal-organic framework. Food Chem 2024; 459:140339. [PMID: 38986206 DOI: 10.1016/j.foodchem.2024.140339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
A facile, fast and visible sensing platform for ascorbic acid (AA) detection has been developed based on self-assembled hydrangea-like europium metal-organic framework (HL-EuMOF). HL-EuMOF was synthesized through a simple one-step mixing process with Eu3+ and 1, 10-phenanthroline-2, 9-dicarboxylic acid at room temperature, which exhibited excellent properties including strong red fluorescence, long decay lifetime (548.623 μs) and good luminescent stability. Based on the specific redox reaction between Fe3+ and AA, the HL-EuMOF@Fe3+ was fabricated with "turn-off" response for AA, where the resulting Fe2+ displayed effective fluorescence quenching ability toward HL-EuMOF. The sensor demonstrated low detection limit (31.94 nM), rapid response time (30 s) and high selectivity. Integration of smartphone-assisted RGB analysis with HL-EuMOF@Fe3+ permitted convenient and visible quantitative determination of AA level. This approach also presented good detection performances in complex human serum and beverage samples, which could provide a valuable tool for AA detection in biomedical research and food industry.
Collapse
Affiliation(s)
- Lin-Lin Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dan Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanping Hong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kaijie Tang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiaxin Hong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zeng Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wuying Yang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Lu-Ying Duan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
3
|
Chopra A, Kumari Y, Singh AP, Sharma Y. A review on green synthesis, biological applications of carbon dots in the field of drug delivery, biosensors, and bioimaging. LUMINESCENCE 2024; 39:e4870. [PMID: 39155541 DOI: 10.1002/bio.4870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the beginning of nanoscience and nanotechnology, carbon dots (CDs) have been the foundational idea and have dominated the growth of the nano-field. CDs are an intriguing platform for utilization in biology, technology, catalysis, and other fields thanks to their numerous distinctive structural, physicochemical, and photochemical characteristics. Since several carbon dots have already been created, they have been assessed based on their synthesis process, and luminescence characteristics. Due to their biocompatibility, less toxic effects, and most significantly their fluorescent features in contrast to other carbon nanostructures, CDs have several benefits. This review focuses on the most recent advancements in the characterization, applications, and synthesis techniques used for CDs made from natural sources. It will also direct scientists in the creation of a synthesis technique for adjustable carbon dots that is more practical, effective, and environmentally benign. With low toxicity and low cost, CDs are meeting the new era's requirements for more selectivity and sensitivity in the detection and sensing of various things, such as biomaterial sensing, enzymes, chemical contamination, and temperature sensing. Its variety of properties, such as optical properties, chemiluminescence, and morphological analysis, make it a good option to use in bioimaging, drug delivery, biosensors, and cancer diagnosis.
Collapse
Affiliation(s)
- Arshdeep Chopra
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Yogindra Kumari
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Ajay Pal Singh
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Yash Sharma
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| |
Collapse
|
4
|
Semenov KN, Shemchuk OS, Ageev SV, Andoskin PA, Iurev GO, Murin IV, Kozhukhov PK, Maystrenko DN, Molchanov OE, Kholmurodova DK, Rizaev JA, Sharoyko VV. Development of Graphene-Based Materials with the Targeted Action for Cancer Theranostics. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1362-1391. [PMID: 39245451 DOI: 10.1134/s0006297924080029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024]
Abstract
The review summarises the prospects in the application of graphene and graphene-based nanomaterials (GBNs) in nanomedicine, including drug delivery, photothermal and photodynamic therapy, and theranostics in cancer treatment. The application of GBNs in various areas of science and medicine is due to the unique properties of graphene allowing the development of novel ground-breaking biomedical applications. The review describes current approaches to the production of new targeting graphene-based biomedical agents for the chemotherapy, photothermal therapy, and photodynamic therapy of tumors. Analysis of publications and FDA databases showed that despite numerous clinical studies of graphene-based materials conducted worldwide, there is a lack of information on the clinical trials on the use of graphene-based conjugates for the targeted drug delivery and diagnostics. The review will be helpful for researchers working in development of carbon nanostructures, material science, medicinal chemistry, and nanobiomedicine.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | - Olga S Shemchuk
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Pavel A Andoskin
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Igor V Murin
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | | | - Dmitriy N Maystrenko
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | - Oleg E Molchanov
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | | | - Jasur A Rizaev
- Samarkand Medical University, Samarkand, 100400, Uzbekistan
| | - Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| |
Collapse
|
5
|
Zhai Z, Fan Z. Detection of ascorbic acid by persistent luminescent nanoparticles based on CoOOH nanosheets modification. Mikrochim Acta 2024; 191:398. [PMID: 38877344 DOI: 10.1007/s00604-024-06490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
Persistent luminescent nanomaterials (PLNPs) Zn0.8Ga2O4: Cr3+, Zr3+ with high brightness and good dispersion were prepared by hydrothermal method. The PLNPs were used as luminescent units, and CoOOH nanosheets were used as quenching agents. Based on the fluorescence internal filtering effect, the luminescence of PLNPs were effectively quenched by CoOOH modification on the surface of PLNPs. However, the introduction of ascorbic acid (AA) restored the luminescence of PLNPs and successfully achieved highly sensitive and selective detection of AA. This was due to a selective redox reaction between CoOOH and AA, in which CoOOH was reduced to Co2+. The degree of luminescence recovery of PLNPs showed a good linear relationship with AA concentration in the range 5-250 µM, with a detection limit of 0.72 µM. The recovery of actual spiked samples were 97.9-102.2%. This method is expected to provide reference for the study of other redox substances in biological systems.
Collapse
Affiliation(s)
- Zhenmin Zhai
- School of Chemistry and Materials Science, Shanxi Normal University, TaiYuan, 030032, China
| | - Zhefeng Fan
- School of Chemistry and Materials Science, Shanxi Normal University, TaiYuan, 030032, China.
| |
Collapse
|
6
|
Wang S, Li P, Wang J, Gong J, Lu H, Wang X, Wang Q, Xue P. Detection of Ascorbic Acid by Two-Dimensional Conductive Metal-Organic Framework-Based Electrochemical Sensors. Molecules 2024; 29:2413. [PMID: 38893288 PMCID: PMC11173493 DOI: 10.3390/molecules29112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
The realization of efficient and accurate detection of biomolecules has become a key scientific issue in the field of life sciences. With the rapid development of nanotechnology, electrochemical sensors constructed from the superior physical and chemical properties of nanomaterials show faster and more accurate detection. Among nanomaterials, two-dimensional conductive MOF (2D cMOF) is considered to be a star material in electrochemical sensors due to its remarkable conductivity, high porosity, and stability. In this paper, a Cu3(HHTP)2/SPE electrochemical sensor for the detection of ascorbic acid (AA) was constructed by modifying 2D cMOF (Cu3(HHTP)2) on the surface of the screen-printed electrode (SPE). The sensor exhibited excellent catalytic activity in the detection of AA, with a lower detection limit of 2.4 μmol/L (S/N = 3) and a wide linear range of 25-1645 μmol/L. This high catalytic activity can be attributed to the abundant catalytic sites in Cu3(HHTP)2 and the rapid electron transfer between Cu+ and Cu2+, which accelerates the oxidation of AA. This work lays a foundation for the subsequent development of MOFs with special electrochemical catalytic properties and the integration of 2D cMOF into intelligent electrical analysis devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Quan Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Ping Xue
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
7
|
Kothoori NPS, Sivasakthi P, Baithy M, Misra R, Samanta PK. Rational design and investigation of nonlinear optical response properties of pyrrolopyrrole aza-BODIPY-based novel push-pull chromophores. RSC Adv 2024; 14:15560-15570. [PMID: 38756482 PMCID: PMC11097754 DOI: 10.1039/d4ra02861a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Intramolecular charge transfer (ICT)-based chromophores are highly sought after for designing near-infrared (NIR) absorbing and emitting dyes as well as for designing materials for nonlinear optical (NLO) applications. The properties of these 'push-pull' molecules can easily be modified by varying the electronic donor (D) and acceptor (A) groups as well as the π-conjugation linker. This study presents a methodical approach and employs quantum chemical analysis to explore the relationship between the structural features, electro-optical properties, and the NLO characteristics of molecules with D-π-A framework. The one- and two-photon absorption (2PA), linear polarizability (α), and first hyperpolarizability (β) of some novel chromophores, consisting of a dimeric aza-Boron Dipyrromethene (aza-BODIPY) analogue, called, pyrrolopyrrole aza-BODIPY (PPAB), serving as the acceptor, have been investigated. The electronic donors used in this study are triphenylamine (TPA) and diphenylamine (DPA), and they are conjugated to the acceptor via thienyl or phenylene π-linkers. Additionally, the Hyper-Rayleigh Scattering (βHRS), which enables direct estimation of the second-order NLO properties, is calculated for the studied chromophores with 1064 nm excitation in acetonitrile. The β value shows a significant increase with increasing solvent polarity, indicating that the ICT plays a crucial role in shaping the NLO response of the studied molecules. The enhancement of the 2PA cross-section of the investigated molecules can also be achieved by modulating the combinations of donors and linkers. The results of our study indicate that the novel D-π-A molecules designed in this work demonstrate considerably higher hyperpolarizability values than the standard p-nitroaniline, making them promising candidates for future NLO applications.
Collapse
Affiliation(s)
- Naga Pranava Sree Kothoori
- Department of Chemistry, School of Science, Gandhi Institute of Technology and Management (GITAM) Hyderabad-502329 India
| | - Pandiyan Sivasakthi
- Department of Chemistry, School of Science, Gandhi Institute of Technology and Management (GITAM) Hyderabad-502329 India
- Department of Chemistry, Birla Institute of Technology and Science Pilani (BITS Pilani), Hyderabad Campus Hyderabad-500078 India
| | - Mallesham Baithy
- Department of Chemistry, School of Science, Gandhi Institute of Technology and Management (GITAM) Hyderabad-502329 India
| | - Ramprasad Misra
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin Berlin-10115 Germany
| | - Pralok K Samanta
- Department of Chemistry, School of Science, Gandhi Institute of Technology and Management (GITAM) Hyderabad-502329 India
- Department of Chemistry, Birla Institute of Technology and Science Pilani (BITS Pilani), Hyderabad Campus Hyderabad-500078 India
| |
Collapse
|
8
|
Meng X, Pang X, Yang J, Zhang X, Dong H. Recent Advances in Electrochemiluminescence Biosensors for MicroRNA Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307701. [PMID: 38152970 DOI: 10.1002/smll.202307701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Electrochemiluminescence (ECL) as an analytical technology with a perfect combination of electrochemistry and spectroscopy has received considerable attention in bioanalysis due to its high sensitivity and broad dynamic range. Given the selectivity of bio-recognition elements and the high sensitivity of the ECL analysis technique, ECL biosensors are powerful platforms for the sensitive detection of biomarkers, achieving the accurate prognosis and diagnosis of diseases. MicroRNAs (miRNAs) are crucial biomarkers involved in a variety of physiological and pathological processes, whose aberrant expression is often related to serious diseases, especially cancers. ECL biosensors can fulfill the highly sensitive and selective requirements for accurate miRNA detection, prompting this review. The ECL mechanisms are initially introduced and subsequently categorize the ECL biosensors for miRNA detection in terms of the quenching agents. Furthermore, the work highlights the signal amplification strategies for enhancing ECL signal to improve the sensitivity of miRNA detection and finally concludes by looking at the challenges and opportunities in ECL biosensors for miRNA detection.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Xuejiao Pang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Junyan Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, P. R. China
| |
Collapse
|
9
|
Sadeghi-Chahnasir F, Amiripour F, Ghasemi S. Orange peel-derived carbon dots/Cu-MOF nanohybrid for fluorescence determination of l-ascorbic acid and Fe 3. Anal Chim Acta 2024; 1287:342066. [PMID: 38182373 DOI: 10.1016/j.aca.2023.342066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 01/07/2024]
Abstract
Recycling and reuse of biomass waste in synthesis of nanomaterials have recently received much attention as an effective solution for environmental protection and sustainable development. Herein, nitrogen-doped carbon dots (N-CDs) with blue emission were synthesized from the orange peels as a precursor through a simple hydrothermal method and then, modified with ethylenediamine tetraacetic acid (N-CD@EDTA). The N-CD@EDTA was embedded as a fluorophore in Cu-based metal-organic framework (MOF-199) structure (N-CD@EDTA/MOF-199) to construct fluorescence sensor toward l-ascorbic acid (L-AA) determination. The N-CD@EDTA/MOF-199 nanohybrid significantly and selectively turned on toward L-AA determination during the fluorimetric experiments. Under optimal conditions, the probe showed a suitable linear response in the concentration range of 10 nM-100 μM with a low limit of detection (LOD) of 8.6 nM and high sensitivity of 0.201 μM-1. The possible mechanism of recognition and adsorption, including the reduction of Cu 2+ nodes in the MOF-199 structure in the presence of L-AA and the release of trapped N-CD@EDTA into the solution, was explored. Moreover, the N-CD@EDTA/MOF-199/L-AA (100 μM) system was further applied as a fluorescent "on-off" sensor for Fe3+ determination with a LOD of 1.15 μM. The proposed probe was successfully used in orange juice and water samples to determine L-AA and Fe3+ with satisfactory recovery, which displays the promising capability of sensor in real samples. The recoveries obtained by suggested method are consistent with that obtained from high performance liquid chromatography (HPLC) and atomic absorption spectroscopy which confirm the favorable characteristic of the sensor for accurate determination of L-AA and Fe3+ in practical applications.
Collapse
Affiliation(s)
| | | | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
10
|
Mandal T, Mishra SR, Singh V. Comprehensive advances in the synthesis, fluorescence mechanism and multifunctional applications of red-emitting carbon nanomaterials. NANOSCALE ADVANCES 2023; 5:5717-5765. [PMID: 37881704 PMCID: PMC10597556 DOI: 10.1039/d3na00447c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
Red emitting fluorescent carbon nanomaterials have drawn significant scientific interest in recent years due to their high quantum yield, water-dispersibility, photostability, biocompatibility, ease of surface functionalization, low cost and eco-friendliness. The red emissive characteristics of fluorescent carbon nanomaterials generally depend on the carbon source, reaction time, synthetic approach/methodology, surface functional groups, average size, and other reaction environments, which directly or indirectly help to achieve red emission. The importance of several factors to achieve red fluorescent carbon nanomaterials is highlighted in this review. Numerous plausible theories have been explained in detail to understand the origin of red fluorescence and tunable emission in these carbon-based nanostructures. The above advantages and fluorescence in the red region make them a potential candidate for multifunctional applications in various current fields. Therefore, this review focused on the recent advances in the synthesis approach, mechanism of fluorescence, and electronic and optical properties of red-emitting fluorescent carbon nanomaterials. This review also explains the several innovative applications of red-emitting fluorescent carbon nanomaterials such as biomedicine, light-emitting devices, sensing, photocatalysis, energy, anticounterfeiting, fluorescent silk, artificial photosynthesis, etc. It is hoped that by choosing appropriate methods, the present review can inspire and guide future research on the design of red emissive fluorescent carbon nanomaterials for potential advancements in multifunctional applications.
Collapse
Affiliation(s)
- Tuhin Mandal
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Shiv Rag Mishra
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Vikram Singh
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
11
|
Yan H, Yang S, Liu M, Bao K, Ren W, Lin F, Gao Y, Wang Z, Liu S, Lv J, Zhao Y. Aptamer-functionalized two-photon SiO 2@GQDs hybrid-based signal amplification strategy for targeted cancer imaging. Analyst 2023; 148:5124-5132. [PMID: 37681669 DOI: 10.1039/d3an01393f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Targeted imaging is playing an increasingly important role in the early detection and precise diagnosis of cancer. This need has motivated research into sensory nanomaterials that can be constructed into imaging agents to serve as biosensors. Graphene quantum dots (GQDs) as a valuable nanoprobe show great potential for use in two-photon biological imaging. However, most as-prepared GQDs exhibit a low two-photon absorption cross-section, narrow spectral coverage, and "one-to-one" signal conversion mode, which greatly hamper their wide application in sensitive early-stage cancer detection. Herein, a versatile strategy has been employed to fabricate an aptamer Sgc8c-functionalized hybrid as a proof-of-concept of the signal amplification strategy for targeted cancer imaging. In this study, GQDs with two-photon imaging performance, and silica nanoparticles (SiO2 NPs) as nanocarriers to provide amplified recognition events by high loading of GQD signal tags, were adopted to construct a two-photon hybrid-based signal amplification strategy. Thus, the obtained hybrid (denoted SiO2@GQDs) enabled extremely strong fluorescence with a quantum yield up to 0.49, excellent photostability and biocompatibility, and enhanced bright two-photon fluorescence up to 2.7 times that of bare GQDs (excitation at 760 nm; emission at 512 nm). Moreover, further modification with aptamer Sgc8c showed little disruption to the structure of the SiO2@GQDs-hybrid and the corresponding two-photon emission. Hence, SiO2@GQDs-Sgc8c showed specific responses to target cells. Moreover, it could be used as a signal-amplifying two-photon nanoprobe for targeted cancer imaging with high specificity and great efficiency, which exhibits a distinct green fluorescence compared to that of GQDs-Sgc8c or SiO2@GQDs. This signal amplification strategy holds great potential for the accurate early diagnosis of tumors and offers new tools for the detection a wide variety of analytes in clinical application.
Collapse
Affiliation(s)
- Huijuan Yan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Shuo Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Mengxue Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Ke Bao
- School of Medical Engineering, Engineering Technology Research Center of Neuroscience and Control of Henan Province, Xinxiang Engineering Technology Research Center of Intelligent Rehabilitation Equipment, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Wu Ren
- School of Medical Engineering, Engineering Technology Research Center of Neuroscience and Control of Henan Province, Xinxiang Engineering Technology Research Center of Intelligent Rehabilitation Equipment, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Fei Lin
- The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P. R. China
| | - Yiqiao Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Zhenghui Wang
- The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P. R. China
| | - Shuanghui Liu
- Department of Pharmacy, Xinxiang First People's Hospital, Xinxiang, Henan 453000, P. R. China
| | - Jieli Lv
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
- Xinxiang Key Laboratory of Clinical Psychopharmacology, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
12
|
Sun M, Zhong Z, Wang Y, Yu B, Zhang L, Zhang W. Dual-functional lanthanide-MOF probe nanocomposite based on hydroxyapatite nanowires as fluorescent sensor for ascorbic acid. Mikrochim Acta 2023; 190:89. [PMID: 36781571 DOI: 10.1007/s00604-023-05667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
A dual-functional lanthanide-MOF nanocomposite probe was designed and constructed for the detection of ascorbic acid (AA). The magnetically functionalized hydroxyapatite nanowires are selected as the carriers and simultaneously loaded with ciprofloxacin (CIP) and terbium metal organic framework to form the internal reference fluorescence probe nanocomposite (Fe3O4-HAPNWs-Tb/MOF-CIP). This dual-functional lanthanide-MOF probe not only combines the respectively unique fluorescence properties of lanthanide MOFs and CIP, but also takes full advantage of the rapid separation properties of the magnetic component. Structural and spectroscopic characterization results have demonstrated the successful synthesis of probe material and the fluorescence mechanism. At a suitable excitation wavelength (295 nm), the probe can simultaneously emit characteristic fluorescence of CIP (445 nm) and Tb3+ (543 nm). In the presence of AA, the ratio of I543/I445 decreases rapidly with increasing of AA concentration. The linear range of determination is 0.3-40 μM with a detection limit of 20.4 nM. The contents of AA in vitamin C tablets and four fruit juice samples were detected by the composite probe. The spiked recoveries ranged from 82.6 to 104.2% with relative standard deviations (RSD) less than 2.1%, revealing the practical application value of the developed sensor in healthcare and food fields. A novel internal reference fluorescence sensor (Fe O -HAPNWs-Tb/MOF-CIP) was constructed for detecting ascorbic acid by solvothermal and self-assembly techniques, showing excellent selectivity and sensitivity based on the different responses of Tb/MOF and CIP to the target.
Collapse
Affiliation(s)
- Mengyao Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zhihua Zhong
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yajie Wang
- Department of Pharmacy, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Bohao Yu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Lei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
13
|
Barati F, Avatefi M, Moghadam NB, Asghari S, Ekrami E, Mahmoudifard M. A review of graphene quantum dots and their potential biomedical applications. J Biomater Appl 2023; 37:1137-1158. [PMID: 36066191 DOI: 10.1177/08853282221125311] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Today, nanobiotechnology is a pioneering technology in biomedicine. Every day, new nanomaterials are synthesized with elevated physiochemical properties for better diagnosis and treatment of diseases. One advancing class of materials is the Graphene family. Among different kinds of graphene derivatives, graphene quantum dots (GQDs) show fantastic optical, electrical, and electrochemical features originating from their unique quantum confinement effect. Due to the distinct properties of GQD, including large surface-to-volume ratio, low cytotoxicity, and easy functionalization, this nanomaterial has gone popular in biomedical field. Herein, a short overview of different strategies developed for GQD synthesis and functionalization is discussed. In the following, the most recent progress of GQD based nanomaterials in different biomedical fields, including bio-imaging, drug/gene delivery, antimicrobial, tissue engineering, and biosensors, are reviewed.
Collapse
Affiliation(s)
- Fatemeh Barati
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Manizheh Avatefi
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Negin Borzooee Moghadam
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sahar Asghari
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Elena Ekrami
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
14
|
Sharoyko VV, Mikolaichuk OV, Shemchuk OS, O. E. Abdelhali A, Potanin AA, Luttsev MD, Dadadzanov DR, Vartanyan TA, Petrov AV, Yu. Shasherina A, Murin IV, Maystrenko DN, Molchanov OE, Semenov KN. Novel non-covalent conjugate based on graphene oxide and alkylating agent from 1,3,5-triazine class. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Wu R, Sun M, Liu X, Qin F, Zhang X, Qian Z, Huang J, Li Y, Tan T, Chen W, Chen Z. Oxidase-like ZnCoFe Three-Atom Nanozyme as a Colorimetric Platform for Ascorbic Acid Sensing. Anal Chem 2022; 94:14308-14316. [PMID: 36194751 DOI: 10.1021/acs.analchem.2c02853] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Great enthusiasm in single-atom catalysts for various catalytic reactions continues to heat up. However, the poor activity of the existing single/dual-metal-atom catalysts does not meet the actual requirement. In this scenario, the precise design of triple-metal-atom catalysts is vital but still challenging. Here, a triple-atom site catalyst of FeCoZn catalyst coordinated with S and N, which is doped in the carbon matrix (named FeCoZn-TAC/SNC), is designed. The FeCoZn catalyst can mimic the activity of oxidase by activating O2 into •O2- radicals by virtue of its atomically dispersed metal active sites. Employing this characteristic, triple-atom catalysts can become a great driving force for the development of novel biosensors featuring adequate sensitivity. First, the property of FeCoZn catalyst as an oxidase-like nanozyme was explored. The obtained FeCoZn-TAC/SNC shows remarkably enhanced catalytic performance than that of FeCoZn-TAC/NC and single/dual-atom site catalysts (FeZn, CoZn, FeCo-DAC/NC and Fe, Zn, Co-SAC/NC) because of trimetallic sites, demonstrating the synergistic effect. Further, the utility of the oxidase-like FeCoZn-TAC/SNC in biosensor field is evaluated by the colorimetric sensing of ascorbic acid. The nanozyme sensor shows a wide concentration range from 0.01 to 90 μM and an excellent detection limit of 6.24 nM. The applicability of the nanozyme sensor in biologically relevant detection was further proved in serum. The implementation of TAC in colorimetric detection holds vast promise for further development of biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Rufen Wu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Mengru Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaolong Liu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Fengjuan Qin
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinyu Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhenni Qian
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Juan Huang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yujing Li
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
16
|
Liu C, Li X, Deng L, Wu T, Zou G, Yang H. Ultrathin g-C 3N 4 nanosheet-CoOOH nanocomposite for fluorescence imaging of ascorbic acid in living cells. ANAL SCI 2022; 38:1433-1440. [PMID: 36001292 DOI: 10.1007/s44211-022-00178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Ascorbic acid (AA), a critical cellular metabolite involved in many biochemical pathways, is an important antioxidant in human body. Therefore, it is of great significance to monitor AA in living cells. Nowadays, there are various technologies developed for the detection of AA, but few methods could sensitively and selectively detect the intracellular AA. Here, we reported a highly efficient biosensor (g-C3N4-CoOOH nanocomposite) based on ultrathin graphitic carbon nitride (g-C3N4) nanosheets and CoOOH nanoflakes, for sensitive detection and fluorescence imaging of AA in living cell. The g-C3N4 used here as fluorescence donor is a promising bioimaging nanomaterial because of their high fluorescence quantum yield, good biocompatibility and low toxicity. In addition, the CoOOH was used to be perfect fluorescence quencher. Herein, we enabled the CoOOH in situ to form a layer on the surface of g-C3N4, resulting in fluorescence quench of the g-C3N4. Upon the addition of AA, the CoOOH nanoflakes were reduced to Co2+, and the system gave a "turn on" fluorescence signal. It developed as an efficient sensing platform for AA, and the linear range was from 5 to 50 μM with a 1.6 μM detection limit. This novel biosensor, g-C3N4-CoOOH nanocomposite exhibited highly selective response toward AA relative to other biomolecules. Furthermore, this biosensor was used successfully to visualize and monitor AA in living cells. Hopefully, we believe that this biosensor would provide a low-cost and highly sensitive platform for AA detection and bioimaging. Schematic illustration of the sensing strategy based on the g-C3N4-CoOOH nanocomposite for AA detection.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China.
| | - Xuzi Li
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Lijiao Deng
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Tao Wu
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| | - Hai Yang
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China.
| |
Collapse
|
17
|
Li Y, Wu X, Wu Z, Zhong M, Su X, Ye Y, Liu Y, Tan L, Liang Y. Colorimetric sensor array based on CoOOH nanoflakes for rapid discrimination of antioxidants in food. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2754-2760. [PMID: 35781305 DOI: 10.1039/d2ay00692h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The identification of synthetic antioxidants has considerable significance in food safety. Here, we described the development of a colorimetric sensor array for rapid detection of eight antioxidants in food through the redox reaction between CoOOH and antioxidants in the presence of colorimetric signal indicators. The CoOOH nanoflakes exhibited high catalytic oxidation activity and can independently catalyze oxidation signal indicators showing different colors. The color reaction was inhibited to different degrees in the presence of antioxidants, which resulted in distinct signal response patterns for their discrimination. The method showed good linearity in the range from 50 to 1000 nM for butylated hydroxytoluene (BHT), butylhydroxyanisole (BHA), propyl gallate (PG) and tert-butyl hydroquinone (TBHQ). Moreover, different proportions of antioxidants were located in the middle pattern of each single antioxidant, and showed certain linear relationships among different concentration ratios. Finally, the proposed colorimetric sensor array was used for practical applications where TBHQ and BHT were detected in biscuits and sausages, and BHA and PG were detected in fried pork kebabs, respectively. The results were further confirmed by high-performance liquid chromatography, which demonstrated the great potential of the colorimetry sensor array for practical applications.
Collapse
Affiliation(s)
- Yuling Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Xiaotong Wu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Zixuan Wu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Mingmin Zhong
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Xiaoping Su
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Youai Ye
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Yan Liu
- Guangdong Centre for Agricultural Products Quality and Safety, Guangzhou, 510230, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China.
| | - Yong Liang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Chacón-Huete F, Messina C, Cigana B, Forgione P. Diverse Applications of Biomass-Derived 5-Hydroxymethylfurfural and Derivatives as Renewable Starting Materials. CHEMSUSCHEM 2022; 15:e202200328. [PMID: 35652539 DOI: 10.1002/cssc.202200328] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
This Review summarizes recent efforts to capitalize on 5-hydroxymethylfurfural (HMF) and related furans as emerging building blocks for the synthesis of fine chemicals and materials, with a focus on advanced applications within medicinal and polymer chemistry, as well as nanomaterials. As with all chemical industries, these fields have historically relied heavily on petroleum-derived starting materials, an unsustainable and polluting feedstock. Encouragingly, the emergent chemical versatility of biomass-derived furans has been shown to facilitate derivatization towards valuable targets. Continued work on the synthetic manipulation of HMF, and related derivatives, for access to a wide range of target compounds and materials is crucial for further development. Increasingly, biomass-derived furans are being utilized for a wide range of chemical applications, the continuation of which is paramount to accelerate the paradigm shift towards a sustainable chemical industry.
Collapse
Affiliation(s)
- Franklin Chacón-Huete
- Department of Chemistry and Biochemistry and Centre for Green Chemistry and Catalysis, Concordia University, 7141, rue Sherbrooke O., Montreal, QC, H4B 1R6, Canada
| | - Cynthia Messina
- Department of Chemistry and Biochemistry and Centre for Green Chemistry and Catalysis, Concordia University, 7141, rue Sherbrooke O., Montreal, QC, H4B 1R6, Canada
| | - Brandon Cigana
- Department of Chemistry and Biochemistry and Centre for Green Chemistry and Catalysis, Concordia University, 7141, rue Sherbrooke O., Montreal, QC, H4B 1R6, Canada
| | - Pat Forgione
- Department of Chemistry and Biochemistry and Centre for Green Chemistry and Catalysis, Concordia University, 7141, rue Sherbrooke O., Montreal, QC, H4B 1R6, Canada
| |
Collapse
|
19
|
Graphene quantum dots: synthesis, properties, and applications to the development of optical and electrochemical sensors for chemical sensing. Mikrochim Acta 2022; 189:258. [PMID: 35701638 DOI: 10.1007/s00604-022-05353-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
GQDs exhibits exceptional electrochemical activity owing to their active edge sites that make them very attractive for biosensing applications. However, their use in the design of new biosensing devices for application to the detection and quantification of toxins, pathogens, and clinical biomarkers has so far not investigated in detail. In this regard, herein we provide a detailed review on various methodologies employed for the synthesis of GQDs, including bottom-up and top-down approaches, with a special focus on their applications in biosensing via fluorescence, photoluminescence, chemiluminescence, electrochemiluminescence, fluorescence resonance energy transfer, and electrochemical techniques. We believe that this review will shed light on the critical issues and widen the applications of GQDs for the design of biosensors with improved analytical response for future applications. HIGHLIGHTS: • Properties of GQDs play a critical role in biosensing applications. • Synthesis of GQDs using top-down and bottom-up approaches is discussed comprehensively. • Overview of advancements in GQD-based sensors over the last decade. • Methods for the design of selective and sensitive GQD-based sensors. • Challenges and opportunities for future GQD-based sensors.
Collapse
|
20
|
Zhang Wang Xu Yang Shu XP, Wang JH. CoOOH nanosheets ensure ratiometric fluorescence assay of acetylcholinesterase. Talanta 2022; 249:123664. [PMID: 35700646 DOI: 10.1016/j.talanta.2022.123664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022]
Abstract
Cobalt oxyhydroxide nanosheets (CoOOH) with peroxidase-like activity provide a promising probe for acetylcholinesterase (AChE) sensing through a ratiometric fluorescence strategy. Fluorescence of silicon quantum dots (SiQDs) at 457 nm was quenched by CoOOH on account of inner-filter effect (IFE). Meanwhile, the nonfluorescent o-phenylenediamine (OPD) was catalytically oxidized to 2,3-diaminophenazine (oxOPD) by CoOOH nanosheets with emission at 572 nm. The acetylcholine (ATCh) was catalytically hydrolyzed by AChE to enzymatic thiocholine (TCh), which decomposed CoOOH to Co2+, recovered the fluorescence of SiQDs and reduced the emission of oxOPD. Fluorescence ratio at F457/F572 serves as signal output for AChE detection within 5 × 10-5-0.05 and 0.05-10 U mL-1, with a limit of detection (LOD) of 3.2 × 10-5 U mL-1. The sensing strategy was applied for AChE assay in human blood and erythrocyte.
Collapse
Affiliation(s)
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
21
|
Abdelhalim AO, Semenov KN, Nerukh DA, Murin IV, Maistrenko DN, Molchanov OE, Sharoyko VV. Functionalisation of graphene as a tool for developing nanomaterials with predefined properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Zhang XP, Xu W, Wang JH, Shu Y. MnO 2/DNAzyme-mediated ratiometric fluorescence assay of acetylcholinesterase. Analyst 2022; 147:4008-4013. [DOI: 10.1039/d2an01180h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ratiometric fluorescent probe (MnO2/DNAzyme) is constructed. In the presence of AChE, the product thiocholine reduces MnO2 to Mn2+. The released H1 strands hybridizes with H2 strands to activate DNAzyme and cause cleavage of DNA-F signal probe.
Collapse
Affiliation(s)
- Xiao-Ping Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Wang Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
23
|
Reagen S, Wu Y, Liu X, Shahni R, Bogenschuetz J, Wu X, Chu QR, Oncel N, Zhang J, Hou X, Combs C, Vasquez A, Zhao JX. Synthesis of Highly Near-Infrared Fluorescent Graphene Quantum Dots Using Biomass-Derived Materials for In Vitro Cell Imaging and Metal Ion Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43952-43962. [PMID: 34495635 DOI: 10.1021/acsami.1c10533] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene quantum dots (GQDs) are a subset of fluorescent nanomaterials that have gained recent interest due to their photoluminescence properties and low toxicity and biocompatibility features for bioanalysis and bioimaging. However, it is still a challenge to prepare highly near-infrared (NIR) fluorescent GQDs using a facile pathway. In this study, NIR GQDs were synthesized from the biomass-derived organic molecule cis-cyclobutane-1,2-dicarboxylic acid via one-step pyrolysis. The resulting GQDs were then characterized by various analytical methods such as UV-Vis absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Moreover, the photostability and stability over a wide pH range were also investigated, which indicated the excellent stability of the prepared GQDs. Most importantly, two peaks were found in the fluorescence emission spectra of the GQDs, one of which was located in the NIR region of about 860 nm. Finally, the GQDs were applied for cell imaging with human breast cancer cell line, MCF-7, and cytotoxicity analysis with mouse macrophage cell line, RAW 246.7. The results showed that the GQDs entered the cells through endocytosis on the fluorescence images and were not toxic to the cells up to a concentration of 200 μg/mL. Thus, the developed GQDs could be a potential effective fluorescent bioimaging agent. Finally, the GQDs depicted fluorescence quenching when treated with mercury metal ions, indicating that the GQDs could be used for mercury detection in biological samples as well.
Collapse
Affiliation(s)
- Sarah Reagen
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Yingfen Wu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Xiao Liu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Rahul Shahni
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Jacob Bogenschuetz
- Department of Physics and Astrophysics, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Xu Wu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Qianli R Chu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Nuri Oncel
- Department of Physics and Astrophysics, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Jin Zhang
- Institute for Energy Studies, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Xiaodong Hou
- Institute for Energy Studies, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Colin Combs
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Antonio Vasquez
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
24
|
Zhang H, Han Y, Yang Y, Chen J, Qiu H. Construction of a Carbon Dots/Cobalt Oxyhydroxide Nanoflakes Biosensing Platform for Detection of Acid Phosphatase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10529-10537. [PMID: 34428054 DOI: 10.1021/acs.langmuir.1c01512] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Because abnormal acid phosphatase (ACP) can disrupt the normal physiological processes, determination of ACP level is extremely important for early diagnosis, treatment, and prognostic evaluation of diseases. Herein, a fluorescence platform for monitoring ACP level was established based on the assembly of red-emitting carbon dots (RCDs) on cobalt oxyhydroxide (CoOOH) nanoflakes. RCDs displayed excellent water solubility, pH stability, salt resistance, and photobleaching resistance. Interestingly, the fluorescence of the RCDs assembled on the surface of the CoOOH nanoflakes could be quenched due to the energy transfer caused by the nanoflakes. However, the ascorbic acid (AA) produced by the hydrolysis of ascorbic acid-2-phosphate trisodium salt (AAP) catalyzed by ACP could quickly and effectively reduce CoOOH nanoflakes, leading to the fluorescence recovery of the RCDs. Therefore, an "off-on" biosensor platform for rapid, sensitive, and selective detection of ACP was constructed with a limit of detection of 0.25 mU/L. With the assistance of the biosensor, the level of ACP in human serum samples was evaluated, and the spike recovery values ranged from 94.0% to 104.5%.
Collapse
Affiliation(s)
- Haijuan Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yali Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
25
|
Duan LY, Liu JW, Yu RQ, Jiang JH. Boronate carbon nanoparticles featuring efficient FRET for activatable two-photon fluorescence imaging of sialic acid surface-abundant tumor cells. Analyst 2021; 146:5567-5573. [PMID: 34397070 DOI: 10.1039/d1an01155c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-photon carbon-based nanoprobes hold great potential for biomedical applications as a result of their advantages of low fluorescence background, deep tissue imaging penetration and enhanced spatial resolution. However, the development of an activatable two-photon fluorescence carbon-based nanoprobe that simultaneously has the ability to target desired organs or cells is highly desired but remained a largely unsolved challenge. Herein, we developed boronate affinity BCNP@MnO2 nanocomposites, constructed by one step in situ growth of MnO2 nanosheets on the surface of aminophenylboronic acid-functionalized CNPs (BCNPs) via a redox reaction, which can feature efficient fluorescence energy transfer quenching to the BCNPs, allowing for tumor-specific affinity recognition and two-photon fluorescence activation imaging. By utilizing the inherent two-photon optical properties and sialic acid (SA) specific targeting ability of the BCNPs, good biocompatibility of the nanocomposites as well as highly sensitive and selective responses of MnO2 nanosheets towards GSH, the developed nanocomposites have demonstrated specific two-photon fluorescence activation imaging in target cancer cells and nude mouse tissues. Therefore, our proposed novel strategy could be used for monitoring GSH-triggered two-photon fluorescence activation events in SA-overexpressed cancer cells and has promising applications in both biological exploration and clinical diagnosis.
Collapse
Affiliation(s)
- Lu-Ying Duan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Jin-Wen Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine & School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
26
|
Zhu P, Li J, Gao L, Xiong J, Tan K. Strategy to Synthesize Tunable Multiemission Carbon Dots and Their Multicolor Visualization Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33354-33362. [PMID: 34250799 DOI: 10.1021/acsami.1c07260] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Studies on multiemission fluorescent carbon dots (CDs) excited at one wavelength are extremely promising because of their label-free property, facile synthesis, multicolor visualization, and prevention of background interference. In this study, a novel template strategy to develop multiemission carbon dots (M-CDs) using fluorescent precursors has emerged. We attempted to elucidate the relationship between precursor substances and luminescence origins. The M-CDs prepared by calcein demonstrate three emissions, ultraviolet (UV), blue, and green, which are attributed to the solvent, surface defect, and precursor aromatic ring luminophores, respectively. Also, through a regular adjustment of the amount of NaOH or the solvothermal synthesis time, the expected optical requirements were successfully met by the M-CDs, which is a better capability than that of previously reported M-CDs. In addition, a multicolor sensor designed with M-CDs and rhodamine B (RhB) has been successfully applied in cell imaging. When exposed to different pH media, the fluorescence (FL) emission shows a linear relationship with the pH value, displaying a profuse color evolution from dark blue to light blue, cyan, green, yellow, and finally, orange.
Collapse
Affiliation(s)
- Panpan Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jiayu Li
- Chongqing Key Laboratory of Translational Medicine in Major Metabolic Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Lixia Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jie Xiong
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Kejun Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
27
|
Chung S, Revia RA, Zhang M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1904362. [PMID: 31833101 PMCID: PMC7289657 DOI: 10.1002/adma.201904362] [Citation(s) in RCA: 246] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/22/2019] [Indexed: 05/05/2023]
Abstract
Graphene quantum dots (GQDs) are carbon-based, nanoscale particles that exhibit excellent chemical, physical, and biological properties that allow them to excel in a wide range of applications in nanomedicine. The unique electronic structure of GQDs confers functional attributes onto these nanomaterials such as strong and tunable photoluminescence for use in fluorescence bioimaging and biosensing, a high loading capacity of aromatic compounds for small-molecule drug delivery, and the ability to absorb incident radiation for use in the cancer-killing techniques of photothermal and photodynamic therapy. Recent advances in the development of GQDs as novel, multifunctional biomaterials are presented with a focus on their physicochemical, electronic, magnetic, and biological properties, along with a discussion of technical progress in the synthesis of GQDs. Progress toward the application of GQDs in bioimaging, biosensing, and therapy is reviewed, along with a discussion of the current limitations and future directions of this exciting material.
Collapse
Affiliation(s)
- Seokhwan Chung
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
28
|
Opoku F, Govender PP. SF 6 decomposed gas sensing performance of van der Waals layered cobalt oxyhydroxide: insights from a computational study. J Mol Model 2021; 27:158. [PMID: 33963473 DOI: 10.1007/s00894-021-04770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/21/2021] [Indexed: 11/24/2022]
Abstract
The detection of SF6 decomposition products plays a significant part in identifying and assessing the electric discharge faults in SF6 insulation equipment. We performed dispersion corrected density functional theory calculations to study the adsorption performance of CoOOH upon SO2, SF4, SOF2, CF4, and SO2F2 toxic gases, to investigate their potential application as a gas sensor. The results clearly show a weak force between the CoOOH sheet, and the molecular gas with moderate adsorption strength enhances the desorption processes. According to Löwdin charge population analysis, electrons transfer from the molecular gas to the CoOOH surface, where the molecular gas behaves like an electron donor. The lower bandgap energy of the adsorption systems compared with pristine CoOOH significantly increases its electrical conductivity and gas sensing performance. The higher charge transfer and adsorption energy of the SOF2 adsorption system compared with the other four molecular gas is due to orbital hybridization around the Fermi energy. The theoretical computed adsorption energy with ultrahigh sensitivity and fast recovery time suggests that SF6 decomposed gases reusability is achieved with CoOOH as a resistance-type gas sensor.
Collapse
Affiliation(s)
- Francis Opoku
- Department of Chemical Sciences (formerly Department of Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| | - Penny P Govender
- Department of Chemical Sciences (formerly Department of Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| |
Collapse
|
29
|
|
30
|
Tian X, Fan Z. One-step ratiometric fluorescence sensing of ascorbic acid in food samples by carbon dots-referenced lanthanide probe. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Li T, Liu Y. Self-Assembled Nanorods of Phenylboronic Acid Functionalized Pyrene for In Situ Two-Photon Imaging of Cell Surface Sialic Acids and Photodynamic Therapy. Anal Chem 2021; 93:7029-7036. [PMID: 33908754 DOI: 10.1021/acs.analchem.1c00118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sialic acid (SA) plays important roles in various biological and pathological processes. Methods for monitoring and detection of SA are of great significance in terms of fundamental research, cancer diagnostics, and therapeutics, which are still limited until now. Here, a phenylboronic acid (PBA)-functionalized pyrene derivative, 4-(4-(pyren-1-yl)butyramido)phenylboronic acid (Py-PBA), was synthesized and used as a building block for self-assembling into hydrophilic nanorods. The Py-PBA nanorods (Py-PBA NRs) featured highly specific and efficient imaging of SA on living cells with the advantages of excellent fluorescence stability, good biocompatibility, and unique two-photon fluorescence properties. Meanwhile, the assembled Py-PBA NRs could efficiently generate 1O2 under two-photon irradiation, making it an excellent candidate for photodynamic therapy. This nanoplatform realized in situ recognition and two-photon imaging of SA on the cell surface as well as effective cancer cell therapy, providing a potential method for simple and selective analysis of SA in living cells and a new prospect for image-guided therapy.
Collapse
Affiliation(s)
- Ting Li
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
32
|
Yan X, Xu Q, Li D, Wang J, Han R. Carbon dots inhibit root growth by disrupting auxin biosynthesis and transport in Arabidopsis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112168. [PMID: 33819781 DOI: 10.1016/j.ecoenv.2021.112168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Carbon dots (CDs) possess considerable potentials in fields like biomarker and cell imaging due to its good fluorescence properties. Nevertheless, the molecular mechanism concerning influences of CDs on plant growth still remains unknown. In this study, the subcellular localization of CDs in Arabidopsis and the molecular mechanism of CDs toxicity to plants were investigated. Results demonstrate that CDs tend to accumulate in meristematic nucleus of root tips. CDs can inhibit growth of meristem zone of primary root (PR) of Arabidopsis seedlings significantly. The transcription level of auxin biosynthesis related genes decreases and the abundance of auxin efflux carriers PIN1 and PIN2 declines after 40 mg/L CDs treatment, thus lowering the auxin level in root tips. Moreover, CDs weaken activity of cell division in meristem zone by disturbing expressions of DNA damage repair genes and cell cycle regulation genes, thus enabling to inhibit growth of the meristem zone. To sum up, CDs inhibit growth of Arabidopsis seedlings through above pathways. These results provide useful information to elaborate potential toxicity mechanism of CDs on terrestrial plants.
Collapse
Affiliation(s)
- Xiaoyan Yan
- College of Life Science, Shanxi Normal University, Linfen 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Linfen 041004, Shanxi Province, People's Republic of China
| | - Qiang Xu
- College of Life Science, Shanxi Normal University, Linfen 041004, People's Republic of China
| | - Dongxia Li
- College of Life Science, Shanxi Normal University, Linfen 041004, People's Republic of China
| | - Jianhua Wang
- College of Life Science, Shanxi Normal University, Linfen 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Linfen 041004, Shanxi Province, People's Republic of China
| | - Rong Han
- College of Life Science, Shanxi Normal University, Linfen 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Linfen 041004, Shanxi Province, People's Republic of China.
| |
Collapse
|
33
|
Dong W, Yu J, Gong X, Liang W, Fan L, Dong C. A turn-off-on near-infrared photoluminescence sensor for sequential detection of Fe 3+ and ascorbic acid based on glutathione-capped gold nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119085. [PMID: 33161261 DOI: 10.1016/j.saa.2020.119085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Many reports have suggested that near-infrared (NIR) fluorescent probes are one of the most promising molecules for improving the sensitivity of fluorescence sensing and imaging. Herein, gold nanoclusters with excellent near-infrared photoluminescence (PL) were synthesized by a simply hydrothermal treatment of hydrogen tetrachloroaurate(III) trihydrate and glutathione (GSH). The NIR PL of GSH-capped gold nanoclusters (GSH-AuNCs) can be significantly quenched by Fe3+, which follows a dynamic quenching mechanism. However, the NIR PL of the GSH-AuNCs/Fe3+ system can be recovered after the addition of ascorbic acid (AA). The decrease and increase of NIR PL intensities of GSH-AuNCs were linearly correlated with the concentration of Fe3+ and AA, respectively. Therefore, a turn-off-on NIR PL sensing strategy can be constructed for sequential detection of Fe3+ and AA with the linear range of 0.7-180 μM and 0.5-120 μM, respectively. The proposed NIR PL sensor exhibits excellent sensing performance and has been applied to the determination of Fe3+ and AA in real samples with satisfactory results.
Collapse
Affiliation(s)
- Wenjuan Dong
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Jiangyan Yu
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Xiaojuan Gong
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Wenting Liang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Li Fan
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Chuan Dong
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| |
Collapse
|
34
|
Alizadeh N, Salimi A. Multienzymes activity of metals and metal oxide nanomaterials: applications from biotechnology to medicine and environmental engineering. J Nanobiotechnology 2021; 19:26. [PMID: 33468160 PMCID: PMC7815196 DOI: 10.1186/s12951-021-00771-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/08/2021] [Indexed: 12/28/2022] Open
Abstract
With the rapid advancement and progress of nanotechnology, nanomaterials with enzyme-like catalytic activity have fascinated the remarkable attention of researchers, due to their low cost, high operational stability, adjustable catalytic activity, and ease of recycling and reuse. Nanozymes can catalyze the same reactions as performed by enzymes in nature. In contrast the intrinsic shortcomings of natural enzymes such as high manufacturing cost, low operational stability, production complexity, harsh catalytic conditions and difficulties of recycling, did not limit their wide applications. The broad interest in enzymatic nanomaterial relies on their outstanding properties such as stability, high activity, and rigidity to harsh environments, long-term storage and easy preparation, which make them a convenient substitute instead of the native enzyme. These abilities make the nanozymes suitable for multiple applications in sensing and imaging, tissue engineering, environmental protection, satisfactory tumor diagnostic and therapeutic, because of distinguished properties compared with other artificial enzymes such as high biocompatibility, low toxicity, size dependent catalytic activities, large surface area for further bioconjugation or modification and also smart response to external stimuli. This review summarizes and highlights latest progress in applications of metal and metal oxide nanomaterials with enzyme/multienzyme mimicking activities. We cover the applications of sensing, cancer therapy, water treatment and anti-bacterial efficacy. We also put forward the current challenges and prospects in this research area, hoping to extension of this emerging field. In addition to therapeutic potential of nanozymes for disease prevention, their practical effects in diagnostics, to monitor the presence of SARS-CoV-2 and related biomarkers for future pandemics will be predicted.
Collapse
Affiliation(s)
- Negar Alizadeh
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran.
- Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| |
Collapse
|
35
|
Dugam S, Nangare S, Patil P, Jadhav N. Carbon dots: A novel trend in pharmaceutical applications. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 79:335-345. [PMID: 33383021 DOI: 10.1016/j.pharma.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Carbon quantum dots (CQDs, C-dots, or CDs), are generally small carbon nanoparticles having a size less than 10nm. Carbon dots (CDs) were accidentally discovered during the purification of single-walled carbon nanotubes through preparative electrophoresis in 2004. Carbon is an organic material having poor water solubility that emits less fluorescence. However, CDs have good aqueous solubility and excellent fluorescent property, hence more attention has been given to the synthesis of CDs and their applications in chemistry and allied sciences. CDs being easily accessible for in-house synthesis, simpler fabrication as per compendial requirements are wisely accepted. In addition, since CDs are biocompatible, of low toxicity, and of biodegradable nature, they appear as a promising tool for the health care sector. Furthermore, owing to their capabilities of expressing significant interaction with biological materials, and their excellent photoluminescence (PL), CDs have been emerging as novel pioneered nanoparticles useful for pharmaceutical and theranostic applications. Also, CDs are more eco-friendly in synthesis and therefore can be favorably consumed as alternatives in the further development of biological, environmental, and food areas. A massive study has been performed dealing with different approaches which are adopted for CDs synthesis and their applications as, filters for the separation of pollutants from polluted water, food safety, toxicological studies, and optical properties, etc. While still less emphasis is given on the applications of CDs in pharmaceuticals like for sustained and targeted drug delivery systems, theranostic study, etc. Hence, in the present review, we are exploring CQDs as a boon to pharmaceutical concerns.
Collapse
Affiliation(s)
- S Dugam
- Department of Pharmaceutics, Bharati-Vidyapeeth College of Pharmacy, 416013 Kolhapur, Maharashtra state, India
| | - S Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, 425405 Shirpur, Maharashtra state, India
| | - P Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, 425405 Shirpur, Maharashtra state, India
| | - N Jadhav
- Department of Pharmaceutics, Bharati-Vidyapeeth College of Pharmacy, 416013 Kolhapur, Maharashtra state, India.
| |
Collapse
|
36
|
Li N, Zhang F, Sun W, Zhang L, Su X. Redox reaction-modulated fluorescence biosensor for ascorbic acid oxidase assay by using MoS2 quantum dots as fluorescence probe. Talanta 2021; 222:121522. [DOI: 10.1016/j.talanta.2020.121522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022]
|
37
|
Carbon dots derived from flax straw for highly sensitive and selective detections of cobalt, chromium, and ascorbic acid. J Colloid Interface Sci 2020; 579:96-108. [DOI: 10.1016/j.jcis.2020.06.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 01/06/2023]
|
38
|
Barton J, Gulka M, Tarabek J, Mindarava Y, Wang Z, Schimer J, Raabova H, Bednar J, Plenio MB, Jelezko F, Nesladek M, Cigler P. Nanoscale Dynamic Readout of a Chemical Redox Process Using Radicals Coupled with Nitrogen-Vacancy Centers in Nanodiamonds. ACS NANO 2020; 14:12938-12950. [PMID: 32790348 DOI: 10.1021/acsnano.0c04010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biocompatible nanoscale probes for sensitive detection of paramagnetic species and molecules associated with their (bio)chemical transformations would provide a desirable tool for a better understanding of cellular redox processes. Here, we describe an analytical tool based on quantum sensing techniques. We magnetically coupled negatively charged nitrogen-vacancy (NV) centers in nanodiamonds (NDs) with nitroxide radicals present in a bioinert polymer coating of the NDs. We demonstrated that the T1 spin relaxation time of the NV centers is very sensitive to the number of nitroxide radicals, with a resolution down to ∼10 spins per ND (detection of approximately 10-23 mol in a localized volume). The detection is based on T1 shortening upon the radical attachment, and we propose a theoretical model describing this phenomenon. We further show that this colloidally stable, water-soluble system can be used dynamically for spatiotemporal readout of a redox chemical process (oxidation of ascorbic acid) occurring near the ND surface in an aqueous environment under ambient conditions.
Collapse
Affiliation(s)
- Jan Barton
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Michal Gulka
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 27201 Kladno, Czechia
- IMOMEC Division, IMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Jan Tarabek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| | - Yuliya Mindarava
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Zhenyu Wang
- Institute of Theoretical Physics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Jiri Schimer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| | - Helena Raabova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| | - Jan Bednar
- Institute for Advanced Biosciences, UMR 5309, Allée des Alpes, 38700 la Tronche, France
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czechia
| | - Martin B Plenio
- Institute of Theoretical Physics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Milos Nesladek
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 27201 Kladno, Czechia
- IMOMEC Division, IMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| |
Collapse
|
39
|
Su D, Han X, Yan X, Jin R, Li H, Kong D, Gao H, Liu F, Sun P, Lu G. Smartphone-Assisted Robust Sensing Platform for On-Site Quantitation of 2,4-Dichlorophenoxyacetic Acid Using Red Emissive Carbon Dots. Anal Chem 2020; 92:12716-12724. [DOI: 10.1021/acs.analchem.0c03275] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dandan Su
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| | - Xiaosong Han
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| | - Rui Jin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, People’s Republic of China
| | - Deshuai Kong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| | - Hao Gao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| |
Collapse
|
40
|
Yang YX, Fang YZ, Tian JX, Xiao Q, Kong XJ. Fluorescent polydopamine nanoparticles as a nanosensor for the sequential detection of mercury ions and l-ascorbic acid based on a coordination effect and redox reaction. RSC Adv 2020; 10:28164-28170. [PMID: 35519102 PMCID: PMC9055638 DOI: 10.1039/d0ra02031a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/11/2020] [Indexed: 12/04/2022] Open
Abstract
Herein, a novel fluorescence nanosensor using intrinsic fluorescent polydopamine nanoparticles (PDA NPs) as an effective signal reporter has been constructed for the simple, rapid and sequential detection of mercury ions (Hg2+) and l-ascorbic acid (AA) based on a coordination effect and redox reaction. The fluorescence of the PDA NPs could be specifically quenched by Hg2+ through intense coordination effects between the Hg2+ and the groups (catechol, amine, ketone and imine) on the surface of the PDA NPs. However, when AA and Hg2+ coexisted in solution, the fluorescence of the PDA NPs pronouncedly recovered via the redox reaction of Hg2+, with it being reduced to Hg0 by AA. The fluorescence quenching mechanism of Hg2+ towards the PDA NPs and the redox reaction between Hg2+ and AA were also fully investigated. The nanosensor exhibited high sensitivity and desirable selectivity for Hg2+ and AA detection. Moreover, the strategy was successfully explored in real samples (tap water, lake water and human serum samples) with satisfactory recoveries. The developed nanosensor provides new sights and good inspiration for Hg2+ and AA detection under real conditions.
Collapse
Affiliation(s)
- Yi-Xuan Yang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-86422903 +86-791-86422903
| | - Yan-Zhao Fang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-86422903 +86-791-86422903
| | - Jing-Xuan Tian
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-86422903 +86-791-86422903
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-86422903 +86-791-86422903
| | - Xiang-Juan Kong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-86422903 +86-791-86422903
| |
Collapse
|
41
|
Younis MR, He G, Lin J, Huang P. Recent Advances on Graphene Quantum Dots for Bioimaging Applications. Front Chem 2020; 8:424. [PMID: 32582629 PMCID: PMC7283876 DOI: 10.3389/fchem.2020.00424] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/23/2020] [Indexed: 11/21/2022] Open
Abstract
Being a zero-dimensional (0D) nanomaterial of the carbon family, graphene quantum dots (GQDs) showed promising biomedical applications owing to their ultra-small size, non-toxicity, biocompatibility, excellent photo stability, tunable fluorescence, and water solubility, etc., thus capturing a considerable attention in biomedical field. This review summarizes the recent advances made in the research field of GQDs and place special emphasis on their bioimaging applications. We briefly introduce the synthesis strategies of GQDs, including top-down and bottom-up strategies. The bioimaging applications of GQDs are also discussed in detail, including optical [fluorescence (FL)], two-photon FL, magnetic resonance imaging (MRI), and dual-modal imaging. In the end, the challenges and future prospects to advance the clinical bioimaging applications of GQDs have also been addressed.
Collapse
Affiliation(s)
| | | | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
42
|
Singh RK, Kurian AG, Patel KD, Mandakhbayar N, Lee NH, Knowles JC, Lee JH, Kim HW. Label-Free Fluorescent Mesoporous Bioglass for Drug Delivery, Optical Triple-Mode Imaging, and Photothermal/Photodynamic Synergistic Cancer Therapy. ACS APPLIED BIO MATERIALS 2020; 3:2218-2229. [DOI: 10.1021/acsabm.0c00050] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London WC1X8LD, U.K
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Jonathan C. Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London WC1X8LD, U.K
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
43
|
Mansuriya BD, Altintas Z. Applications of Graphene Quantum Dots in Biomedical Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1072. [PMID: 32079119 PMCID: PMC7070974 DOI: 10.3390/s20041072] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/02/2023]
Abstract
Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
44
|
Liao N, Liu JL, Chai YQ, Yuan R, Zhuo Y. DNA Structure Transition-Induced Affinity Switch for Biosensing Based on the Strong Electrochemiluminescence Platform from Organic Microcrystals. Anal Chem 2020; 92:3940-3948. [DOI: 10.1021/acs.analchem.9b05433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ni Liao
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China
| | - Jia-Li Liu
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ya-Qin Chai
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ying Zhuo
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
45
|
Tu TT, Lei YM, Chai YQ, Zhuo Y, Yuan R. Organic Dots Embedded in Mesostructured Silica Xerogel as High-Performance ECL Emitters: Preparation and Application for MicroRNA-126 Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3945-3952. [PMID: 31877251 DOI: 10.1021/acsami.9b17751] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Unlike the organic micro/nanocrystals prepared using an emerging reprecipitation method, a novel method of embedding 1-pyrenecarboxaldehyde dots (PycDs) into a mesostructured silica xerogel (PycDs@MSX) for use as electrochemiluminescence (ECL) emitters was first proposed to achieve an extremely strong ECL response, with peroxydisulfate (S2O82-) used as a coreactant. In this method, (i) PycDs@MSX could ensure the reversal of the PycDs environment from hydrophobic to hydrophilic and (ii) PycDs@MSX could provide massive porous channels, allowing for access of hydrophilic reactive intermediates (i.e., sulfate anion radicals, SO4•-), which could accelerate the rate of mass transfer and electron transfer between S2O82- and PycDs. Using Ag nanoparticles as a coreaction accelerator and a 3D DNA nanomachine as a signal amplification strategy, the proposed ECL biosensing platform was constructed and achieved ultrasensitive detection of microRNA-126 with an excellent linear range (from 100 aM to 100 pM) and a low detection limit (13.0 aM). More importantly, this work not only developed an innovative avenue to improve the ECL efficiency of organic emitters in aqueous phases but also provided a powerful strategy for biochemical analysis and disease diagnosis applications.
Collapse
Affiliation(s)
- Ting-Ting Tu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Yan-Mei Lei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| |
Collapse
|
46
|
Lei YM, Zhuo Y, Guo ML, Chai YQ, Yuan R. Pore Confinement-Enhanced Electrochemiluminescence on SnO 2 Nanocrystal Xerogel with NO 3- As Co-Reactant and Its Application in Facile and Sensitive Bioanalysis. Anal Chem 2020; 92:2839-2846. [PMID: 31872752 DOI: 10.1021/acs.analchem.9b05367] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, 10-fold electrochemiluminescence (ECL) enhancement from a porous SnO2 nanocrystal (SnO2 NC) xerogel (vs discrete SnO2 NCs) was first observed with NO3- as a novel coreactant. This new booster phenomenon caused by pore characteristic was defined as "pore confinement-induced ECL enhancement", which originated from two possible reasons: First, the SnO2 NC xerogel with hierarchically porous structure could not only localize massive luminophore near the electrode surface, more importantly, but could accelerate the electrochemical and chemiluminescence reaction efficiency because the pore channels of xerogel could promote the mass transport and electron transfer in the confined spaces. Second, the NO3- could be in situ reduced easily to the active nitrogen species by means of the pore confinement effect, which could be served as a new coreactant for nanocrystal-based ECL amplification with the excellent stability and good biocompatibility. As a proof of concept, a facile and sensitive sensing platform for SO32- detection has been successfully constructed upon effectively quenching of SO32- toward the SnO2 NC xerogel/NO3- ECL system. The key feature about this work presented a grand avenue to achieve the strong ECL signal, especially from weak emitters, which gave a fresh impetus to the construction of new-generation of surface-confined ECL platform with potential applications in ECL imaging and sensing.
Collapse
Affiliation(s)
- Yan-Mei Lei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Mu-Lin Guo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| |
Collapse
|
47
|
Wang H, Zhang M, Ma Y, Wang B, Shao M, Huang H, Liu Y, Kang Z. Selective inactivation of Gram-negative bacteria by carbon dots derived from natural biomass: Artemisia argyi leaves. J Mater Chem B 2020; 8:2666-2672. [DOI: 10.1039/c9tb02735a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carbon dots derived from Artemisia argyi leaves exhibit specific antibacterial activities on Gram-negative bacteria.
Collapse
Affiliation(s)
- Huibo Wang
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices
- Soochow University
- Suzhou
- China
| | - Mengling Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices
- Soochow University
- Suzhou
- China
| | - Yurong Ma
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices
- Soochow University
- Suzhou
- China
| | - Bo Wang
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices
- Soochow University
- Suzhou
- China
| | - Mingwang Shao
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices
- Soochow University
- Suzhou
- China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices
- Soochow University
- Suzhou
- China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices
- Soochow University
- Suzhou
- China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices
- Soochow University
- Suzhou
- China
| |
Collapse
|
48
|
Wang C, Bi X, Wang M, Zhao X, Lin Y. Dual-Channel Online Optical Detection Platform Integrated with a Visible Light Absorption Approach for Continuous and Simultaneous in Vivo Monitoring of Ascorbic Acid and Copper(II) Ions in a Living Rat Brain. Anal Chem 2019; 91:16010-16016. [PMID: 31738535 DOI: 10.1021/acs.analchem.9b04783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chao Wang
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Xinyu Bi
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Manchao Wang
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Xu Zhao
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| |
Collapse
|
49
|
The determination of α-glucosidase activity through a nano fluorescent sensor of F-PDA−CoOOH. Anal Chim Acta 2019; 1080:170-177. [DOI: 10.1016/j.aca.2019.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022]
|
50
|
Gazzi A, Fusco L, Khan A, Bedognetti D, Zavan B, Vitale F, Yilmazer A, Delogu LG. Photodynamic Therapy Based on Graphene and MXene in Cancer Theranostics. Front Bioeng Biotechnol 2019; 7:295. [PMID: 31709252 PMCID: PMC6823231 DOI: 10.3389/fbioe.2019.00295] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/09/2019] [Indexed: 02/02/2023] Open
Abstract
Cancer is one of the leading causes of death in the world. Therefore, the development of new advanced and targeted strategies in cancer research for early diagnosis and treatment has become essential to improve diagnosis outcomes and reduce therapy side effects. Graphene and more recently, MXene, are the main representatives of the family of two-dimensional (2D) materials and are widely studied as multimodal nanoplatforms for cancer diagnostics and treatment, in particular leveraging their potentialities as photodynamic therapeutic agents. Indeed, due to their irreplaceable physicochemical properties, they are virtuous allies for photodynamic therapy (PDT) in combination with bioimaging, photothermal therapy, as well as drug and gene delivery. In this review, the rapidly progressing literature related to the use of these promising 2D materials for cancer theranostics is described in detail, highlighting all their possible future advances in PDT.
Collapse
Affiliation(s)
- Arianna Gazzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.,Sidra Medical and Research Center, Doha, Qatar
| | - Anooshay Khan
- Department of Biomedical Engineering, University of Ankara, Ankara, Turkey
| | | | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | - Flavia Vitale
- Department of Neurology, Bioengineering, Physical Medicine & Rehabilitation, Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.,Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Acelya Yilmazer
- Department of Biomedical Engineering, University of Ankara, Ankara, Turkey.,Stem Cell Institute, University of Ankara, Ankara, Turkey
| | - Lucia Gemma Delogu
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|