1
|
Huang Y, Zhang Y, Wu W, Wang Y, Qiu W, Zhang Z, Yu Y. Fast acoustic droplet ejection based on annular array transducer. ULTRASONICS 2025; 145:107448. [PMID: 39243532 DOI: 10.1016/j.ultras.2024.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/04/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Acoustic droplet ejection (ADE) has become the preferred method for liquid transfer in a variety of applications including synthetic biology, genotyping and drug discovery. Comparing with traditional pipetting techniques, the accuracy and data reproducibility of ADE based liquid transfer are improved, waste and cost are reduced, and cross-contamination is eliminated. The key component in the ADE system is the ultrasound transducer, which is responsible for generating focused ultrasound beam for droplet ejection. However, current ADE systems commonly utilize a single-element focused transducer with a fixed focal length that require mechanical movement to focus on the liquid surface, resulting in reduced liquid transfer efficiency. In this study, we first present a high-frequency annular array transducer for the ADE technology, which enables rapid and dynamic axial focusing to the liquid surface without mechanically moving the transducer, thereby accelerating liquid transfer. Experimental results show that the proposed 10 MHz, 5-element annular array transducer has good dynamic axial focusing ability, and can achieve accurate and stable droplet ejection of nanoliter volume at the designed focal length of 26-32 mm. Our results highlight the potential of the annular array transducer in advancing ADE system for rapid liquid transfer. This technology is expected to be useful in a variety of applications where precise and high-throughput liquid transfer is crucial.
Collapse
Affiliation(s)
- Youta Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 508055 China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China; National-Reginoal Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China
| | - Yang Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 508055 China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China; School of Electrical Engineering, University of South China, Hengyang, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China
| | - Weichang Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 508055 China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China
| | - Yan Wang
- School of Electrical Engineering, University of South China, Hengyang, China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 508055 China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China.
| | - Zhiqiang Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 508055 China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China.
| | - Yanyan Yu
- National-Reginoal Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Lee DH, Yoo HB, Hong KS, Park SR, Jeong S, Yang I. Development of gene-in-plasmid DNA reference materials certified by single-molecule counting. Anal Bioanal Chem 2024:10.1007/s00216-024-05675-1. [PMID: 39648227 DOI: 10.1007/s00216-024-05675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
The mole, the SI unit for measuring the amount of a substance, was redefined as a fixed number of entities. This definition enables straightforward quantification of substances by counting individual entities. Counting proves particularly effective for quantifying large and discrete biological entities such as DNA, proteins, viruses, and cells, which are challenging to quantify via traditional physical or chemical methods. In this study, we detail our approach to develop gene reference materials certified through single-molecule counting, which enables mole-traceable measurements. We quantified three plasmid DNA constructs, each carrying a specific gene of interest, via single-molecule counting. The resulting values were cross-validated via digital PCR and LC‒MS. Sequence impurities in the certified reference materials were quantified via single-molecule real-time sequencing, whereas fragment impurities were quantified via two-color digital PCR analysis. We precisely accounted for various sources of uncertainty, including measurement precision, weighing, homogeneity, and impurities, when estimating the total uncertainty of the reference materials. In conclusion, a practical format for gene-based DNA reference materials, a measurement method to achieve metrological traceability, and methods for quantifying fragments and sequence impurities were developed and implemented in this study. We anticipate that our gene-based DNA reference materials will serve as valuable higher-order standards for the calibration of other methods or reference materials for DNA quantification in a variety of bioanalytical applications.
Collapse
Affiliation(s)
- Da-Hye Lee
- Bio-Metrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Precision Measurement, University of Science and Technology, Daejeon, Republic of Korea
| | - Hee-Bong Yoo
- Bio-Metrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Kee-Suk Hong
- Quantum Optics Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Sang-Ryoul Park
- Bio-Metrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | | | - Inchul Yang
- Bio-Metrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Calabrese S, Markl AM, Neugebauer M, Krauth SJ, Borst N, von Stetten F, Lehnert M. Reporter emission multiplexing in digital PCRs (REM-dPCRs): direct quantification of multiple target sequences per detection channel by population specific reporters. Analyst 2023; 148:5243-5254. [PMID: 37727114 DOI: 10.1039/d3an00191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Digital PCRs (dPCRs) are widely used methods for the detection and quantification of rare abundant sequences relevant to fields such as liquid biopsy or oncology. In order to increase the information content and save valuable sample materials, there is a significant need for digital multiplexing methods that are easy to establish, analyse, and interpret, and ideally allow the usage of existing lab equipment. Herein, we present a novel reporter emission multiplexing approach for the digital PCR method (REM-dPCR), which meets these requirements. It further increases the multiplexing capacity of commercial dPCR devices. For example, we present a stepwise increase in multiplexing degrees from a monochrome two-plex assay in one detection channel to a six-plex REM-dPCR assay in a three-color dPCR device for KRAS/BRAF single nucleotide polymorphism (SNP) target sequences. The guidelines for the REM-dPCR design are presented, and the process from duplex to six-plex assay establishment, taking into account the target sequence-dependent effects on assay performance, is discussed. Furthermore, the assay-specific, sensitive and precise quantification of different fractions of KRAS mutant and wild-type DNA sequences in different ratios is demonstrated. To increase the device capacitance and the degree of multiplexing, the REM-dPCR uses the advantage of n target-independent reporter molecules in combination with target sequence-specific mediator probes. Different reporter types are labelled with fluorophores of different signal intensities but not necessarily different emission spectra. This leads to the generation of n independent single-positive populations in the dataspace, created by k detection channels, whereby n > k and n ≥ 2. By usage of target-independent but population-specific reporter types, a fixed set of six optimized signalling molecules could be defined. This reporter set enables the robust generation and precise differentiation of multiple fluorescence signals in dPCRs and can be transferred to new target panels. The set which enables stable signal generation and differentiation in a specified device would allow easy transfer to new target panels.
Collapse
Affiliation(s)
| | - Anja M Markl
- Hahn-Schickard, 79110 Freiburg, Germany.
- Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Maximilian Neugebauer
- Hahn-Schickard, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Stefanie J Krauth
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
- School of Health and Wellbeing, General Practice and Primary Care, University of Glasgow, Glasgow, UK
| | - Nadine Borst
- Hahn-Schickard, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | | |
Collapse
|
4
|
Increasing the Efficiency of Canola and Soybean GMO Detection and Quantification Using Multiplex Droplet Digital PCR. BIOLOGY 2022; 11:biology11020201. [PMID: 35205068 PMCID: PMC8869681 DOI: 10.3390/biology11020201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Digital PCR (dPCR) technology has been used for absolute quantification of genetically modified (GM) events. Duplex dPCR consisting of a target gene and a reference gene is mostly used for absolute quantification of GM events. We investigated the feasibility of absolute quantification of two, three, and four GM canola and soybean events at the same time using the QX200 Droplet Digital PCR (ddPCR) system. Adjustments of the probe concentrations and labels for some of the assays were needed for successful multiplex ddPCR. Absolute quantification of GM canola and soybean events was achieved for duplex, triplex, and tetraplex ddPCR at 0.1%, 1%, and 5% concentrations. Abstract The number of genetically modified (GM) events for canola, maize, and soybean has been steadily increasing. Real-time PCR is widely used for the detection and quantification of individual GM events. Digital PCR (dPCR) has also been used for absolute quantification of GM events. A duplex dPCR assay consisting of one reference gene and one GM event has been carried out in most cases. The detection of more than one GM event in a single assay will increase the efficiency of dPCR. The feasibility of detection and quantification of two, three, and four GM canola and soybean events at the same time was investigated at 0.1%, 1%, and 5% levels using the QX200 Droplet Digital PCR (ddPCR) system. The reference gene assay was carried out on the same plate but in different wells. For some of the assays, optimization of the probe concentrations and labels was needed for successful ddPCR. Results close to the expected result were achieved for duplex, triplex, and tetraplex ddPCR assays for GM canola events. Similar ddPCR results were also achieved for some GM soybean events with some exceptions. Overall, absolute quantification of up to four GM events at the same time improves the efficiency of GM detection.
Collapse
|
5
|
Supervised learning based on tumor imaging and biopsy transcriptomics predicts response of hepatocellular carcinoma to transarterial chemoembolization. Cell Rep Med 2021; 2:100444. [PMID: 34841291 PMCID: PMC8606904 DOI: 10.1016/j.xcrm.2021.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022]
Abstract
Although transarterial chemoembolization (TACE) is the most widely used treatment for intermediate-stage, unresectable hepatocellular carcinoma (HCC), it is only effective in a subset of patients. In this study, we combine clinical, radiological, and genomics data in supervised machine-learning models toward the development of a clinically applicable predictive classifier of response to TACE in HCC patients. Our study consists of a discovery cohort of 33 tumors through which we identify predictive biomarkers, which are confirmed in a validation cohort. We find that radiological assessment of tumor area and several transcriptomic signatures, primarily the expression of FAM111B and HPRT1, are most predictive of response to TACE. Logistic regression decision support models consisting of tumor area and RNA-seq gene expression estimates for FAM111B and HPRT1 yield a predictive accuracy of ∼90%. Reverse transcription droplet digital PCR (RT-ddPCR) confirms these genes in combination with tumor area as a predictive classifier for response to TACE. Tumor imaging and transcriptomics enables patient selection for good response to TACE PRETACE is a LR model based on tumor area and expression of FAM111B and HPRT1 PRETACE predicts response to TACE with ∼90% accuracy
Collapse
|
6
|
Diao M, Lang L, Feng J, Li R. Molecular detections of coronavirus: current and emerging methodologies. Expert Rev Anti Infect Ther 2021; 20:199-210. [PMID: 34225540 DOI: 10.1080/14787210.2021.1949986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Seven coronavirus species have been identified that can infect humans. While human coronavirus infections had been historically associated with only mild respiratory symptoms similar to the common cold, three coronaviruses identified since 2003, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, cause life-threatening severe respiratory syndromes. The coronavirus disease 2019 (COVID-19) caused by the highly transmissible SARS-CoV-2 has triggered a worldwide health emergency. Due to the lack of effective drugs and vaccination, rapid and reliable detection is of vital importance to control coronavirus epidemics/pandemics.Area covered: A literature search was performed in Pubmed covering the detections and diagnostics of SARS, MERS and SARS-CoV-2. This review summarized the current knowledge of established and emerging methods for coronavirus detection. The characteristics of different diagnostic approaches were described, and the strengths and weaknesses of each method were analyzed and compared. In addition, future trends in the field of coronavirus detection were also discussed.Expert opinion: Nucleic acid-based RT-PCR is the current golden-standard of coronavirus detection, while immunoassays provide history of coronavirus infection besides diagnostic information. Integrated high-throughput system holds the great potential and is the trend of future detection and diagnosis of virus infection.
Collapse
Affiliation(s)
- Mingkun Diao
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Lang Lang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Rongsong Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
7
|
Huggett JF. The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020. Clin Chem 2021; 66:1012-1029. [PMID: 32746458 DOI: 10.1093/clinchem/hvaa125] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
Digital PCR (dPCR) has developed considerably since the publication of the Minimum Information for Publication of Digital PCR Experiments (dMIQE) guidelines in 2013, with advances in instrumentation, software, applications, and our understanding of its technological potential. Yet these developments also have associated challenges; data analysis steps, including threshold setting, can be difficult and preanalytical steps required to purify, concentrate, and modify nucleic acids can lead to measurement error. To assist independent corroboration of conclusions, comprehensive disclosure of all relevant experimental details is required. To support the community and reflect the growing use of dPCR, we present an update to dMIQE, dMIQE2020, including a simplified dMIQE table format to assist researchers in providing key experimental information and understanding of the associated experimental process. Adoption of dMIQE2020 by the scientific community will assist in standardizing experimental protocols, maximize efficient utilization of resources, and further enhance the impact of this powerful technology.
Collapse
|
8
|
Guo Q, Su X, Zhang X, Shao M, Yu H, Li D. A review on acoustic droplet ejection technology and system. SOFT MATTER 2021; 17:3010-3021. [PMID: 33710210 DOI: 10.1039/d0sm02193h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The pace of change in chemical and biological research enabled by improved detection systems demands fundamental liquid handling and sample preparation changes. The acoustic droplet ejection (ADE)-based liquid handling method has the advantages of improving precision and data reproducibility, reducing costs, hands-on time, and eliminating waste. ADE gradually replaced traditional aspiration-and-dispense liquid-handling robots in applications such as synthetic biology, genotyping, personalized medicine, and next-generation sequencing. This review emphatically introduces the setup of the ADE system and the critical technologies of each part, including acoustic droplet generation, optimized design of the source fluid wells, droplet coalescence, and power control. The advantages and disadvantages of these technologies are discussed, and the future development of acoustic droplet ejection technology is also predicted.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
9
|
Falzone L, Musso N, Gattuso G, Bongiorno D, Palermo CI, Scalia G, Libra M, Stefani S. Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection. Int J Mol Med 2020; 46:957-964. [PMID: 32705153 PMCID: PMC7388836 DOI: 10.3892/ijmm.2020.4673] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the gold standard method for the diagnosis of COVID-19 infection. Due to pre-analytical and technical limitations, samples with low viral load are often misdiagnosed as false-negative samples. Therefore, it is important to evaluate other strategies able to overcome the limits of RT-qPCR. Blinded swab samples from two individuals diagnosed positive and negative for COVID-19 were analyzed by droplet digital PCR (ddPCR) and RT-qPCR in order to assess the sensitivity of both methods. Intercalation chemistries and a World Health Organization (WHO)/Center for Disease Control and Prevention (CDC)-approved probe for the SARS-CoV-2 N gene were used. SYBR-Green RT-qPCR is not able to diagnose as positive samples with low viral load, while, TaqMan Probe RT-qPCR gave positive signals at very late Ct values. On the contrary, ddPCR showed higher sensitivity rate compared to RT-qPCR and both EvaGreen and probe ddPCR were able to recognize the sample with low viral load as positive even at 10-fold diluted concentration. In conclusion, ddPCR shows higher sensitivity and specificity compared to RT-qPCR for the diagnosis of COVID-19 infection in false-negative samples with low viral load. Therefore, ddPCR is strongly recommended in clinical practice for the diagnosis of COVID-19 and the follow-up of positive patients until complete remission.
Collapse
Affiliation(s)
- Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori 'Fondazione G. Pascale', I‑80131 Naples, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, Section of General Pathology, University of Catania, I‑95123 Catania, Italy
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, I‑95123 Catania, Italy
| | - Concetta Ilenia Palermo
- U.O.C. Laboratory Analysis Unit, A.O.U. 'Policlinico‑Vittorio Emanuele', I‑95123 Catania, Italy
| | - Guido Scalia
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, I‑95123 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Section of General Pathology, University of Catania, I‑95123 Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
10
|
Dong L, Wang X, Wang S, Du M, Niu C, Yang J, Li L, Zhang G, Fu B, Gao Y, Wang J. Interlaboratory assessment of droplet digital PCR for quantification of BRAF V600E mutation using a novel DNA reference material. Talanta 2019; 207:120293. [PMID: 31594564 DOI: 10.1016/j.talanta.2019.120293] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Droplet digital PCR (ddPCR) has attracted much attention in the detection of genetic signatures of cancer present at low levels in circulating tumor DNA (ctDNA) in blood. A growing number of laboratory-developed liquid biopsy tests based on such technology have become commercially available for clinical settings. To obtain consistent and comparable results, an international standard is necessary for validation of the analytical performance. In this study, a novel and SI-traceable "ctDNA" reference material (RM) carrying BRAF V600E was prepared by gravimetrically mixing a 152 bp PCR amplicon and sonicated wild-type genomic DNA. The ddPCR performance was evaluated by analyzing serial "ctDNA" dilutions using a competitive MGB assay. The mutant frequency concordance (k) between ddPCR and the gravimetrical value was 1.03 in the range from 53.9% to 0.1%. The limit of blank (LoB), detection (LoD) and quantification (LoQ) of ddPCR assay were determined to be 0.01%, 0.02% and 0.1%, respectively. Results from the interlaboratory study, using challenging low levels of BRAF V600E ctDNA RMs, demonstrated that the participating laboratories had the appropriate technical competency to perform accurate ddPCR-based low level of ratio measurements. However, a systematic error caused by uncorrected droplet volume in Naica Crystal ddPCR platform was found by using the ctDNA RM. Between-laboratory consistency in copy number measurement was greatly improved when a correct droplet volume was applied for the ddPCR measurement by using the ctDNA RM. This confirms that the "ctDNA" RM is fit for the validation of ddPCR systems for ctDNA quantification. This would also support translation of tests for circulating tumor DNA by ddPCR into routine use.
Collapse
Affiliation(s)
- Lianhua Dong
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China.
| | - Xia Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Shangjun Wang
- Nanjing Institute of Measurement and Testing Technology, Nanjing, 210049, PR China
| | - Meihong Du
- Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing Center for Physical & Chemical Analysis, Beijing, 100093, PR China
| | - Chunyan Niu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Jiayi Yang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Ganlin Zhang
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, PR China
| | - Boqiang Fu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Jing Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China.
| |
Collapse
|
11
|
Yen GS, Fujimoto BS, Schneider T, Kreutz JE, Chiu DT. Statistical Analysis of Nonuniform Volume Distributions for Droplet-Based Digital PCR Assays. J Am Chem Soc 2019; 141:1515-1525. [PMID: 30605325 DOI: 10.1021/jacs.8b09073] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present a method to determine the concentration of nucleic acids in a sample by partitioning it into droplets with a nonuniform volume distribution. This digital PCR method requires no special equipment for partitioning, unlike other methods that require nearly identical volumes. Droplets are generated by vortexing a sample in an immiscible oil to create an emulsion. PCR is performed, and droplets in the emulsion are imaged. Droplets with one or more copies of a nucleic acid are identified, and the nucleic acid concentration of the sample is determined. Numerical simulations of droplet distributions were used to estimate measurement error and dynamic range and to examine the effects of the total volume of droplets imaged and the shape of the droplet size distribution on measurement accuracy. The ability of the method to resolve 1.5- and 3-fold differences in concentration was assessed by using simulations of statistical power. The method was validated experimentally; droplet shrinkage and fusion during amplification were also assessed experimentally and showed negligible effects on measured concentration.
Collapse
Affiliation(s)
- Gloria S Yen
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Bryant S Fujimoto
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Thomas Schneider
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Jason E Kreutz
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Daniel T Chiu
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| |
Collapse
|