1
|
Tian H, Lai Z, Zhang W, Zhang M, Yang X, Zhou J, Li Z. Isotope-Labeled Chemoselective Probes for Labeling, Separation, and Comprehensive Quantitative Analysis of Sub-Metabolome. SMALL METHODS 2024; 8:e2400529. [PMID: 39268786 DOI: 10.1002/smtd.202400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/03/2024] [Indexed: 09/15/2024]
Abstract
The significance of small molecule metabolites as biomarkers for disease diagnosis and prognosis is growing increasingly evident, necessitating the development of highly sensitive qualitative and quantitative methods. Herein, multi-chemoselective probes are synthesized and applied for profiling metabolites, including carboxyl, phosphate, hydroxyl, amino, thiol, and carbonyl compounds. This approach seamlessly integrates magnetic solid-phase materials, orthogonal cleavage sites, isotopic tags, and selective coupling sites, minimizes matrix interference, and enhances quantitative accuracy. Meanwhile, a homemade program, High-Resolution Isotope-Assisted Identification and Quantitative (HRIAIQuant) is developed to process the data, which adeptly filters through 33,874 ion pairs present in human serum, leading to the identification of 701 known metabolites and a remarkable 1,062 potential novel ones. This method is successfully applied to analyze metabolites in multiple brain regions of SAMP8 and SAMR1 models, offering a novel tool for Alzheimer's disease research.
Collapse
Affiliation(s)
- Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Wenjia Zhang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xiaolin Yang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
2
|
Zheng JY, Ji XY, Zhao AQ, Sun FY, Liu LF, Xin GZ. Mass Spectrometry Probe Combined with Machine Learning to Capture the Relationship between Metabolites and Mitochondrial Complex Activity at the Whole-Cell Level. Anal Chem 2024; 96:18195-18203. [PMID: 39484990 DOI: 10.1021/acs.analchem.4c04376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondrial complex activity controls a multitude of physiological processes by regulating the cellular metabolism. Current methods for evaluating mitochondrial complex activity mainly focus on single metabolic reactions within mitochondria. These methods often require fresh samples in large quantities for mitochondria purification or intact mitochondrial membranes for real-time monitoring. Confronting these limitations, we shifted the analytical perspective toward interactive metabolic networks at the whole-cell level to reflect mitochondrial complex activity. To this end, we compiled a panel of mitochondrial respiratory chain-mapped metabolites (MRCMs), whose perturbations theoretically provide an overall reflection on mitochondrial complex activity. By introducing N-dimethyl-p-phenylenediamine and N-methyl-p-phenylenediamine as a pair of mass spectrometry probes, an ultraperformance liquid chromatography-tandem mass spectrometry method with high sensitivity (LLOQ as low as 0.2 fmol) was developed to obtain accurate quantitative data of MRCMs. Machine learning was then combined to capture the relationship between MRCMs and mitochondrial complex activity. Using Complex I as a proof-of-concept, we identified NADH, alanine, and phosphoenolpyruvate as metabolites associated with Complex I activity based on the whole-cell level. The effectiveness of using their concentrations to reflect Complex I activity was further validated in external data sets. Hence, by capturing the relationship between metabolites and mitochondrial complex activity at the whole-cell level, this study explores a novel analytical paradigm for the interrogation of mitochondrial complex activity, offering a favorable complement to existing methods particularly when sample quantities, type, and treatment timeliness pose challenges. More importantly, it shifts the focus from individual metabolic reactions within mitochondria to a more comprehensive view of an interactive metabolic network, which should serve as a promising direction for future research into the functional architecture between mitochondrial complexes and metabolites.
Collapse
Affiliation(s)
- Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xiao-Yuan Ji
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - An-Qi Zhao
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Fang-Yuan Sun
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
3
|
Serafimov K, Lämmerhofer M. Comprehensive Coverage of Glycolysis and Pentose Phosphate Metabolic Pathways by Isomer-Selective Accurate Targeted Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry Assay. Anal Chem 2024; 96:17271-17279. [PMID: 39425639 DOI: 10.1021/acs.analchem.4c03490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The accurate liquid chromatography-tandem mass spectrometry analysis of phosphorylated isomers from glycolysis and pentose phosphate pathways is a challenging analytical problem in metabolomics due to extraction problems from the biological matrix, adherence to stainless steel surfaces leading to tailing in LC, and incomplete separation of hexose and pentose phosphate isomers. In this study, we present a targeted HILIC-ESI-MS/MS method based on a BEH amide fully porous 1.7 μm particle column with an inert surface coating of column hardware and multiple reaction monitoring (MRM) acquisition fully covering the glycolysis and pentose phosphate pathway metabolites. To minimize contact of the phosphorylated analytes with stainless steel surfaces, a μ-ESI-MS probe with a hybrid electrode made of PEEKsil was employed. Optimized HILIC gradient elution conditions with 100 mM ammonium formate (pH 11) provided the separation of hexose monophosphate and pentose phosphate isomers. To ensure good retention time repeatability in HILIC, perfluoroalkoxy alkane bottles were used for the mobile phase (with sd over 60 runs between 0.01 and 0.02 min). For the quantitative assay, the U-13C-labeled cell extract was spiked prior to extraction by metal oxide-based affinity chromatography (MOAC) with TiO2 beads. The concentrations of the 24 targets were quantified in HeLa and human embryonic kidney (HEK293) cells. Erastin-induced ferroptosis in HEK293 cells was accompanied by enhanced levels of fructose-1,6-bis-phosphate, 2- and 3-phosphoglycerate, and 2,3-bis-phosphoglycerate.
Collapse
Affiliation(s)
- Kristian Serafimov
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Marchante-Gayón JM, Nicolás Carcelén J, Potes Rodríguez H, Pineda-Cevallos D, Rodas Sánchez L, González-Gago A, Rodríguez-González P, García Alonso JI. Quantification of modified nucleotides and nucleosides by isotope dilution mass spectrometry. MASS SPECTROMETRY REVIEWS 2024; 43:998-1018. [PMID: 37597182 DOI: 10.1002/mas.21865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/21/2023]
Abstract
Epigenetic modifications are closely related to certain disorders of the organism, including the development of tumors. One of the main epigenetic modifications is the methylation of DNA cytosines, 5-methyl-2'-deoxycycytidine. Furthermore, 5-mdC can be oxidized to form three new modifications, 5-(hydroxymethyl)-2'-deoxycytidine, 5-formyl-2'-deoxycytidine, and 5-carboxy-2'-deoxycytidine. The coupling of liquid chromatography with tandem mass spectrometry has been widely used for the total determination of methylated DNA cytosines in samples of biological and clinical interest. These methods are based on the measurement of the free compounds (e.g., urine) or after complete hydrolysis of the DNA (e.g., tissues) followed by a preconcentration, derivatization, and/or clean-up step. This review highlights the main advances in the quantification of modified nucleotides and nucleosides by isotope dilution using isotopically labeled analogs combined with liquid or gas chromatography coupled to mass spectrometry reported in the last 20 years. The different possible sources of labeled compounds are indicated. Special emphasis has been placed on the different types of chromatography commonly used (reverse phase and hydrophilic interaction liquid chromatography) and the derivatization methods developed to enhance chromatographic resolution and ionization efficiency. We have also revised the application of bidimensional chromatography and indicated significant biological and clinical applications of these determinations.
Collapse
Affiliation(s)
- Juan M Marchante-Gayón
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Jesús Nicolás Carcelén
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Helí Potes Rodríguez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Daniela Pineda-Cevallos
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Laura Rodas Sánchez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Adriana González-Gago
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Pablo Rodríguez-González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Jose I García Alonso
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
5
|
Zhang HX, Yu D, Sun JF, Zeng L, Wang CY, Bai LP, Zhu GY, Jiang ZH, Zhang W. An integrated approach to evaluate acetamiprid-induced oxidative damage to tRNA in human cells based on oxidized nucleotide and tRNA profiling. ENVIRONMENT INTERNATIONAL 2023; 178:108038. [PMID: 37343327 DOI: 10.1016/j.envint.2023.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Acetamiprid is poisonous to mammals due to severe acetamiprid-induced oxidative stress that could cause mitochondrial dysfunctions, lipid and protein oxidation, inflammation, apoptosis, and DNA damage. Evidence has accumulated for the role of oxidative stress in changing structures and functions of transfer RNAs (tRNAs) by inducing tRNA cleavage, reprogramming tRNA modifications and impairing aminoacyl-tRNA synthetase editing sites. However, the impact of acetamiprid-induced oxidative stress on tRNA is still unknown. Here, we investigated the effects of acetamiprid on cell viability, reactive oxygen species (ROS) levels, DNA damage, cellular oxidized nucleotide concentrations, and oxidative damage to tRNA in HepG2 cells and LO2 cells. Acetamiprid can cause the significant increment of ROS and DNA oxidative damage. In this study, an integrated approach was established to simultaneously study the network of oxidized nucleotides and explore the tRNA oxidative damage after acetamiprid exposure. A simple and high-throughput liquid chromatography with tandem mass spectrometry (LC-MS/MS) method coupled with (trimethylsilyl)diazomethane (TMSD) derivatization was successfully developed to quantify 12 cellular oxidized nucleotides that cannot be detected using traditional detection methods because of the huge interferences from naturally abundant nucleotides. Meanwhile, the accumulation rate and the locating sites of 8-oxo-2, 7-dihydro-guanine (8-oxo-G) in tRNA were inspected using the established N-(tert-Butyldimethylsilyl)-N-methyl-trifluoroacetamide (MTBSTFA) labeling-based tRNA profiling method. After acetamiprid treatment, the increment of oxidized nucleoside triphosphates is smaller than that of their corresponding mono- and diphosphates, as well as the dephosphorylated nucleosides, on account of the existence of sanitization enzymes. Several tRNA fragments, CUC[m1A]Gp, CACGp, [Cm]C[m2G]p, and DDGp, are significantly downregulated in acetamiprid-treated HepG2 cells, while only [Cm]C[m2G]p in acetamiprid-treated LO2 cells. According to the profiling results, the significantly changed fragment CUC[m1A]Gp might be caused by the oxidation of guanine (G) to form 8-oxo-G at position 15 in human tRNAphe([Gm]AA), providing more information about the effect of oxidized nucleobases on tRNA's functions.
Collapse
Affiliation(s)
- Hui-Xia Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Dian Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Jian-Feng Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Ling Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Cai-Yun Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China.
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China.
| |
Collapse
|
6
|
Liu S, Lai Z, Zhang M, Tian H, Zhou J, Li Z. Facile synthesis of amino-functionalized magnetic materials for efficient enrichment of anionic metabolites from biological samples. Anal Chim Acta 2023; 1250:340977. [PMID: 36898822 DOI: 10.1016/j.aca.2023.340977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
The analysis of biological samples is often affected by the background matrix. Proper sample preparation is a critical step in the analytical procedure for complex samples. In this study, a simple and efficient enrichment strategy based on Amino-functionalized Polymer-Magnetic MicroParticles (NH2-PMMPs) with coral-like porous structures was developed to enable the detection of 320 anionic metabolites, providing detailed coverage of phosphorylation metabolism. Among them, 102 polar phosphate metabolites including nucleotides, cyclic nucleotides, sugar nucleotides, phosphate sugars, and phosphates, were enriched and identified from serum, tissues, and cells. Furthermore, the detection of 34 previously unknown polar phosphate metabolites in serum samples demonstrates the advantages of this efficient enrichment method for mass spectrometric analysis. The limit of detections (LODs) were between 0.02 and 4 nmol/L for most anionic metabolites and its high sensitivity enabled the detection of 36 polar anion metabolites from 10 cell equivalent samples. This study has provided a promising tool for the efficient enrichment and analysis of anionic metabolites in biological samples with high sensitivity and broad coverage, facilitating the knowledge of the phosphorylation processes of life.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Beijing, 100871, China.
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
7
|
Zhang HX, Qin JF, Sun JF, Pan Y, Yan TM, Wang CY, Bai LP, Zhu GY, Jiang ZH, Zhang W. Selective Chemical Labeling Strategy for Oligonucleotides Determination: A First Application to Full-Range Profiling of Transfer RNA Modifications. Anal Chem 2023; 95:686-694. [PMID: 36601728 DOI: 10.1021/acs.analchem.2c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To date, the extremely high polarity and poor signal intensity of macromolecular nucleic acids are greatly impeding the progress of mass spectrometry technology in the quality control of nucleic acid drugs and the characterization of DNA oxidation and RNA modifications. We recently described a general N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide (MTBSTFA) labeling method for oligonucleotide determination and applied it to the full-range profiling of tRNA in vitro and in vivo studies for the first time. The primary advantages of this method include strong retention, no observable byproducts, predictable and easily interpreted MS2 data, and the circumvention of instrument harmful reagents that were necessary in previous methods. Selective labeling of N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide to the terminal phosphate groups of oligonucleotides endows it broadly applicable for DNA/RNA profiling. Moreover, the improvement of sequence coverage was achieved in yeast tRNAphe(GAA) analysis owing to this method's good detection capability of 1-12 nucleotides in length. We also extended this strategy to determine the abundance of modified bases and discover new modifications via digesting RNA into single-nucleotide products, promoting the comprehensive mapping of RNA. The easy availability of derivatization reagent and the simple, rapid one-step reaction render it easy to operate for researchers. When applied in characterizing tRNAs in HepG2 cells and rats with nonalcoholic fatty liver disease, a fragment of U[m1G][m2G], specific for tRNAAsn(QUU) in cells, was significantly upregulated, indicating a possible clue to nonalcoholic fatty liver disease pathogenesis.
Collapse
Affiliation(s)
- Hui-Xia Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Jian-Feng Qin
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Jian-Feng Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Yu Pan
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Tong-Meng Yan
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Cai-Yun Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| |
Collapse
|
8
|
Pospíšil Š, Panattoni A, Gracias F, Sýkorová V, Hausnerová VV, Vítovská D, Šanderová H, Krásný L, Hocek M. Epigenetic Pyrimidine Nucleotides in Competition with Natural dNTPs as Substrates for Diverse DNA Polymerases. ACS Chem Biol 2022; 17:2781-2788. [PMID: 35679536 PMCID: PMC9594043 DOI: 10.1021/acschembio.2c00342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Five 2'-deoxyribonucleoside triphosphates (dNTPs) derived from epigenetic pyrimidines (5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, 5-hydroxymethyluracil, and 5-formyluracil) were prepared and systematically studied as substrates for nine DNA polymerases in competition with natural dNTPs by primer extension experiments. The incorporation of these substrates was evaluated by a restriction endonucleases cleavage-based assay and by a kinetic study of single nucleotide extension. All of the modified pyrimidine dNTPs were good substrates for the studied DNA polymerases that incorporated a significant percentage of the modified nucleotides into DNA even in the presence of natural nucleotides. 5-Methylcytosine dNTP was an even better substrate for most polymerases than natural dCTP. On the other hand, 5-hydroxymethyl-2'-deoxyuridine triphosphate was not the best substrate for SPO1 DNA polymerase, which naturally synthesizes 5hmU-rich genomes of the SPO1 bacteriophage. The results shed light onto the possibility of gene silencing through recycling and random incorporation of epigenetic nucleotides and into the replication of modified bacteriophage genomes.
Collapse
Affiliation(s)
- Šimon Pospíšil
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic,Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Alessandro Panattoni
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Filip Gracias
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Veronika Sýkorová
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Viola Vaňková Hausnerová
- Lab.
of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Dragana Vítovská
- Lab.
of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Hana Šanderová
- Lab.
of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Libor Krásný
- Lab.
of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Michal Hocek
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic,Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic,E-mail:
| |
Collapse
|
9
|
Targeted analysis of sugar phosphates from glycolysis pathway by phosphate methylation with liquid chromatography coupled to tandem mass spectrometry. Anal Chim Acta 2022; 1221:340099. [DOI: 10.1016/j.aca.2022.340099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
|
10
|
Progress and Challenges in Quantifying Carbonyl-Metabolomic Phenomes with LC-MS/MS. Molecules 2021; 26:molecules26206147. [PMID: 34684729 PMCID: PMC8541004 DOI: 10.3390/molecules26206147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Carbonyl-containing metabolites widely exist in biological samples and have important physiological functions. Thus, accurate and sensitive quantitative analysis of carbonyl-containing metabolites is crucial to provide insight into metabolic pathways as well as disease mechanisms. Although reversed phase liquid chromatography electrospray ionization mass spectrometry (RPLC-ESI-MS) is widely used due to the powerful separation capability of RPLC and high specificity and sensitivity of MS, but it is often challenging to directly analyze carbonyl-containing metabolites using RPLC-ESI-MS due to the poor ionization efficiency of neutral carbonyl groups in ESI. Modification of carbonyl-containing metabolites by a chemical derivatization strategy can overcome the obstacle of sensitivity; however, it is insufficient to achieve accurate quantification due to instrument drift and matrix effects. The emergence of stable isotope-coded derivatization (ICD) provides a good solution to the problems encountered above. Thus, LC-MS methods that utilize ICD have been applied in metabolomics including quantitative targeted analysis and untargeted profiling analysis. In addition, ICD makes multiplex or multichannel submetabolome analysis possible, which not only reduces instrument running time but also avoids the variation of MS response. In this review, representative derivatization reagents and typical applications in absolute quantification and submetabolome profiling are discussed to highlight the superiority of the ICD strategy for detection of carbonyl-containing metabolites.
Collapse
|
11
|
Dai Y, Yuan BF, Feng YQ. Quantification and mapping of DNA modifications. RSC Chem Biol 2021; 2:1096-1114. [PMID: 34458826 PMCID: PMC8341653 DOI: 10.1039/d1cb00022e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Apart from the four canonical nucleobases, DNA molecules carry a number of natural modifications. Substantial evidence shows that DNA modifications can regulate diverse biological processes. Dynamic and reversible modifications of DNA are critical for cell differentiation and development. Dysregulation of DNA modifications is closely related to many human diseases. The research of DNA modifications is a rapidly expanding area and has been significantly stimulated by the innovations of analytical methods. With the recent advances in methods and techniques, a series of new DNA modifications have been discovered in the genomes of prokaryotes and eukaryotes. Deciphering the biological roles of DNA modifications depends on the sensitive detection, accurate quantification, and genome-wide mapping of modifications in genomic DNA. This review provides an overview of the recent advances in analytical methods and techniques for both the quantification and genome-wide mapping of natural DNA modifications. We discuss the principles, advantages, and limitations of these developed methods. It is anticipated that new methods and techniques will resolve the current challenges in this burgeoning research field and expedite the elucidation of the functions of DNA modifications.
Collapse
Affiliation(s)
- Yi Dai
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
- School of Health Sciences, Wuhan University Wuhan 430071 China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
- School of Health Sciences, Wuhan University Wuhan 430071 China
| |
Collapse
|
12
|
Inhibition of CMP-sialic acid transport by endogenous 5-methyl CMP. PLoS One 2021; 16:e0249905. [PMID: 34081697 PMCID: PMC8174729 DOI: 10.1371/journal.pone.0249905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/26/2021] [Indexed: 12/03/2022] Open
Abstract
Nucleotide-sugar transporters (NSTs) transport nucleotide-sugar conjugates into the Golgi lumen where they are then used in the synthesis of glycans. We previously reported crystal structures of a mammalian NST, the CMP-sialic acid transporter (CST) (Ahuja and Whorton 2019). These structures elucidated many aspects of substrate recognition, selectivity, and transport; however, one fundamental unaddressed question is how the transport activity of NSTs might be physiologically regulated as a means to produce the vast diversity of observed glycan structures. Here, we describe the discovery that an endogenous methylated form of cytidine monophosphate (m5CMP) binds and inhibits CST. The presence of m5CMP in cells results from the degradation of RNA that has had its cytosine bases post-transcriptionally methylated through epigenetic processes. Therefore, this work not only demonstrates that m5CMP represents a novel physiological regulator of CST, but it also establishes a link between epigenetic control of gene expression and regulation of glycosylation.
Collapse
|
13
|
Dai Y, Qi CB, Feng Y, Cheng QY, Liu FL, Cheng MY, Yuan BF, Feng YQ. Sensitive and Simultaneous Determination of Uridine Thiolation and Hydroxylation Modifications in Eukaryotic RNA by Derivatization Coupled with Mass Spectrometry Analysis. Anal Chem 2021; 93:6938-6946. [PMID: 33908769 DOI: 10.1021/acs.analchem.0c04630] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery of dynamic and reversible modifications in RNA expands their functional repertoires. Now, RNA modifications have been viewed as new regulators involved in a variety of biological processes. Among these modifications, thiolation is one kind of special modification in RNA. Several thiouridines have been identified to be present in RNA, and they are essential in the natural growth and metabolism of cells. However, detection of these thiouridines generally is challenging, and few studies could offer the quantitative levels of uridine modifications in RNA, which limits the in-depth elucidation of their functions. Herein, we developed a chemical derivatization in combination with mass spectrometry analysis for the sensitive and simultaneous determination of uridine thiolation and hydroxylation modifications in eukaryotic RNA. The chemical derivatization strategy enables the addition of easily ionizable groups to the uridine thiolation and hydroxylation modifications, leading up to a 339-fold increase in detection sensitivities of these modifications by mass spectrometry analysis. The limits of detection of these uridine modifications can be down to 17 amol. With the established method, we discovered and confirmed that a new modification of 5-hydroxyuridine (ho5U) was widely present in small RNAs of mammalian cells, expanding the diversity of RNA modifications. The developed method shows superior capability in determining low-abundance RNA modifications and may promote identifying new modifications in RNA, which should be valuable in uncovering the unknown functions of RNA modifications.
Collapse
Affiliation(s)
- Yi Dai
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Chu-Bo Qi
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
| | - Yang Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qing-Yun Cheng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Fei-Long Liu
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Ming-Yu Cheng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Health Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
14
|
Liu FL, Ye TT, Ding JH, Yin XM, Yang XK, Huang WH, Yuan BF, Feng YQ. Chemical Tagging Assisted Mass Spectrometry Analysis Enables Sensitive Determination of Phosphorylated Compounds in a Single Cell. Anal Chem 2021; 93:6848-6856. [PMID: 33882236 DOI: 10.1021/acs.analchem.1c00915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polar phosphorylated metabolites are involved in a variety of biological processes and play vital roles in energetic metabolism, cofactor regeneration, and nucleic acid synthesis. However, it is often challenging to interrogate polar phosphorylated metabolites and compounds from biological samples. Liquid chromatography-mass spectrometry (LC/MS) now plays a central role in metabolomic studies. However, LC/MS-based approaches have been hampered by the issues of the low ionization efficiencies, low in vivo concentrations, and less chemical stability of polar phosphorylated metabolites. In this work, we synthesized paired reagents of light and heavy isotopomers, 2-(diazomethyl)phenyl)(9-methyl-1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indol-2-yl)methanone (DMPI) and d3-(2-(diazomethyl)phenyl)(9-methyl-1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indol-2-yl)methanone (d3-DMPI). The paired reagents of DMPI and d3-DMPI carry diazo groups that can efficiently and selectively react with the phosphate group on polar phosphorylated metabolites under mild conditions. As a proof of concept, we found that the transfer of the indole heterocycle group from DMPI/d3-DMPI to ribonucleotides led to the significant increase of ionization efficiencies of ribonucleotides during LC/MS analysis. The detection sensitivities of these ribonucleotides increased by 25-1137-fold upon DMPI tagging with the limits of detection (LODs) being between 7 and 150 amol. With the developed method, we achieved the determination of all the 12 ribonucleotides from a single mammalian cell and from a single stamen of Arabidopsis thaliana. The method provides a valuable tool to investigate the dynamic changes of polar phosphorylated metabolites in a single cell under particular conditions.
Collapse
Affiliation(s)
- Fei-Long Liu
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Tian-Tian Ye
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jiang-Hui Ding
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiao-Ming Yin
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiao-Ke Yang
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Health Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
15
|
Sheng N, Zhao H, Chen X, Wang D, Li M, Wang Z, Zhang J, Jiang J. A novel derivatization strategy for profiling phosphate ester/anhydride metabolic network and application on glioma rats using HILIC-MS/MS. Talanta 2021; 228:122238. [PMID: 33773740 DOI: 10.1016/j.talanta.2021.122238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Phosphate esters and anhydrides have great significance in the field of biochemical research and medical therapy. The genetic materials (DNA or RNA), most of the coenzymes, many intermediary metabolites, such as nucleotides and glycosyl phosphates in vivo are phosphodiesters, phosphoric acid or phosphates, respectively. It is important to monitor endogenous active phosphate metabolites for investigating many biological processes or drug mechanism. However, the detection and determination of those free active phosphate metabolites are challenged due to their unstable and easily hydrolyzed property and relatively low sensitivity, especially diphosphates and triphosphates. In the current study, we successfully developed a strategy by 3-aminomethyl pyridine (AMPy) derivatization coupled with hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) for simultaneous determination of multiple types of phosphate metabolites with good stability in 48 h and 29 to 126-fold improvement of the limit of detection (LOD). Based on the diagnostic fragment ions of different types of AMPy-derivatized phosphate metabolites, characteristic MRM ion pairs were successfully performed for global profiling of the phosphate metabolites in phosphate ester/anhydride metabolic network, including nucleotide/deoxynucleotide mono/di/triphosphates, glycosyl mono/diphosphates, and other key phosphates, such as 5-phosphoribosyl-1-pyrophosphate (PRPP), SAICARP and FAICARP in HPF, HUVEC and PBMCs cells without standards. The developed strategy greatly expanded the coverage of applying a single derivatization reaction to analyze active phosphate metabolites. Finally, the established method was performed to investigate the phosphate esters and anhydrides based on a glioma rat model. For the first time, phosphate metabolites were comprehensively characterized based on phosphate ester and anhydride metabolic network, covering nucleotide metabolism, glycolysis and pentose phosphate pathways, etc. The results demonstrated that the applicability of the method could be extended to a wider range of active phosphate compounds and could facilitate to related applications in the future studies.
Collapse
Affiliation(s)
- Ning Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Hongyi Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Xiong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Dongmei Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Menglin Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
16
|
Zaikin VG, Borisov RS. Options of the Main Derivatization Approaches for Analytical ESI and MALDI Mass Spectrometry. Crit Rev Anal Chem 2021; 52:1287-1342. [PMID: 33557614 DOI: 10.1080/10408347.2021.1873100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inclusion of preliminary chemical labeling (derivatization) in the analysis process by such powerful and widespread methods as electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a popular and widely used methodological approach. This is due to the need to remove some fundamental limitations inherent in these powerful analytic methods. Although a number of special reviews has been published discussing the utilization of derivatization approaches, the purpose of the present critical review is to comprehensively summarize, characterize and evaluate most of the previously developed and practically applied, as well as recently proposed representative derivatization reagents for ESI-MS and MALDI-MS platforms in their mostly sensitive positive ion mode and frequently hyphenated with separation techniques. The review is focused on the use of preliminary chemical labeling to facilitate the detection, identification, structure elucidation, quantification, profiling or MS imaging of compounds within complex matrices. Two main derivatization approaches, namely the introduction of permanent charge-fixed or highly proton affinitive residues into analytes are critically evaluated. In situ charge-generation, charge-switch and charge-transfer derivatizations are considered separately. The potential of using reactive matrices in MALDI-MS and chemical labeling in MS-based omics sciences is given.
Collapse
Affiliation(s)
- Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Roman S Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
17
|
Cao X, Lintelmann J, Padoan S, Bauer S, Huber A, Mudan A, Oeder S, Adam T, Di Bucchianico S, Zimmermann R. Adenine derivatization for LC-MS/MS epigenetic DNA modifications studies on monocytic THP-1 cells exposed to reference particulate matter. Anal Biochem 2021; 618:114127. [PMID: 33571488 DOI: 10.1016/j.ab.2021.114127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 11/18/2022]
Abstract
The aim of this study was to explore the impact of three different standard reference particulate matter (ERM-CZ100, SRM-1649, and SRM-2975) on epigenetic DNA modifications including cytosine methylation, cytosine hydroxymethylation, and adenine methylation. For the determination of low levels of adenine methylation, we developed and applied a novel DNA nucleobase chemical derivatization and combined it with liquid chromatography tandem mass spectrometry. The developed method was applied for the analysis of epigenetic modifications in monocytic THP-1 cells exposed to the three different reference particulate matter for 24 h and 48 h. The mass fraction of epigenetic active elements As, Cd, and Cr was analyzed by inductively coupled plasma mass spectrometry. The exposure to fine dust ERM-CZ100 and urban dust SRM-1649 decreased cytosine methylation after 24 h exposure, whereas all 3 p.m. increased cytosine hydoxymethylation following 24 h exposure, and the epigenetic effects induced by SRM-1649 and diesel SRM-2975 were persistent up to 48 h exposure. The road tunnel dust ERM-CZ100 significantly increased adenine methylation following the shorter exposure time. Two-dimensional scatters analysis between different epigenetic DNA modifications were used to depict a significantly negative correlation between cytosine methylation and cytosine hydroxymethylation supporting their possible functional relationship. Metals and polycyclic aromatic hydrocarbons differently shapes epigenetic DNA modifications.
Collapse
Affiliation(s)
- Xin Cao
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Jutta Lintelmann
- Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Sara Padoan
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany; University of the Bundeswehr Munich, Institute for Chemistry and Environmental Engineering, Neubiberg, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
| | - Ajit Mudan
- University of the Bundeswehr Munich, Institute for Chemistry and Environmental Engineering, Neubiberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Adam
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany; University of the Bundeswehr Munich, Institute for Chemistry and Environmental Engineering, Neubiberg, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany.
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
18
|
Zhao Y, Zuo X, Li Q, Chen F, Chen YR, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu ZS, Xia F, Xu C, Yang Y, Yuan BF, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang XB, Yang H, Tan W, Fan C. Nucleic Acids Analysis. Sci China Chem 2020; 64:171-203. [PMID: 33293939 PMCID: PMC7716629 DOI: 10.1007/s11426-020-9864-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis. During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs. In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fujian Huang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Yanyi Huang
- College of Chemistry and Molecular Engineering, Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071 China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Libing Liu
- Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Chunhua Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology (ICSB), Chinese Institute for Brain Research (CIBR), Tsinghua University, Beijing, 100084 China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Shu Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Yang Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Bi-Feng Yuan
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Quan Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Huanghao Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Weihong Tan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
19
|
David V, Moldoveanu SC, Galaon T. Derivatization procedures and their analytical performances for HPLC determination in bioanalysis. Biomed Chromatogr 2020; 35:e5008. [PMID: 33084080 DOI: 10.1002/bmc.5008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Derivatization, or chemical structure modification, is often used in bioanalysis performed by liquid chromatography technique in order to enhance detectability or to improve the chromatographic performance for the target analytes. The derivatization process is discussed according to the analytical procedure used to achieve the reaction between the reagent and the target compounds (containing hydroxyl, thiol, amino, carbonyl and carboxyl as the main functional groups involved in derivatization). Important procedures for derivatization used in bioanalysis are in situ or based on extraction processes (liquid-liquid, solid-phase and related techniques) applied to the biomatrix. In the review, chiral, isotope-labeling, hydrophobicity-tailored and post-column derivatizations are also included, based on representative publications in the literature during the last two decades. Examples of derivatization reagents and brief reaction conditions are included, together with some bioanalytical applications and performances (chromatographic conditions, detection limit, stability and sample biomatrix).
Collapse
Affiliation(s)
- Victor David
- Faculty of Chemistry, Department of Analytical Chemistry, University of Bucharest, Bucharest, Romania
| | | | - Toma Galaon
- National Research and Development Institute for Industrial Ecology - ECOIND, Bucharest-6, Romania
| |
Collapse
|
20
|
Wang ZY, Li P, Cui L, Xu Q, Zhang CY. Construction of a Universal and Label-Free Chemiluminescent Sensor for Accurate Quantification of Both Bacteria and Human Methyltransferases. Anal Chem 2020; 92:13573-13580. [DOI: 10.1021/acs.analchem.0c03303] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zi-yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Peng Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, P. R. China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
21
|
Challenges in Analysis of Hydrophilic Metabolites Using Chromatography Coupled with Mass Spectrometry. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Liu FL, Qi CB, Cheng QY, Ding JH, Yuan BF, Feng YQ. Diazo Reagent Labeling with Mass Spectrometry Analysis for Sensitive Determination of Ribonucleotides in Living Organisms. Anal Chem 2019; 92:2301-2309. [PMID: 31845797 DOI: 10.1021/acs.analchem.9b05122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ribonucleotide analogues and their related phosphorylated metabolites play critical roles in tumor metabolism. However, determination of the endogenous ribonucleotides from the complex biological matrix is still a challenge due to their high structural similarity and high polarity that will lead to the low retention and low detection sensitivities by liquid chromatogram mass spectrometry analysis. In this study, we developed the diazo reagent labeling strategy with mass spectrometry analysis for sensitive determination of ribonucleotides in the living organism. A pair of light and heavy stable isotope labeling reagents, 2-(diazomethyl)-N-methyl-N-phenyl-benzamide (2-DMBA) and d5-2-(diazomethyl)-N-methyl-N-phenyl-benzamide (d5-2-DMBA), were synthesized to label ribonucleotides. 2-DMBA showed high specificity and high efficiency for the labeling of ribonucleotides. Our results demonstrated that the detection sensitivities of 12 ribonucleotides increased by 17-174-fold upon 2-DMBA labeling. The obtained limits of detection (LODs) of ribonucleotides ranged from 0.07 fmol to 0.41 fmol. Using this method, we achieved the sensitive and accurate detection of ribonucleotides from only a few cells (8 cells). To the best of our knowledge, this is the highest detection sensitivity for ribonucleotides ever reported. In addition, we found that the contents of almost all of these ribonucleotides were significantly increased in human breast carcinoma tissues compared to tumor-adjacent normal tissues, suggesting that endogenous ribonucleotides may play certain functional roles in the regulation of cancer development and formation. This method also can be potentially applied in the analysis of phosphorylated compounds.
Collapse
Affiliation(s)
- Fei-Long Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Chu-Bo Qi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China.,Hubei Cancer Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430079 , China
| | - Qing-Yun Cheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Jiang-Hui Ding
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
23
|
Affiliation(s)
- Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry and Sauvage Center for Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
24
|
Tang Y, Zhang JL. Recent developments in DNA adduct analysis using liquid chromatography coupled with mass spectrometry. J Sep Sci 2019; 43:31-55. [PMID: 31573133 DOI: 10.1002/jssc.201900737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
The formation of DNA adducts by genotoxic agents is an early event in cancer development, and it may lead to gene mutations, thereby initiating tumor development. The measurement of DNA adducts can provide critical information about the genotoxic potential of a chemical and its mechanism of carcinogenesis. In recent decades, liquid chromatography coupled with mass spectrometry has become the most important technique for analyzing DNA adducts. The improvements in resolution achievable with new chromatographic separation techniques coupled with the high specificity and sensitivity and wide dynamic range of new mass spectrometry systems have been used for both qualitative and quantitative analyses of DNA adducts. This review discusses the challenges in qualitative and quantitative analyses of DNA adducts by liquid chromatography coupled with mass spectrometry and highlights recent developments towards overcoming the limitations of liquid chromatography coupled with mass spectrometry methods. The key steps and new solutions, such as sample preparation, mass spectrometry fragmentation, and method validation, are summarized. In addition, the fundamental principles and latest advances in DNA adductomic approaches are reviewed.
Collapse
Affiliation(s)
- Yu Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, P. R. China
| |
Collapse
|
25
|
Qi C, Ding J, Yuan B, Feng Y. Analytical methods for locating modifications in nucleic acids. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Mohyuddin A, Hussain D, Fatima B, Athar M, Ashiq MN, Najam-ul-Haq M. Gallic acid functionalized UiO-66 for the recovery of ribosylated metabolites from human urine samples. Talanta 2019; 201:23-32. [DOI: 10.1016/j.talanta.2019.03.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
|
27
|
Zhang YF, Qi CB, Yuan BF, Feng YQ. Determination of cytidine modifications in human urine by liquid chromatography - Mass spectrometry analysis. Anal Chim Acta 2019; 1081:103-111. [PMID: 31446947 DOI: 10.1016/j.aca.2019.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/14/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
Both DNA cytosine methylation (5-methyl-2'-deoxycytidine, m5dC) and RNA cytosine methylation (5-methylcytidine, m5rC) are important epigenetic marks that play regulatory roles in diverse biological processes. m5dC and m5rC can be further oxidized by the ten-eleven translocation (TET) proteins to form 5-hydroxymethyl-2'-deoxycytidine (hm5dC) and 5-hydroxymethylcytidine (hm5rC), respectively. 2'-O-methyl-5-hydroxymethylcytidine (hm5rCm) was recently also identified as a second oxidative metabolite of m5rC in RNA. Previous studies showed that the dysregulation of cytidine modifications in both DNA and RNA are closely related to a variety of human diseases. These cytidine modifications are generally excreted from cell into urine. If these cytidine modifications exhibit specific features related to certain diseases, determination of the cytidine modifications in urine could be utilized as non-invasive diagnostic of diseases. Here, we established a solid-phase extraction in combination with liquid chromatography-mass spectrometry (LC-MS/MS) analysis for simultaneous detection of these cytidine modifications in human urine samples. The developed method enabled the distinct detection of these cytidine modifications. We reported, for the first time, the presence of hm5rCm in human urine. Furthermore, we found that compared to the healthy controls, the contents of hm5dC, hm5rC, and hm5rCm showed significant increases in urine samples of cancer patients, including lymphoma patients, gastric cancer patients, and esophageal cancer patients. This study indicates that the urinary hydroxylmethylation modifications of hm5dC, hm5rC, and hm5rCm may serve as potential indicator of cancers.
Collapse
Affiliation(s)
- Yu-Fan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Chu-Bo Qi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, PR China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, PR China.
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| |
Collapse
|
28
|
Zheng J, Zheng SJ, Cai WJ, Yu L, Yuan BF, Feng YQ. Stable isotope labeling combined with liquid chromatography-tandem mass spectrometry for comprehensive analysis of short-chain fatty acids. Anal Chim Acta 2019; 1070:51-59. [PMID: 31103167 DOI: 10.1016/j.aca.2019.04.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
Abstract
Short-chain fatty acids (SCFAs) are one class of bacterial metabolites mainly formed by gut microbiota from undigested fibers and proteins. These molecules are able to mediate signal conduction processes of cells, acting as G protein-coupled receptors (GPR) activators and histone deacetylases (HDAC) inhibitors. It was reported that SCFAs were closely associated with various human diseases. However, it is still challenging to analyze SCFAs because of their diverse structures and broad range of concentrations. In this study, we developed a highly sensitive method for simultaneous detection of 34 SCFAs by stable isotope labeling coupled with ultra-high performance liquid chromatography-electrospray ionization-mass spectrometry (UHPLC-ESI-MS/MS) analysis. In this respect, a pair of isotope labeling reagents, N-(4-(aminomethyl)benzyl)aniline (4-AMBA) and N-(4-(aminomethyl)benzyl)aniline-d5 (4-AMBA-d5), were synthesized to label SCFAs from the feces of mice and SCFA standards, respectively. The 4-AMBA-d5 labeled SCFAs were used as internal standards to compensate the ionization variances resulting from matrix effect and thus minimize quantitation deviation in MS detection. After 4-AMBA labeling, the retention of SCFAs on the reversed-phase column increased and the separation resolution of isomers were improved. In addition, the MS responses of most SCFAs were enhanced by up to three orders of magnitude compared to unlabeled SCFAs. The limits of detection (LODs) of SCFAs were as low as 0.005 ng/mL. Moreover, good linearity for 34 SCFAs was obtained with the coefficient of determination (R2) ranging from 0.9846 to 0.9999 and the intra- and inter-day relative standard deviations (RSDs) were <17.8% and 15.4%, respectively, indicating the acceptable reproducibility of the developed method. Using the developed method, we successfully quantified 21 SCFAs from the feces of mice. Partial least squares discriminant analysis (PLS-DA) and t-test analysis showed that the contents of 9 SCFAs were significantly different between Alzheimer's disease (AD) and wide type (WT) mice fecal samples. Compared to WT mice, the contents of propionic acid, isobutyric acid, 3-hydroxybutyric acid, and 3-hydroxyisocaleric acid were decreased in AD mice, while lactic acid, 2-hydroxybutyric acid, 2-hydroxyisobutyric acid, levulinic acid, and valpronic acid were increased in AD mice. These significantly changed SCFAs in the feces of AD mice may afford to a better understanding of the pathogenesis of AD. Taken together, the developed UHPLC-ESI-MS/MS method could be applied for the sensitive and comprehensive determination of SCFAs from complex biological samples.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Shu-Jian Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Wen-Jing Cai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Lei Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
29
|
Xiong J, Yuan BF, Feng YQ. Mass Spectrometry for Investigating the Effects of Toxic Metals on Nucleic Acid Modifications. Chem Res Toxicol 2019; 32:808-819. [PMID: 30920205 DOI: 10.1021/acs.chemrestox.9b00042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The extensive use of toxic metals in industry and agriculture leads to their wide distribution in the environment, which raises critical concerns over their toxic effects on human health. Many toxic metals are reported to be mildly mutagenic or non-mutagenic, indicating that genetic-based mechanisms may not be primarily responsible for toxic metal-induced carcinogenesis. Increasing evidence has demonstrated that exposure to toxic metals can alter epigenetic modifications, which may lead to the dysregulation of gene expression and disease susceptibility. It is now becoming clear that a full understanding of the effects of toxic metals on cellular toxicity and carcinogenesis will need to consider both genetic- and epigenetic-based mechanisms. Uncovering the effects of toxic metals on epigenetic modifications in nucleic acids relies on the detection and quantification of these modifications. Mass spectrometry (MS)-based methods for deciphering epigenetic modifications have substantially advanced over the past decade, and they are now becoming widely used and essential tools for evaluating the effects of toxic metals on nucleic acid modifications. This Review provides an overview of MS-based methods for analysis of nucleic acid modifications. In addition, we also review recent advances in understanding the effects of exposure to toxic metals on nucleic acid modifications.
Collapse
Affiliation(s)
- Jun Xiong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| |
Collapse
|
30
|
Xu J, Zhang QF, Zheng J, Yuan BF, Feng YQ. Mass spectrometry-based fecal metabolome analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Deciphering nucleic acid modifications by chemical derivatization-mass spectrometry analysis. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.04.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Huang T, Armbruster MR, Coulton JB, Edwards JL. Chemical Tagging in Mass Spectrometry for Systems Biology. Anal Chem 2018; 91:109-125. [DOI: 10.1021/acs.analchem.8b04951] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tianjiao Huang
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Michael R. Armbruster
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - John B. Coulton
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - James L. Edwards
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
33
|
|
34
|
Affiliation(s)
- Bei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
35
|
Zheng SJ, Liu SJ, Zhu QF, Guo N, Wang YL, Yuan BF, Feng YQ. Establishment of Liquid Chromatography Retention Index Based on Chemical Labeling for Metabolomic Analysis. Anal Chem 2018; 90:8412-8420. [DOI: 10.1021/acs.analchem.8b00901] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shu-Jian Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Shi-Jie Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Quan-Fei Zhu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Ning Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Ya-Lan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
36
|
Yuan BF, Zhu QF, Guo N, Zheng SJ, Wang YL, Wang J, Xu J, Liu SJ, He K, Hu T, Zheng YW, Xu FQ, Feng YQ. Comprehensive Profiling of Fecal Metabolome of Mice by Integrated Chemical Isotope Labeling-Mass Spectrometry Analysis. Anal Chem 2018; 90:3512-3520. [PMID: 29406693 DOI: 10.1021/acs.analchem.7b05355] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gut microbiota plays important roles in the host health. The host and symbiotic gut microbiota coproduce a large number of metabolites during the metabolism of food and xenobiotics. The analysis of fecal metabolites can provide a noninvasive manner to study the outcome of the host-gut microbiota interaction. Herein, we reported the comprehensive profiling of fecal metabolome of mice by an integrated chemical isotope labeling combined with liquid chromatography-mass spectrometry (CIL-LC-MS) analysis. The metabolites are categorized into several submetabolomes based on the functional moieties (i.e., carboxyl, carbonyl, amine, and thiol) and then analysis of the individual submetabolome was performed. The combined data from the submetabolome form the metabolome with relatively high coverage. To this end, we synthesized stable isotope labeling reagents to label metabolites with different groups, including carboxyl, carbonyl, amine, and thiol groups. We detected 2302 potential metabolites, among which, 1388 could be positively or putatively identified in feces of mice. We then further confirmed 308 metabolites based on our established library of chemically labeled standards and tandem mass spectrometry analysis. With the identified metabolites in feces of mice, we established mice fecal metabolome database, which can be used to readily identify metabolites from feces of mice. Furthermore, we discovered 211 fecal metabolites exhibited significant difference between Alzheimer's disease (AD) model mice and wild type (WT) mice, which suggests the close correlation between the fecal metabolites and AD pathology and provides new potential biomarkers for the diagnosis of AD.
Collapse
Affiliation(s)
- Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Quan-Fei Zhu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Ning Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Shu-Jian Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Ya-Lan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Center for Magnetic Resonance (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences) , Wuhan 430071 , P.R. China.,University of the Chinese Academy of Sciences , Beijing , 100049 , P.R. China
| | - Jing Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Shi-Jie Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Ke He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Ting Hu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Center for Magnetic Resonance (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences) , Wuhan 430071 , P.R. China.,University of the Chinese Academy of Sciences , Beijing , 100049 , P.R. China
| | - Ying-Wei Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Center for Magnetic Resonance (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences) , Wuhan 430071 , P.R. China.,University of the Chinese Academy of Sciences , Beijing , 100049 , P.R. China
| | - Fu-Qiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Center for Magnetic Resonance (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences) , Wuhan 430071 , P.R. China.,University of the Chinese Academy of Sciences , Beijing , 100049 , P.R. China.,Center for Excellence in Brain Science and Intelligence Technology , Chinese Academy of Sciences , Shanghai 200031 , P.R. China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| |
Collapse
|
37
|
Cheng QY, Xiong J, Wang F, Yuan BF, Feng YQ. Chiral derivatization coupled with liquid chromatography/mass spectrometry for determining ketone metabolites of hydroxybutyrate enantiomers. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Analysis of mononucleotides by tandem mass spectrometry: investigation of fragmentation pathways for phosphate- and ribose-modified nucleotide analogues. Sci Rep 2017; 7:8931. [PMID: 28827558 PMCID: PMC5567097 DOI: 10.1038/s41598-017-09416-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022] Open
Abstract
Synthetic nucleotide and nucleic acid analogues are useful research tools and modern therapeutics. Hence, methods for the rapid and unambiguous identification of mononucleotides derived from organic syntheses or biological materials are of broad interest. Here, we analysed over 150 mononucleotides (mostly nucleoside 5′-mono-, 5′-di-, and 5′-triphosphates) and their structurally related nucleobase-, phosphate-, and ribose-modified analogues by electrospray tandem mass spectrometry (ESI/MS/MS), identifying characteristic fragmentation ions that may be helpful in structure determination. While positive-ion mode yielded fragments derived mainly from nucleobases, negative-ion mode provided insight into the structures of phosphoryl and phosphoribosyl moieties, enabling the determination of structural features such as the number of phosphate groups and the presence of ribose or phosphate substitutions. Based on these data, we proposed fragmentation pathways that were confirmed by experiments with [18O]-isotopologues. We demonstrated the utility of ESI(−)/MS/MS in the analysis of structurally related compounds by analysing isomeric and isobaric nucleotides and applying ESI(−)/MS/MS to rapid identification of nucleotide synthesis products. We formulated general rules regarding nucleotide structure–fragmentation pattern relationships and indicating characteristic fragmentation ions for the interpretation of ESI(−)/MS/MS spectra of nucleotides and their analogues. The ESI(−)/MS/MS spectra of all nucleotides are available in an on-line database, msTide, at www.msTide-db.com.
Collapse
|
39
|
Jiang HP, Liu T, Guo N, Yu L, Yuan BF, Feng YQ. Determination of formylated DNA and RNA by chemical labeling combined with mass spectrometry analysis. Anal Chim Acta 2017; 981:1-10. [PMID: 28693723 DOI: 10.1016/j.aca.2017.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023]
Abstract
Nucleic acids carry diverse chemical modifications that exert critical influences in a variety of cellular processes in living organisms. In addition to methylation, the emerging DNA and RNA formylation has been reported to play functional roles in various physiological processes. However, the amounts of formylated DNA and RNA are extremely low and detection of DNA and RNA formylation is therefore a challenging task. To address this issue, we developed a strategy by chemical labeling combined with in-tube solid-phase microextraction - ultra high performance liquid chromatography - electrospray ionization - tandem mass spectrometry (in-tube SPME-UPLC-ESI-MS/MS) analysis for the sensitive determination of DNA and RNA formylation. Using the developed method, we were able to simultaneously measure six formylated nucleosides, including 5-formyl-2'-deoxycytidine (5-fodC), 5-formylcytidine (5-forC), 5-formyl-2'-deoxyuridine (5-fodU), 5-formyluridine (5-forU), 2'-O-methyl-5-formylcytidine (5-forCm) and 2'-O-methyl-5- formyluridine (5-forUm), from DNA and RNA of cultured human cells and multiple mammalian tissues. The detection limits of these formylated nucleosides improved by 307-884 folds using Girard's P (GirP) labeling coupled with in-tube SPME-UPLC-ESI-MS/MS analysis. It was worth noting that 5-forU, 5-forCm and 5-forUm which have not been detected in human sample before, were discovered in cultured human cells and tissues in the current study. In addition, we observed significant increase of 5-forC and 5-forU in RNA (p = 0.027 for 5-forC; p = 0.028 for 5-forU) and 5-fodU in DNA (p = 0.002) in human thyroid carcinoma tissues compared to normal tissues adjacent to the tumor using synthesized stable isotope GirP (d5-GirP)-assisted quantification. Our results indicated that aberrant DNA and RNA formylation may contribute to the tumor formation and development. In addition, monitoring of DNA and RNA formylation may also serve as indicator for cancer diagnostics. Taken together, the developed chemical labeling combined with in-tube SPME-UPLC-ESI-MS/MS analysis can facilitate the in-depth functional study of DNA and RNA formylation.
Collapse
Affiliation(s)
- Han-Peng Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Ting Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Ning Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Lei Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
40
|
Xiong J, Liu X, Cheng QY, Xiao S, Xia LX, Yuan BF, Feng YQ. Heavy Metals Induce Decline of Derivatives of 5-Methycytosine in Both DNA and RNA of Stem Cells. ACS Chem Biol 2017; 12:1636-1643. [PMID: 28448110 DOI: 10.1021/acschembio.7b00170] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Toxic heavy metals have been considered to be harmful environmental contaminations. The molecular mechanisms of heavy-metals-induced cytotoxicity and carcinogenicity are still not well elucidated. Previous reports showed exposures to toxic heavy metals can cause a change of DNA cytosine methylation (5-methylcytosine, 5-mC). However, it is still not clear whether heavy metals have effects on the recently identified new epigenetic marks in both DNA and RNA, i.e., 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-foC), and 5-carboxylcytosine (5-caC). Here, we established a chemical labeling strategy in combination with liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) analysis for highly sensitive detection of eight modified cytidines in DNA and RNA. The developed method allowed simultaneous detection of all eight modified cytidines with improved detection sensitivities of 128-443-fold. Using this method, we demonstrated that the levels of 5-hmC, 5-foC, and 5-caC significantly decreased in both the DNA and RNA of mouse embryonic stem (ES) cells while exposed to arsenic (As), cadmium (Cd), chromium (Cr), and antimony (Sb). In addition, we found that treatments by heavy metals induced a decrease of the activities of 10-11 translocation (Tet) proteins. Furthermore, we revealed that a content change of metabolites occurring in the tricarboxylic acid cycle may be responsible for the decline of the derivatives of 5-mC. Our study shed light on the epigenetic effects of heavy metals, especially for the induced decline of the derivatives of 5-mC in both DNA and RNA.
Collapse
Affiliation(s)
- Jun Xiong
- Key Laboratory of
Analytical Chemistry for Biology and Medicine (Ministry of Education),
Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Xiaona Liu
- School
of Life Sciences, University of Science and Technology of China, Hefei 230027, People’s Republic of China
- Department of Developmental Biology, School of Basic
Medical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
- State Key
Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Qing-Yun Cheng
- Key Laboratory of
Analytical Chemistry for Biology and Medicine (Ministry of Education),
Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Shan Xiao
- Department of Developmental Biology, School of Basic
Medical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
| | - Lai-Xin Xia
- Department of Developmental Biology, School of Basic
Medical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
| | - Bi-Feng Yuan
- Key Laboratory of
Analytical Chemistry for Biology and Medicine (Ministry of Education),
Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yu-Qi Feng
- Key Laboratory of
Analytical Chemistry for Biology and Medicine (Ministry of Education),
Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|