1
|
Paulus J, Sewald N. Small molecule- and peptide-drug conjugates addressing integrins: A story of targeted cancer treatment. J Pept Sci 2024; 30:e3561. [PMID: 38382900 DOI: 10.1002/psc.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/23/2024]
Abstract
Targeted cancer treatment should avoid side effects and damage to healthy cells commonly encountered during traditional chemotherapy. By combining small molecule or peptidic ligands as homing devices with cytotoxic drugs connected by a cleavable or non-cleavable linker in peptide-drug conjugates (PDCs) or small molecule-drug conjugates (SMDCs), cancer cells and tumours can be selectively targeted. The development of highly affine, selective peptides and small molecules in recent years has allowed PDCs and SMDCs to increasingly compete with antibody-drug conjugates (ADCs). Integrins represent an excellent target for conjugates because they are overexpressed by most cancer cells and because of the broad knowledge about native binding partners as well as the multitude of small-molecule and peptidic ligands that have been developed over the last 30 years. In particular, integrin αVβ3 has been addressed using a variety of different PDCs and SMDCs over the last two decades, following various strategies. This review summarises and describes integrin-addressing PDCs and SMDCs while highlighting points of great interest.
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Javid H, Oryani MA, Rezagholinejad N, Esparham A, Tajaldini M, Karimi‐Shahri M. RGD peptide in cancer targeting: Benefits, challenges, solutions, and possible integrin-RGD interactions. Cancer Med 2024; 13:e6800. [PMID: 38349028 PMCID: PMC10832341 DOI: 10.1002/cam4.6800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 02/15/2024] Open
Abstract
RGD peptide can be found in cell adhesion and signaling proteins, such as fibronectin, vitronectin, and fibrinogen. RGD peptides' principal function is to facilitate cell adhesion by interacting with integrin receptors on the cell surface. They have been intensively researched for use in biotechnology and medicine, including incorporation into biomaterials, conjugation to medicinal molecules or nanoparticles, and labeling with imaging agents. RGD peptides can be utilized to specifically target cancer cells and the tumor vasculature by engaging with these integrins, improving drug delivery efficiency and minimizing adverse effects on healthy tissues. RGD-functionalized drug carriers are a viable option for cancer therapy as this focused approach has demonstrated promise in the future. Writing a review on the RGD peptide can significantly influence how drugs are developed in the future by improving our understanding of the peptide, finding knowledge gaps, fostering innovation, and making drug design easier.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory SciencesVarastegan Institute for Medical SciencesMashhadIran
- Department of Clinical Biochemistry, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Ali Esparham
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahboubeh Tajaldini
- Ischemic Disorder Research CenterGolestan University of Medical SciencesGorganIran
| | - Mehdi Karimi‐Shahri
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Pathology, School of MedicineGonabad University of Medical SciencesGonabadIran
| |
Collapse
|
3
|
Karagöz Z, Geuens T, LaPointe VLS, van Griensven M, Carlier A. Win, Lose, or Tie: Mathematical Modeling of Ligand Competition at the Cell-Extracellular Matrix Interface. Front Bioeng Biotechnol 2021; 9:657244. [PMID: 33996781 PMCID: PMC8117103 DOI: 10.3389/fbioe.2021.657244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022] Open
Abstract
Integrin transmembrane proteins conduct mechanotransduction at the cell–extracellular matrix (ECM) interface. This process is central to cellular homeostasis and therefore is particularly important when designing instructive biomaterials and organoid culture systems. Previous studies suggest that fine-tuning the ECM composition and mechanical properties can improve organoid development. Toward the bigger goal of fully functional organoid development, we hypothesize that resolving the dynamics of ECM–integrin interactions will be highly instructive. To this end, we developed a mathematical model that enabled us to simulate three main interactions, namely integrin activation, ligand binding, and integrin clustering. Different from previously published computational models, we account for the binding of more than one type of ligand to the integrin. This competition between ligands defines the fate of the system. We have demonstrated that an increase in the initial concentration of ligands does not ensure an increase in the steady state concentration of ligand-bound integrins. The ligand with higher binding rate occupies more integrins at the steady state than does the competing ligand. With cell type specific, quantitative input on integrin-ligand binding rates, this model can be used to develop instructive cell culture systems.
Collapse
Affiliation(s)
- Zeynep Karagöz
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Thomas Geuens
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
4
|
Dakal TC. SARS-CoV-2 attachment to host cells is possibly mediated via RGD-integrin interaction in a calcium-dependent manner and suggests pulmonary EDTA chelation therapy as a novel treatment for COVID 19. Immunobiology 2021; 226:152021. [PMID: 33232865 PMCID: PMC7642744 DOI: 10.1016/j.imbio.2020.152021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is a highly contagious virus that has caused serious health crisis world-wide resulting into a pandemic situation. As per the literature, the SARS-CoV-2 is known to exploit humanACE2 receptors (similar toprevious SARS-CoV-1) for gaining entry into the host cell for invasion, infection, multiplication and pathogenesis. However, considering the higher infectivity of SARS-CoV-2 along with the complex etiology and pathophysiological outcomes seen in COVID-19 patients, it seems that there may be an alternate receptor for SARS-CoV-2. I performed comparative protein sequence analysis, database based gene expression profiling, bioinformatics based molecular docking using authentic tools and techniques for unveiling the molecular basis of high infectivity of SARS-CoV-2 as compared to previous known coronaviruses. My study revealed that SARS-CoV-2 (previously known as 2019-nCoV) harbors a RGD motif in its receptor binding domain (RBD) and the motif is absent in all other previously known SARS-CoVs. The RGD motif is well known for its role in cell-attachment and cell-adhesion. My hypothesis is that the SARS-CoV-2 may be (via RGD) exploiting integrins, that have high expression in lungs and all other vital organs, for invading host cells. However, an experimental verification is required. The expression of ACE2, which is a known receptor for SARS-CoV-2, was found to be negligible in lungs. I assume that higher infectivity of SARS-CoV-2 could be due to this RGD-integrin mediated acquired cell-adhesive property. Gene expression profiling revealed that expression of integrins is significantly high in lung cells, in particular αvβ6, α5β1, αvβ8 and an ECM protein, ICAM1. The molecular docking experiment showed the RBD of spike protein binds with integrins precisely at RGD motif in a similar manner as a synthetic RGD peptide binds to integrins as found by other researchers. SARS-CoV-2 spike protein has a number of phosphorylation sites that can induce cAMP, PKC, Tyr signaling pathways. These pathways either activate calcium ion channels or get activated by calcium. In fact, integrins have calcium & metal binding sites that were predicted around and in vicinity of RGD-integrin docking site in our analysis which suggests that RGD-integrins interaction possibly occurs in calcium-dependent manner. The higher expression of integrins in lungs along with their previously known high binding affinity (~KD = 4.0 nM) for virus RGD motif could serve as a possible explanation for high infectivity of SARS-CoV-2. On the contrary, human ACE2 has lower expression in lungs and its high binding affinity (~KD = 15 nM) for spike RBD alone could not manifest significant virus-host attachment. This suggests that besides human ACE2, an additional or alternate receptor for SARS-CoV-2 is likely to exist. A highly relevant evidence never reported earlier which corroborate in favor of RGD-integrins mediated virus-host attachment is an unleashed cytokine storm which causes due to activation of TNF-α and IL-6 activation; and integrins role in their activation is also well established. Altogether, the current study has highlighted possible role of calcium and other divalent ions in RGD-integrins interaction for virus invasion into host cells and suggested that lowering divalent ion in lungs could avert virus-host cells attachment.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India.
| |
Collapse
|
5
|
Kondo N, Wakamori K, Hirata M, Temma T. Radioiodinated bicyclic RGD peptide for imaging integrin α vβ 3 in cancers. Biochem Biophys Res Commun 2020; 528:168-173. [PMID: 32451087 DOI: 10.1016/j.bbrc.2020.05.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 11/19/2022]
Abstract
Integrin αvβ3 is an effective marker of angiogenesis in cancer, and αvβ3-specific imaging can yield important details about this complex physiological process. We utilized the recently reported and highly αvβ3-specific peptide, bicyclic RGD (bcRGD), as the basic structure of an in vivo αvβ3 imaging probe, and synthesized a radioiodinated form of bcRGD, namely [125I]bcRGD, with high radiochemical purity (>99%) and high molar activity (81 GBq/μmol). As expected, [125I]bcRGD exhibited high selectivity for αvβ3 compared with αvβ5 and α5β1in vitro. [125I]bcRGD showed significantly higher accumulation in U-87MG cells (1.6% dose/mg) with high expression of αvβ3 compared to A549 cells (0.3% dose/mg) with only moderate expression. Furthermore, 30 min after administration to tumor-bearing mice, [125I]bcRGD showed significantly higher accumulation in U-87MG tumors (3.8% ID/g) than in A549 tumors (2.1% ID/g), and the radioactivity accumulation ratios of U-87MG tumor/blood and U-87MG tumor/muscle were 4.0 and 6.0, respectively. These results highlight the promising properties of [123/125I]bcRGD for use as an in vivo αvβ3 imaging probe, as well as the utility of bcRGD as a basic structure of molecular probes for both imaging and therapeutic applications. bcRGD may exhibit broad use in future theranostics applications targeting integrin αvβ3-related diseases.
Collapse
Affiliation(s)
- Naoya Kondo
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences; 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| | - Keita Wakamori
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences; 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Masahiko Hirata
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences; 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Takashi Temma
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences; 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
6
|
Single-Cell Acoustic Force Spectroscopy: Resolving Kinetics and Strength of T Cell Adhesion to Fibronectin. Cell Rep 2019; 24:3008-3016. [PMID: 30208324 DOI: 10.1016/j.celrep.2018.08.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/21/2018] [Accepted: 08/13/2018] [Indexed: 01/13/2023] Open
Abstract
Assessing the strength and kinetics of molecular interactions of cells with the extracellular matrix is fundamental to understand cell adhesion processes. Given the relevance of these processes, there is a strong need for physical methods to quantitatively assess the mechanism of cell adhesion at the single-cell level, allowing discrimination of cells with different behaviors. Here we introduce single-cell acoustic force spectroscopy (scAFS), an approach that makes use of acoustic waves to exert controlled forces, up to 1 nN, to hundreds of individual cells in parallel. We demonstrate the potential of scAFS by measuring adhesion forces and kinetics of CD4+ T lymphocytes (CD4) to fibronectin. We determined that CD4 adhesion is accelerated by interleukin-7, their main regulatory cytokine, whereas CD4 binding strength remains the same. Activation of these cells likely increases their chance to bind to the vessel wall in the blood flow to infiltrate inflamed tissues and locally coordinate the immune response.
Collapse
|
7
|
Xu Z, Chen H, Fan F, Shi P, Tu M, Cheng S, Wang Z, Du M. Bone formation activity of an osteogenic dodecapeptide from blue mussels (Mytilus edulis). Food Funct 2019; 10:5616-5625. [PMID: 31432856 DOI: 10.1039/c9fo01201j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel osteogenic dodecapeptide peptide (PIE), IEELEEELEAER, was purified from the protein hydrolysate of blue mussels (Mytilus edulis). PIE was identified using a capillary electrophoresis electrospray ionization-quadrupole-time of flight mass spectrometer. PIE showed a good reduction in the bone loss in ovariectomized mice, and it also increased the bone mineral density of the ovariectomized mice. PIE has a high affinity with integrins (PDB: , ). There are 8 and 12 amino acid residues from PIE that interact with integrins and , respectively. PIE accelerates the transformation of G0/G1 phase cells into G2 M phase cells, which promotes the growth of osteoblasts. PIE (100 μg mL-1) can enhance alkaline phosphatase (ALP) activity by 26.48% compared with the control, and it also inhibits the growth of osteoclasts and tartrate resistant acid phosphatase (TRAP) activity. Therefore, PIE may contribute to preventing osteoporosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Hui Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Fengjiao Fan
- Department of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Pujie Shi
- Department of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Maolin Tu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Shuzhen Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
8
|
Bernhagen D, Jungbluth V, Gisbert Quilis N, Dostalek J, White PB, Jalink K, Timmerman P. High-Affinity α 5β 1-Integrin-Selective Bicyclic RGD Peptides Identified via Screening of Designed Random Libraries. ACS COMBINATORIAL SCIENCE 2019; 21:598-607. [PMID: 31269394 DOI: 10.1021/acscombsci.9b00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the identification of high-affinity and selectivity integrin α5β1-binding bicyclic peptides via "designed random libraries", that is, the screening of libraries comprising the universal integrin-binding sequence Arg-Gly-Asp (RGD) in the first loop in combination with a randomized sequence (XXX) in the second loop. Screening of first-generation libraries for α5β1-binding peptides yielded a triple-digit nanomolar bicyclic α5β1-binder (CT3RGDcT3AYGCT3, IC50 = 406 nM). Next-generation libraries were designed by partially varying the structure of the strongest first-generation lead inhibitor and screened for improved affinities and selectivities for this receptor. In this way, we identified three high-affinity α5β1-binders (CT3RGDcT3AYJCT3, J = d-Leu, IC50 = 90 nM; CT3RGDcT3AYaCT3, IC50 = 156 nM; CT3RGDcT3AWGCT3, IC50 = 173 nM), of which one even showed a higher α5β1-affinity than the 32 amino acid benchmark peptide knottin-RGD (IC50 = 114 nM). Affinity for α5β1-integrin was confirmed by SPFS analysis showing a Kd of 4.1 nM for Cy5-labeled RGD-bicycle CT3RGDcT3AYJCT3 (J = d-Leu) and a somewhat higher Kd (9.0 nM) for Cy5-labeled knottin-RGD. The α5β1-bicycles, for example, CT3RGDcT3AYJCT3 (J = d-Leu), showed excellent selectivities over αvβ5 (IC50 ratio α5β1/αvβ5 between <0.009 and 0.039) and acceptable selectivities over αvβ3 (IC50 ratios α5β1/αvβ3 between 0.090 and 0.157). In vitro staining of adipose-derived stem cells with Cy5-labeled peptides using confocal microscopy revealed strong binding of the α5β1-selective bicycle CT3RGDcT3AWGCT3 to integrins in their natural environment, illustrating the high potential of these RGD bicycles as markers for α5β1-integrin expression.
Collapse
Affiliation(s)
- Dominik Bernhagen
- Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, the Netherlands
| | - Vanessa Jungbluth
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Nestor Gisbert Quilis
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Jakub Dostalek
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Paul B. White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Kees Jalink
- The Netherlands Cancer Institute, Plesmanlaan 21, 1066 CX Amsterdam, the Netherlands
| | - Peter Timmerman
- Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, the Netherlands
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
9
|
Zhang X, Xi Z, Machuki JO, Luo J, Yang D, Li J, Cai W, Yang Y, Zhang L, Tian J, Guo K, Yu Y, Gao F. Gold Cube-in-Cube Based Oxygen Nanogenerator: A Theranostic Nanoplatform for Modulating Tumor Microenvironment for Precise Chemo-Phototherapy and Multimodal Imaging. ACS NANO 2019; 13:5306-5325. [PMID: 31018094 DOI: 10.1021/acsnano.8b09786] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Engineering a versatile oncotherapy nanoplatform integrating both diagnostic and therapeutic functions has always been an intractable challenge in targeted cancer treatment. Herein, to actualize the theme of precise medicine, a nanoplatform is developed by anchoring Mn-Cdots to doxorubicin (DOX)-loaded mesoporous silica-coated gold cube-in-cubes core/shell nanocomposites and further conjugating them to a Arg-Gly-Asp (RGD) peptide (denoted as RGD-CCmMC/DOX) to achieve an active-targeting effect. Under 635 nm irradiation, the nanoplatform acts as oxygen nanogenerator that produces O2 in situ and amplifies the content of singlet oxygen (1O2) in the hypoxic tumor microenvironment (TME), which has been demonstrated to attenuate tumor hypoxia and synchronously enhance photodynamic efficacy. Moreover, the gold cube-in-cube core in this work has been proven as a photothermal agent for hyperthermia, which exhibits a favorable photothermal effect with a 65.6% calculated photothermal conversion efficiency under 808 nm irradiation. In addition, the nanoplatform achieves heat- and pH-sensitive drug release with precise control to specific-tumor sites, executing combined chemo-phototherapy functions. Besides, it functions as a multimodal bioimaging agent of photothermal, fluorescence, and magnetic resonance imaging for the accurate diagnosis and guidance of therapy. As validated by in vivo and in vitro assays, the TME-responsive nanoplatform is highly biocompatible and effectively obliterates 4T1 tumor xenografts on nude mice after triple-synergetic treatment. This work presents a rational design of versatile nanoplatforms, which modulate the TME to enable high therapeutic performance and multiplexed imaging, which provides an innovative paradigm for targeted tumor therapy.
Collapse
Affiliation(s)
- Xing Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu 221002 , PR China
- Institute of Orthopedics, Department of Orthopedics , Affiliated Hospital of Xuzhou Medical University , Xuzhou , Jiangsu 221002 , PR China
| | - Zhongqian Xi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu 221002 , PR China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu 221002 , PR China
| | - Jianjun Luo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu 221002 , PR China
- Institute of Orthopedics, Department of Orthopedics , Affiliated Hospital of Xuzhou Medical University , Xuzhou , Jiangsu 221002 , PR China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu 221002 , PR China
| | - Jingjing Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu 221002 , PR China
| | - Weibing Cai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu 221002 , PR China
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory , Wenzhou University , Wenzhou , Zhejiang 325027 , PR China
| | - Lijie Zhang
- Nanomaterials and Chemistry Key Laboratory , Wenzhou University , Wenzhou , Zhejiang 325027 , PR China
| | - Jiangwei Tian
- School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing , Jiangsu 211198 , PR China
| | - Kaijin Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu 221002 , PR China
- Institute of Orthopedics, Department of Orthopedics , Affiliated Hospital of Xuzhou Medical University , Xuzhou , Jiangsu 221002 , PR China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu 221002 , PR China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu 221002 , PR China
| |
Collapse
|
10
|
Cipriani F, Bernhagen D, García-Arévalo C, de Torre IG, Timmerman P, Rodríguez-Cabello JC. Bicyclic RGD peptides with high integrin α v β 3 and α 5 β 1 affinity promote cell adhesion on elastin-like recombinamers. ACTA ACUST UNITED AC 2019; 14:035009. [PMID: 30630151 DOI: 10.1088/1748-605x/aafd83] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biomaterial design in tissue engineering aims to identify appropriate cellular microenvironments in which cells can grow and guide new tissue formation. Despite the large diversity of synthetic polymers available for regenerative medicine, most of them fail to fully match the functional properties of their native counterparts. In contrast, the few biological alternatives employed as biomaterials lack the versatility that chemical synthesis can offer. Herein, we studied the HUVEC adhesion and proliferation properties of elastin-like recombinamers (ELRs) that were covalently functionalized with each three high-affinity and selectivity α v β 3- and α 5 β 1-binding bicyclic RGD peptides. Next to the bicycles, ELRs were also functionalized with various integrin-binding benchmark peptides, i.e. knottin-RGD, cyclo-[KRGDf] and GRGDS, allowing for better classification of the obtained results. Covalent functionalization with the RGD peptides, as validated by MALDI-TOF analysis, guarantees flexibility and minimal steric hindrance for interactions with cellular integrins. In addition to the covalently modified RGD-ELRs, we also synthesized another benchmark ELR comprising RGD as part of the backbone. HUVEC adhesion and proliferation analysis using the PicoGreen® assay revealed a higher short-term adhesion and proliferative capacity of cells on ELR surfaces functionalized with high affinity, integrin-binding bicyclic RGD-peptides compared with the ELRs containing RGD in the backbone.
Collapse
Affiliation(s)
- Filippo Cipriani
- Technical Proteins Nanobiotechnology S.L., Paseo Belén 9A, E-47001 Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Bernhagen D, Jungbluth V, Quilis NG, Dostalek J, White PB, Jalink K, Timmerman P. Bicyclic RGD Peptides with Exquisite Selectivity for the Integrin α vβ 3 Receptor Using a "Random Design" Approach. ACS COMBINATORIAL SCIENCE 2019; 21:198-206. [PMID: 30624885 DOI: 10.1021/acscombsci.8b00144] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We describe the identification of bicyclic RGD peptides with high affinity and selectivity for integrin αvβ3 via high-throughput screening of partially randomized libraries. Peptide libraries (672 different compounds) comprising the universal integrin-binding sequence Arg-Gly-Asp (RGD) in the first loop and a randomized sequence XXX (X being one of 18 canonical l-amino acids) in the second loop, both enclosed by either an l- or d-Cys residue, were converted to bicyclic peptides via reaction with 1,3,5-tris(bromomethyl)benzene (T3). Screening of first-generation libraries yielded lead bicyclic inhibitors displaying submicromolar affinities for integrin αvβ3 (e.g., CT3HEQcT3RGDcT3, IC50 = 195 nM). Next generation (second and third) libraries were obtained by partially varying the structure of the strongest lead inhibitors and screening for improved affinities and selectivities. In this way, we identified the highly selective bicyclic αvβ3-binders CT3HPQcT3RGDcT3 (IC50 = 30 nM), CT3HPQCT3RGDcT3 (IC50 = 31 nM), and CT3HSQCT3RGDcT3 (IC50 = 42 nM) with affinities comparable to that of a knottin-RGD-type peptide (32 amino acids, IC50 = 38 nM) and outstanding selectivities over integrins αvβ5 (IC50 > 10000 nM) and α5β1 (IC50 > 10000 nM). Affinity measurements using surface plasmon-enhanced fluorescence spectroscopy (SPFS) yielded Kd values of 0.4 and 0.6 nM for the Cy5-labeled bicycle CT3HPQcT3RGDcT3 and RGD "knottin" peptide, respectively. In vitro staining of HT29 cells with Cy5-labeled bicycles using confocal microscopy revealed strong binding to integrins in their natural environment, which highlights the high potential of these peptides as markers of integrin expression.
Collapse
Affiliation(s)
- Dominik Bernhagen
- Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, The Netherlands
| | - Vanessa Jungbluth
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Nestor Gisbert Quilis
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Jakub Dostalek
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Paul B. White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Kees Jalink
- The Netherlands Cancer Institute, Plesmanlaan 21, 1066 CX Amsterdam, The Netherlands
| | - Peter Timmerman
- Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, The Netherlands
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|