1
|
Fouque KJD, Fernandez-Rojas M, Roque AE, Fernandez-Lima F. Top-Down Structural Characterization of Native Ubiquitin Combining Solution-Stable Isotope Labeling, Trapped Ion Mobility Spectrometry, and Tandem Electron Capture Dissociation Mass Spectrometry. Anal Chem 2024; 96:14963-14970. [PMID: 39214608 PMCID: PMC11798544 DOI: 10.1021/acs.analchem.4c03070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Solution-phase hydrogen/deuterium exchange (HDX) coupled to native ion mobility spectrometry mass spectrometry (IMS-MS) can provide complementary structural information about the conformational dynamics of biological molecules. In the present work, the solution-stable isotope labeling (SIL) combined with trapped ion mobility spectrometry (TIMS) in tandem with top-down electron capture dissociation (ECD) is illustrated for the structural characterization of the solution native states of ubiquitin. Four different ubiquitin electrospray solution conditions: (i) single-tip nondeuterated, (ii) theta tip for online SIL HDX, (iii) single-tip SIL-deuterated, and (iv) theta tip for online SIL H/D back exchange (HDbX), were investigated to assess the H/D exchange reactivities of native ubiquitin. The combination of TIMS and ECD in a q-ToF MS instrument allowed for additional inspection of gas-phase HDbX added by top-down fragmentation, revealing the exposed and protected residues with limited scrambling effects (e.g., intramolecular H/D migration). A native charge state distribution (5+ to 7+) and TIMS profiles were observed under the single-tip nondeuterated solution conditions. Mass shift distributions of ∼40, ∼104, and ∼87D were observed when incorporating deuterium for online SIL HDX, SIL HDX, and online SIL HDbX, respectively, while retaining similar conformational states. ECD fragmentation allowed for the localization of the deuterated labeled residues of the peptide fragments, with a sequence coverage of ∼90%, for each of the ubiquitin solution condition. Changes in the TIMS trapping time settings (∼70 to ∼795 ms) were used to determine the H/D back exchange dynamics of native ubiquitin. HDbX-TIMS-q-ECD-MS/MS exhibited H/D back exchanges in the six-residue C-terminal tail as well as around Lys6, Lys11, Lys33, Lys48, and Lys63 residues, indicating that these regions are the most exposed area (less protected hydrogens) of ubiquitin as compared to the rest of the core residues that adopt a compact β-grasp fold (protected hydrogens), which was consistent with the accessible surface area of ubiquitin. The present data highlight for the first time consistency between the solution HDX and gas-phase HDbX-TIMS data for native studies.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Meiby Fernandez-Rojas
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Anelis E. Roque
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
2
|
Voeten RLC, Majeed HA, Bos TS, Somsen GW, Haselberg R. Investigating direct current potentials that affect native protein conformation during trapped ion mobility spectrometry-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5021. [PMID: 38605451 DOI: 10.1002/jms.5021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/13/2023] [Accepted: 03/06/2024] [Indexed: 04/13/2024]
Abstract
Trapped ion mobility spectrometry-time-of-flight mass spectrometry (TIMS-TOFMS) has emerged as a tool to study protein conformational states. In TIMS, gas-phase ions are guided across the IM stages by applying direct current (DC) potentials (D1-6), which, however, might induce changes in protein structures through collisional activation. To define conditions for native protein analysis, we evaluated the influence of these DC potentials using the metalloenzyme bovine carbonic anhydrase (BCA) as primary test compound. The variation of DC potentials did not change BCA-ion charge and heme content but affected (relative) charge-state intensities and adduct retention. Constructed extracted-ion mobilograms and corresponding collisional cross-section (CCS) profiles gave useful insights in (alterations of) protein conformational state. For BCA, the D3 and D6 potential (which are applied between the deflection transfer and funnel 1 [F1] and the accumulation exit and the start of the ramp, respectively) had most profound effects, showing multimodal CCS distributions at higher potentials indicating gradual unfolding. The other DC potentials only marginally altered the CCS profiles of BCA. To allow for more general conclusions, five additional proteins of diverse molecular weight and conformational stability were analyzed, and for the main protein charge states, CCS profiles were constructed. Principal component analysis (PCA) of the obtained data showed that D1 and D3 exhibit the highest degree of correlation with the ratio of folded and unfolded protein (F/U) as extracted from the mobilograms obtained per set D potential. The correlation of D6 with F/U and protein charge were similar, and D2, D4, and D5 showed an inverse correlation with F/U but were correlated with protein charge. Although DC boundary values for induced conformational changes appeared protein dependent, a set of DC values could be determined, which assured native analysis of most proteins.
Collapse
Affiliation(s)
- Robert L C Voeten
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
- TI-COAST, Amsterdam, The Netherlands
| | - Hany A Majeed
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Tijmen S Bos
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| |
Collapse
|
3
|
Jusuf S, Dong PT. Chromophore-Targeting Precision Antimicrobial Phototherapy. Cells 2023; 12:2664. [PMID: 37998399 PMCID: PMC10670386 DOI: 10.3390/cells12222664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Phototherapy, encompassing the utilization of both natural and artificial light, has emerged as a dependable and non-invasive strategy for addressing a diverse range of illnesses, diseases, and infections. This therapeutic approach, primarily known for its efficacy in treating skin infections, such as herpes and acne lesions, involves the synergistic use of specific light wavelengths and photosensitizers, like methylene blue. Photodynamic therapy, as it is termed, relies on the generation of antimicrobial reactive oxygen species (ROS) through the interaction between light and externally applied photosensitizers. Recent research, however, has highlighted the intrinsic antimicrobial properties of light itself, marking a paradigm shift in focus from exogenous agents to the inherent photosensitivity of molecules found naturally within pathogens. Chemical analyses have identified specific organic molecular structures and systems, including protoporphyrins and conjugated C=C bonds, as pivotal components in molecular photosensitivity. Given the prevalence of these systems in organic life forms, there is an urgent need to investigate the potential impact of phototherapy on individual molecules expressed within pathogens and discern their contributions to the antimicrobial effects of light. This review delves into the recently unveiled key molecular targets of phototherapy, offering insights into their potential downstream implications and therapeutic applications. By shedding light on these fundamental molecular mechanisms, we aim to advance our understanding of phototherapy's broader therapeutic potential and contribute to the development of innovative treatments for a wide array of microbial infections and diseases.
Collapse
Affiliation(s)
- Sebastian Jusuf
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Pu-Ting Dong
- Department of Microbiology, The Forsyth Institute, Boston, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
4
|
Moore CC, Staroverov VN, Konermann L. Using Density Functional Theory for Testing the Robustness of Mobile-Proton Molecular Dynamics Simulations on Electrosprayed Ions: Structural Implications for Gaseous Proteins. J Phys Chem B 2023; 127:4061-4071. [PMID: 37116098 DOI: 10.1021/acs.jpcb.3c01581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Current experiments only provide low-resolution information on gaseous protein ions generated by electrospray ionization (ESI). Molecular dynamics (MD) simulations can yield complementary insights. Unfortunately, conventional MD does not capture the mobile nature of protons in gaseous proteins. Mobile-proton MD (MPMD) overcomes this limitation. Earlier MPMD data at 300 K indicated that protein ions generated by "native" ESI retain solution-like structures with a hydrophobic core and zwitterionic exterior [Bakhtiari, M.; Konermann, L. J. Phys. Chem. B 2019, 123, 1784-1796]. MPMD redistributes protons using electrostatic and proton affinity calculations. The robustness of this approach has never been scrutinized. Here, we close this gap by benchmarking MPMD against density functional theory (DFT) at the B3LYP/6-31G* level, which is well suited for predicting proton affinities. The computational cost of DFT necessitated the use of small peptides. The MPMD energetic ranking of proton configurations was found to be consistent with DFT single-point energies, implying that MPMD can reliably identify favorable protonation sites. Peptide MPMD runs converged to DFT-optimized structures only when applying 300-500 K temperature cycling, which was necessary to prevent trapping in local minima. Temperature cycling MPMD was then applied to gaseous protein ions. Native ubiquitin converted to slightly expanded structures with a zwitterionic core and a nonpolar exterior. Our data suggest that such inside-out protein structures are intrinsically preferred in the gas phase, and that they form in ESI experiments after moderate collisional excitation. This is in contrast to native ESI (with minimal collisional excitation, simulated by MPMD at 300 K), where kinetic trapping promotes the survival of solution-like structures. In summary, this work validates the MPMD approach for simulations on gaseous peptides and proteins.
Collapse
Affiliation(s)
- Conrad C Moore
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Viktor N Staroverov
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
5
|
Depraz Depland A, Stroganova I, Wootton CA, Rijs AM. Developments in Trapped Ion Mobility Mass Spectrometry to Probe the Early Stages of Peptide Aggregation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:193-204. [PMID: 36633834 PMCID: PMC9896548 DOI: 10.1021/jasms.2c00253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Ion mobility mass spectrometry (IM-MS) has proven to be an excellent method to characterize the structure of amyloidogenic protein and peptide aggregates, which are formed in coincidence with the development of neurodegenerative diseases. However, it remains a challenge to obtain detailed structural information on all conformational intermediates, originating from the early onset of those pathologies, due to their complex and heterogeneous environment. One way to enhance the insights and the identification of these early stage oligomers is by employing high resolution ion mobility mass spectrometry experiments. This would allow us to enhance the mobility separation and MS characterization. Trapped ion mobility spectrometry (TIMS) is an ion mobility technique known for its inherently high resolution and has successfully been applied to the analysis of protein conformations among others. To obtain conformational information on fragile peptide aggregates, the instrumental parameters of the TIMS-Quadrupole-Time-of-Flight mass spectrometer (TIMS-qToF-MS) have to be optimized to allow the study of intact aggregates and ensure their transmission toward the detector. Here, we investigate the suitability and application of TIMS to probe the aggregation process, targeting the well-characterized M307-N319 peptide segment of the TDP-43 protein, which is involved in the development of amyotrophic lateral sclerosis. By studying the influence of key parameters over the full mass spectrometer, such as source temperature, applied voltages or RFs among others, we demonstrate that by using an optimized instrumental method TIMS can be used to probe peptide aggregation.
Collapse
Affiliation(s)
- Agathe Depraz Depland
- Division
of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Iuliia Stroganova
- Division
of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | | | - Anouk M. Rijs
- Division
of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Cain RL, Webb IK. Online protein unfolding characterized by ion mobility electron capture dissociation mass spectrometry: cytochrome C from neutral and acidic solutions. Anal Bioanal Chem 2023; 415:749-758. [PMID: 36622393 DOI: 10.1007/s00216-022-04501-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) experiments, including ion mobility spectrometry mass spectrometry (ESI-IMS-MS) and electron capture dissociation (ECD) of proteins ionized from aqueous solutions, have been used for the study of solution-like structures of intact proteins. By mixing aqueous proteins with denaturants online before ESI, the amount of protein unfolding can be precisely controlled and rapidly analyzed, permitting the characterization of protein folding intermediates in protein folding pathways. Herein, we mixed various pH solutions online with aqueous cytochrome C for unfolding and characterizing its unfolding intermediates with ESI-MS charge state distribution measurements, IMS, and ECD. The presence of folding intermediates and unfolded cytochrome c structures were detected from changes in charge states, arrival time distributions (ATDs), and ECD. We also compared structures from nondenaturing and denaturing solution mixtures measured under "gentle" (i.e., low energy) ion transmission conditions with structures measured under "harsh" (i.e., higher energy) transmission. This work confirms that when using "gentle" instrument conditions, the gas-phase cytochrome c ions reflect attributes of the various solution-phase structures. However, "harsh" conditions that maximize ion transmission produce extended structures that no longer correlate with changes in solution structure.
Collapse
Affiliation(s)
- Rebecca L Cain
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Ian K Webb
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
7
|
Liu FC, Ridgeway ME, Park MA, Bleiholder C. Tandem-trapped ion mobility spectrometry/mass spectrometry ( tTIMS/MS): a promising analytical method for investigating heterogenous samples. Analyst 2022; 147:2317-2337. [PMID: 35521797 PMCID: PMC9914546 DOI: 10.1039/d2an00335j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ion mobility spectrometry/mass spectrometry (IMS/MS) is widely used to study various levels of protein structure. Here, we review the current state of affairs in tandem-trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS). Two different tTIMS/MS instruments are discussed in detail: the first tTIMS/MS instrument, constructed from coaxially aligning two TIMS devices; and an orthogonal tTIMS/MS configuration that comprises an ion trap for irradiation of ions with UV photons. We discuss the various workflows the two tTIMS/MS setups offer and how these can be used to study primary, tertiary, and quaternary structures of protein systems. We also discuss, from a more fundamental perspective, the processes that lead to denaturation of protein systems in tTIMS/MS and how to soften the measurement so that biologically meaningful structures can be characterised with tTIMS/MS. We emphasize the concepts underlying tTIMS/MS to underscore the opportunities tandem-ion mobility spectrometry methods offer for investigating heterogeneous samples.
Collapse
Affiliation(s)
- Fanny C Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
| | | | | | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
8
|
Vallejo DD, Ramírez CR, Parson KF, Han Y, Gadkari VG, Ruotolo BT. Mass Spectrometry Methods for Measuring Protein Stability. Chem Rev 2022; 122:7690-7719. [PMID: 35316030 PMCID: PMC9197173 DOI: 10.1021/acs.chemrev.1c00857] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry is a central technology in the life sciences, providing our most comprehensive account of the molecular inventory of the cell. In parallel with developments in mass spectrometry technologies targeting such assessments of cellular composition, mass spectrometry tools have emerged as versatile probes of biomolecular stability. In this review, we cover recent advancements in this branch of mass spectrometry that target proteins, a centrally important class of macromolecules that accounts for most biochemical functions and drug targets. Our efforts cover tools such as hydrogen-deuterium exchange, chemical cross-linking, ion mobility, collision induced unfolding, and other techniques capable of stability assessments on a proteomic scale. In addition, we focus on a range of application areas where mass spectrometry-driven protein stability measurements have made notable impacts, including studies of membrane proteins, heat shock proteins, amyloidogenic proteins, and biotherapeutics. We conclude by briefly discussing the future of this vibrant and fast-moving area of research.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristine F. Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yilin Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Varun G. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Haler JRN, Béchet E, Kune C, Far J, De Pauw E. Geometric Analysis of Shapes in Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:273-283. [PMID: 35020377 DOI: 10.1021/jasms.1c00266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Experimental ion mobility-mass spectrometry (IM-MS) results are often correlated to three-dimensional structures based on theoretical chemistry calculations. The bottleneck of this approach is the need for accurate values, both experimentally and theoretically predicted. Here, we continue the development of the trend-based analyses to extract structural information from experimental IM-MS data sets. The experimental collision cross-sections (CCSs) of synthetic systems such as homopolymers and small ionic clusters are investigated in terms of CCS trends as a function of the number of repetitive units (e.g., degree of polymerization (DP) for homopolymers) and for each detected charge state. Then, we computed the projected areas of expanding but perfectly defined geometric objects using an in-house software called MoShade. The shapes were modeled using computer-aided design software where we considered only geometric factors: no atoms, mass, chemical potentials, or interactions were taken into consideration to make the method orthogonal to classical methods for 3D shape assessments using time-consuming computational chemistry. Our modeled shape evolutions favorably compared to experimentally obtained CCS trends, meaning that the apparent volume or envelope of homogeneously distributed mass effectively modeled the ion-drift gas interactions as sampled by IM-MS. The CCSs of convex shapes could be directly related to their surface area. More importantly, this relationship seems to hold even for moderately concave shapes, such as those obtained by geometry-optimized structures of ions from conventional computational chemistry methods. Theoretical sets of expanding beads-on-a-string shapes allowed extracting accurate bead and string dimensions for two homopolymers, without modeling any chemical interactions.
Collapse
Affiliation(s)
- Jean R N Haler
- Mass Spectrometry Laboratory, University of Liège, MolSys Research unit, Quartier Agora, Allée du Six Aout 11, B-4000 Liège, Belgium
- Luxembourg Institute of Science and Technology - LIST, Materials Research & Technology MRT Department, L-4422 Belvaux, Luxembourg
| | - Eric Béchet
- Aerospace & Mechanical Engineering Department, Computer-aided Geometric Design, University of Liège, B-4000 Liège, Belgium
| | - Christopher Kune
- Mass Spectrometry Laboratory, University of Liège, MolSys Research unit, Quartier Agora, Allée du Six Aout 11, B-4000 Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, University of Liège, MolSys Research unit, Quartier Agora, Allée du Six Aout 11, B-4000 Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liège, MolSys Research unit, Quartier Agora, Allée du Six Aout 11, B-4000 Liège, Belgium
| |
Collapse
|
10
|
Borotto NB, Osho KE, Richards TK, Graham KA. Collision-Induced Unfolding of Native-like Protein Ions Within a Trapped Ion Mobility Spectrometry Device. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:83-89. [PMID: 34870999 DOI: 10.1021/jasms.1c00273] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Native mass spectrometry and collision-induced unfolding (CIU) workflows continue to grow in utilization due to their ability to rapidly characterize protein conformation and stability. To perform these experiments, the instrument must be capable of collisionally activating ions prior to ion mobility spectrometry (IMS) analyses. Trapped ion mobility spectrometry (TIMS) is an ion mobility implementation that has been increasingly adopted due to its inherently high resolution and reduced instrumental footprint. In currently deployed commercial instruments, however, typical modes of collisional activation do not precede IMS analysis, and thus, the instruments are incapable of performing CIU. In this work, we expand on a recently developed method of activating protein ions within the TIMS device and explore its analytical utility toward the unfolding of native-like protein ions. We demonstrate the unfolding of native-like ions of ubiquitin, cytochrome C, β-lactoglobulin, and carbonic anhydrase. These ions undergo extensive unfolding upon collisional activation. Additionally, the improved resolution provided by the TIMS separation uncovers previously obscured unfolding complexity.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Kemi E Osho
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | | | - Katherine A Graham
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
11
|
Meier F, Park MA, Mann M. Trapped Ion Mobility Spectrometry and Parallel Accumulation-Serial Fragmentation in Proteomics. Mol Cell Proteomics 2021; 20:100138. [PMID: 34416385 PMCID: PMC8453224 DOI: 10.1016/j.mcpro.2021.100138] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in efficiency and ease of implementation have rekindled interest in ion mobility spectrometry, a technique that separates gas phase ions by their size and shape and that can be hybridized with conventional LC and MS. Here, we review the recent development of trapped ion mobility spectrometry (TIMS) coupled to TOF mass analysis. In particular, the parallel accumulation-serial fragmentation (PASEF) operation mode offers unique advantages in terms of sequencing speed and sensitivity. Its defining feature is that it synchronizes the release of ions from the TIMS device with the downstream selection of precursors for fragmentation in a TIMS quadrupole TOF configuration. As ions are compressed into narrow ion mobility peaks, the number of peptide fragment ion spectra obtained in data-dependent or targeted analyses can be increased by an order of magnitude without compromising sensitivity. Taking advantage of the correlation between ion mobility and mass, the PASEF principle also multiplies the efficiency of data-independent acquisition. This makes the technology well suited for rapid proteome profiling, an increasingly important attribute in clinical proteomics, as well as for ultrasensitive measurements down to single cells. The speed and accuracy of TIMS and PASEF also enable precise measurements of collisional cross section values at the scale of more than a million data points and the development of neural networks capable of predicting them based only on peptide sequences. Peptide collisional cross section values can differ for isobaric sequences or positional isomers of post-translational modifications. This additional information may be leveraged in real time to direct data acquisition or in postprocessing to increase confidence in peptide identifications. These developments make TIMS quadrupole TOF PASEF a powerful and expandable platform for proteomics and beyond.
Collapse
Affiliation(s)
- Florian Meier
- Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; Functional Proteomics, Jena University Hospital, Jena, Germany.
| | - Melvin A Park
- Bruker Daltonics Inc, Billerica, Massachusetts, USA.
| | - Matthias Mann
- Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
12
|
Larson EJ, Roberts DS, Melby JA, Buck KM, Zhu Y, Zhou S, Han L, Zhang Q, Ge Y. High-Throughput Multi-attribute Analysis of Antibody-Drug Conjugates Enabled by Trapped Ion Mobility Spectrometry and Top-Down Mass Spectrometry. Anal Chem 2021; 93:10013-10021. [PMID: 34258999 PMCID: PMC8319120 DOI: 10.1021/acs.analchem.1c00150] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibody-drug conjugates (ADCs) are one of the fastest growing classes of anticancer therapies. Combining the high targeting specificity of monoclonal antibodies (mAbs) with cytotoxic small molecule drugs, ADCs are complex molecular entities that are intrinsically heterogeneous. Primary sequence variants, varied drug-to-antibody ratio (DAR) species, and conformational changes in the starting mAb structure upon drug conjugation must be monitored to ensure the safety and efficacy of ADCs. Herein, we have developed a high-throughput method for the analysis of cysteine-linked ADCs using trapped ion mobility spectrometry (TIMS) combined with top-down mass spectrometry (MS) on a Bruker timsTOF Pro. This method can analyze ADCs (∼150 kDa) by TIMS followed by a three-tiered top-down MS characterization strategy for multi-attribute analysis. First, the charge state distribution and DAR value of the ADC are monitored (MS1). Second, the intact mass of subunits dissociated from the ADC by low-energy collision-induced dissociation (CID) is determined (MS2). Third, the primary sequence for the dissociated subunits is characterized by CID fragmentation using elevated collisional energies (MS3). We further automate this workflow by directly injecting the ADC and using MS segmentation to obtain all three tiers of MS information in a single 3-min run. Overall, this work highlights a multi-attribute top-down MS characterization method that possesses unparalleled speed for high-throughput characterization of ADCs.
Collapse
Affiliation(s)
- Eli J Larson
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David S Roberts
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jake A Melby
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kevin M Buck
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Avenue., Madison, Wisconsin 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, 1111 Highland Avenue., Madison, Wisconsin 53705, United States
| | - Shiyue Zhou
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Linjie Han
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Qunying Zhang
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Avenue., Madison, Wisconsin 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, 1111 Highland Avenue., Madison, Wisconsin 53705, United States
| |
Collapse
|
13
|
Darii E, Gimbert Y, Alves S, Damont A, Perret A, Woods AS, Fenaille F, Tabet JC. First Direct Evidence of Interpartner Hydride/Deuteride Exchanges for Stored Sodiated Arginine/Fructose-6-phosphate Complex Anions within Salt-Solvated Structures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1424-1440. [PMID: 33929837 DOI: 10.1021/jasms.1c00040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mass spectrometric investigations of noncovalent binding between low molecular weight compounds revealed the existence of gas-phase (GP) noncovalent complex (NCC) ions involving zwitterionic structures. ESI MS is used to prove the formation of stable sodiated NCC anions between fructose (F6P) and arginine (R) moieties. Theoretical calculations indicate a folded solvated salt (i.e., sodiated carboxylate interacting with phosphate) rather than a charge-solvated form. Under standard CID conditions, [(F6P+R-H+Na)-H]- competitively forms two major product ions (PIs) through partner splitting [(R-H+Na) loss] and charge-induced cross-ring cleavage while preserving the noncovalent interactions (noncovalent product ions (NCPIs)). MS/MS experiments combined with in-solution proton/deuteron exchanges (HDXs) demonstrated an unexpected labeling of PIs, i.e., a correlated D-enrichment/D-depletion. An increase in activation time up to 3000 ms favors such processes when limited to two H/D exchanges. These results are rationalized by interpartner hydride/deuteride exchanges (⟨HDX⟩) through stepwise isomerization/dissociation of sodiated NCC-d11 anions. In addition, the D-enrichment/D-depletion discrepancy is further explained by back HDX with residual water in LTQ (selective for the isotopologue NCPIs as shown by PI relaxation experiments). Each isotopologue leads to only one back HDX unlike multiple HDXs generally observed in GP. This behavior shows that NCPIs are zwitterions with charges solvated by a single water molecule, thus generating a back HDX through a relay mechanism, which quenches the charges and prevents further back HDX. By estimating back HDX impact on D-depletion, the interpartner ⟨HDX⟩ complementarity was thus illustrated. This is the first description of interpartner ⟨HDX⟩ and selective back HDX validating salt-solvated structures.
Collapse
Affiliation(s)
- Ekaterina Darii
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Yves Gimbert
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058 Grenoble, France
- Sorbonne Université, Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
| | - Sandra Alves
- Sorbonne Université, Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
| | - Annelaure Damont
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Amina S Woods
- NIDA IRP, NIH Structural Biology Unit Cellular Neurobiology Branch, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- The Johns Hopkins University School of Medicine, Pharmacology and Molecular Sciences, Baltimore, Maryland 21205, United States
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - Jean-Claude Tabet
- Sorbonne Université, Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| |
Collapse
|
14
|
Pham KN, Mamun Y, Fernandez-Lima F. Structural Heterogeneity of Human Histone H2A.1. J Phys Chem B 2021; 125:4977-4986. [PMID: 33974801 PMCID: PMC8568062 DOI: 10.1021/acs.jpcb.1c00335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Histones are highly basic chromatin proteins that tightly package and order eukaryotic DNA into nucleosomes. While the atomic structure of the nucleosomes has been determined, the three-dimensional structure of DNA-free histones remains unresolved. Here, we combine tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry in parallel with molecular modeling to study the conformational space of a DNA-free histone H2A type 1 (H2A.1). Experimental results showed the dependence of the gas-phase structures on the starting solution conditions, characterized by charge state distributions, mobility distributions, and collision-induced-unfolding pathways. The measured H2A.1 gas-phase structures showed a high diversity of structural features ranging from compact (C) to partially folded (P) and then highly elongated (E) conformations. Molecular dynamics simulations provided candidate structures for the solution H2A.1 native conformation with folded N- and C-terminal tails, as well as gas-phase candidate structures associated with the mobility trends. Complementary collision cross section and dipole calculations showed that the charge distribution in the case of elongated gas-phase structures, where basic and acidic residues are mostly exposed (e.g., z > 15+), is sufficient to induce differences in the dipole alignment at high electric fields, in good agreement with the trends observed during the FAIMS-TIMS experiments.
Collapse
Affiliation(s)
- Khoa N Pham
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yasir Mamun
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
15
|
Fouque KJD, Garabedian A, Leng F, Tse-Dinh YC, Ridgeway ME, Park MA, Fernandez-Lima F. Trapped Ion Mobility Spectrometry of Native Macromolecular Assemblies. Anal Chem 2021; 93:2933-2941. [PMID: 33492949 PMCID: PMC8327357 DOI: 10.1021/acs.analchem.0c04556] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structural elucidation of native macromolecular assemblies has been a subject of considerable interest in native mass spectrometry (MS), and more recently in tandem with ion mobility spectrometry (IMS-MS), for a better understanding of their biochemical and biophysical functions. In the present work, we describe a new generation trapped ion mobility spectrometer (TIMS), with extended mobility range (K0 = 0.185-1.84 cm2·V-1·s-1), capable of trapping high-molecular-weight (MW) macromolecular assemblies. This compact 4 cm long TIMS analyzer utilizes a convex electrode, quadrupolar geometry with increased pseudopotential penetration in the radial dimension, extending the mobility trapping to high-MW species under native state (i.e., lower charge states). The TIMS capabilities to perform variable scan rate (Sr) mobility measurements over short time (100-500 ms), high-mobility resolution, and ion-neutral collision cross-section (CCSN2) measurements are presented. The trapping capabilities of the convex electrode TIMS geometry and ease of operation over a wide gas flow, rf range, and electric field trapping range are illustrated for the first time using a comprehensive list of standards varying from CsI clusters (n = 6-73), Tuning Mix oligomers (n = 1-5), common proteins (e.g., ubiquitin, cytochrome C, lysozyme, concanavalin (n = 1-4), carbonic anhydrase, β clamp (n = 1-4), topoisomerase IB, bovine serum albumin (n = 1-3), topoisomerase IA, alcohol dehydrogenase), IgG antibody (e.g., avastin), protein-DNA complexes, and macromolecular assemblies (e.g., GroEL and RNA polymerase (n = 1-2)) covering a wide mass (up to m/z 19 000) and CCS range (up to 22 000 Å2 with <0.6% relative standard deviation (RSD)).
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | | | - Melvin A. Park
- Bruker Daltonics Inc., Billerica, MA 01821, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
16
|
Bleiholder C, Liu FC, Chai M. Comment on Effective Temperature and Structural Rearrangement in Trapped Ion Mobility Spectrometry. Anal Chem 2020; 92:16329-16333. [PMID: 32578979 DOI: 10.1021/acs.analchem.0c02052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Fanny C Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Mengqi Chai
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
17
|
Morsa D, Hanozin E, Gabelica V, De Pauw E. Response to Comment on Effective Temperature and Structural Rearrangement in Trapped Ion Mobility Spectrometry. Anal Chem 2020; 92:16334-16337. [DOI: 10.1021/acs.analchem.0c03937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Denis Morsa
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Emeline Hanozin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| | - Valérie Gabelica
- University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Bordeaux, France
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège 4000, Belgium
| |
Collapse
|
18
|
Porter J, Dit Fouque KJ, Miksovska J, Fernandez-Lima F. Salt bridges govern the structural heterogeneity of heme protein interactions and porphyrin networks: microperoxidase-11. RSC Adv 2020; 10:33861-33867. [PMID: 35519052 PMCID: PMC9056719 DOI: 10.1039/d0ra04956e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/01/2020] [Indexed: 11/21/2022] Open
Abstract
In this work, a proteolytic digest of cytochrome c (microperoxidase 11, MP-11) was used as a model to study the structural aspects of heme protein interactions and porphyrin networks. The MP-11 structural heterogeneity was studied as a function of the starting pH (e.g., pH 3.1-6.1) and concentration (e.g., 1-50 μM) conditions and adduct coordination. Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) showed the MP-11 structural dependence of the charge state distribution and molecular ion forms with the starting pH conditions. The singly charged (e.g., [M]+, [M - 2H + NH4]+, [M - H + Na]+ and [M - H + K]+) and doubly charged (e.g., [M + H]2+, [M - H + NH4]2+, [M + Na]2+ and [M + K]2+) molecular ion forms were observed for all solvent conditions, although the structural heterogeneity (e.g., number of mobility bands) significantly varied with the pH value and ion form. The MP-11 dimer formation as a model for heme-protein protein interactions showed that dimer formation is favored toward more neutral pH and favored when assisted by salt bridges (e.g., NH4 +, Na+ and K+ vs. H+). Inspection of the dimer mobility profiles (2+ and 3+ charge states) showed a high degree of structural heterogeneity as a function of the solution pH and ion form; the observation of common mobility bands suggest that the different salt bridges can stabilize similar structural motifs. In addition, the salt bridge influence on the MP-11 dimer formations was measured using collision induced dissociation and showed a strong dependence with the type of salt bridge (i.e., a CE50 of 10.0, 11.5, 11.8 and 13.0 eV was observed for [2M + H]3+, [2M - H + NH4]3+, [2M + Na]3+ and [2M + K]3+, respectively). Measurements of the dimer equilibrium constant showed that the salt bridge interactions increase the binding strength of the dimeric species.
Collapse
Affiliation(s)
- J Porter
- Department of Chemistry and Biochemistry, Florida International University Miami FL 33199 USA
| | - K Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University Miami FL 33199 USA
| | - J Miksovska
- Department of Chemistry and Biochemistry, Florida International University Miami FL 33199 USA
- Biomolecular Science Institute, Florida International University Miami FL 33199 USA
| | - F Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University Miami FL 33199 USA
- Biomolecular Science Institute, Florida International University Miami FL 33199 USA
| |
Collapse
|
19
|
Jeanne Dit Fouque K, Fernandez-Lima F. Recent advances in biological separations using trapped ion mobility spectrometry – mass spectrometry. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Jeanne Dit Fouque K, Moreno J, Fernandez-Lima F. Exploring the Conformational Space of Growth-Hormone-Releasing Hormone Analogues Using Dopant Assisted Trapped Ion Mobility Spectrometry–Mass Spectrometry. J Phys Chem B 2019; 123:6169-6177. [DOI: 10.1021/acs.jpcb.9b03777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., AHC4-233, Miami, Florida 33199, United States
| | - Javier Moreno
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., AHC4-233, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., AHC4-233, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., AHC4-211, Miami, Florida 33199, United States
| |
Collapse
|
21
|
Jeanne Dit Fouque K, Hegemann JD, Zirah S, Rebuffat S, Lescop E, Fernandez-Lima F. Evidence of Cis/Trans-Isomerization at Pro7/Pro16 in the Lasso Peptide Microcin J25. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1038-1045. [PMID: 30834511 DOI: 10.1007/s13361-019-02134-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Microcin J25 is a ribosomal synthesized and post-translationally modified peptide (RiPP) characterized by a mechanically interlocked topology called the lasso fold. This structure provides microcin J25 a potent antimicrobial activity resulting from internalization via the siderophore receptor FhuA and further inhibition of the RNA polymerase. In the present work, nuclear magnetic resonance (NMR) and trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) were used to investigate the lasso structure of microcin J25. NMR experiments showed that the lasso peptide microcin J25 can adopt conformational states where Pro16 can be found in the cis- and trans-orientations. The high-resolution mobility analysis, aided by site-directed mutagenesis ([P7A], [P16A], and [P7A/P16A] variants), demonstrated that microcin J25 can adopt cis/cis-, cis/trans-, trans/cis-, and trans/trans-conformations at the Pro7 and Pro16 peptide bonds. It was also shown that interconversion between the conformers can occur as a function of the starting solvent conditions and ion heating (collision-induced activation, CIA) despite the lasso topology. Complementary to NMR findings, the cis-conformations at Pro7 were assigned using TIMS-MS. This study highlights the analytical power of TIMS-MS and site-directed mutagenesis for the study of biological systems with large micro-heterogeneity as a way to further increase our understanding of the receptor-binding dynamics and biological activity.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., AHC4-233, Miami, FL, 33199, USA
| | - Julian D Hegemann
- M Department of Chemistry, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Séverine Zirah
- Laboratory Molecules of Communication and Adaptation of Microorganisms, National Museum of Natural History, CNRS UMR 7245, 75005, Paris, France
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms, National Museum of Natural History, CNRS UMR 7245, 75005, Paris, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198, Gif sur Yvette Cedex, France
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., AHC4-233, Miami, FL, 33199, USA.
| |
Collapse
|
22
|
Kelly K, Bell S, Maleki H, Valentine S. Synthetic Small Molecule Characterization and Isomer Discrimination Using Gas-Phase Hydrogen-Deuterium Exchange IMS-MS. Anal Chem 2019; 91:6259-6265. [PMID: 30999746 DOI: 10.1021/acs.analchem.9b00979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) combined with gas-phase hydrogen-deuterium exchange has been used to characterize novel psychoactive substances (NPSs) which are small synthetic compounds designed to mimic the effects of other illicit substances. Here, NPSs containing labile heteroatom hydrogens were evaluated for HDX reactivity in the presence of either deuterated water (D2O) or ammonia (ND3) within the drift tube. An initial evaluation of exchange propensity was performed for six NPSs. Five compounds exchanged in the presence of ND3 while only one NPS (benzyl piperazine) exchanged with D2O. The exchange mechanism of D2O requires stabilization with a nearby charged site; the diamine ring of benzyl piperazine provided this charge site at a fixed length. Three disubstituted benzene isomers ( o-, m-, and p-fluorophenyl piperazine) containing the diamine ring structure and a fluorine atom were subsequently analyzed. Having identical isotopic composition and nearly identical drift time distributions, these isomers could not be distinguished by IMS-MS alone. However, upon undergoing HDX in the drift tube, a t test of means (α = 0.05) showed that discrimination was possible if the exchange data from both reagent gases were included. Molecular dynamics simulations show that the proximity of the fluorine to the diamine ring hinders the dihedral angle rotation between the benzene and the diamine ring; this may partially account for the observed exchange differences.
Collapse
|
23
|
Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JL, Bleiholder C, Bowers MT, Bilbao A, Bush MF, Campbell JL, Campuzano ID, Causon T, Clowers BH, Creaser CS, De Pauw E, Far J, Fernandez‐Lima F, Fjeldsted JC, Giles K, Groessl M, Hogan CJ, Hann S, Kim HI, Kurulugama RT, May JC, McLean JA, Pagel K, Richardson K, Ridgeway ME, Rosu F, Sobott F, Thalassinos K, Valentine SJ, Wyttenbach T. Recommendations for reporting ion mobility Mass Spectrometry measurements. MASS SPECTROMETRY REVIEWS 2019; 38:291-320. [PMID: 30707468 PMCID: PMC6618043 DOI: 10.1002/mas.21585] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 05/02/2023]
Abstract
Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site2 rue Robert Escarpit, 33600PessacFrance
| | | | | | - Perdita Barran
- Michael Barber Centre for Collaborative Mass SpectrometryManchester Institute for Biotechnology, University of ManchesterManchesterUK
| | - Justin L.P. Benesch
- Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford, Mansfield Road, OX1 3TAOxfordUK
| | - Christian Bleiholder
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFlorida32311
| | | | - Aivett Bilbao
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashington
| | - Matthew F. Bush
- Department of ChemistryUniversity of WashingtonSeattleWashington
| | | | | | - Tim Causon
- University of Natural Resources and Life Sciences (BOKU)Department of Chemistry, Division of Analytical ChemistryViennaAustria
| | - Brian H. Clowers
- Department of ChemistryWashington State UniversityPullmanWashington
| | - Colin S. Creaser
- Centre for Analytical ScienceDepartment of Chemistry, Loughborough UniversityLoughboroughUK
| | - Edwin De Pauw
- Laboratoire de spectrométrie de masse (L.S.M.) − Molecular SystemsUniversité de LiègeLiègeBelgium
| | - Johann Far
- Laboratoire de spectrométrie de masse (L.S.M.) − Molecular SystemsUniversité de LiègeLiègeBelgium
| | | | | | | | - Michael Groessl
- Department of Nephrology and Hypertension and Department of BioMedical ResearchInselspital, Bern University Hospital, University of Bern, Switzerland and TofwerkThunSwitzerland
| | | | - Stephan Hann
- University of Natural Resources and Life Sciences (BOKU)Department of Chemistry, Division of Analytical ChemistryViennaAustria
| | - Hugh I. Kim
- Department of ChemistryKorea UniversitySeoulKorea
| | | | - Jody C. May
- Department of ChemistryCenter for Innovative Technology, Vanderbilt UniversityNashvilleTennessee
| | - John A. McLean
- Department of ChemistryCenter for Innovative Technology, Vanderbilt UniversityNashvilleTennessee
| | - Kevin Pagel
- Freie Universitaet BerlinInstitute for Chemistry and BiochemistryBerlinGermany
| | | | | | - Frédéric Rosu
- CNRS, INSERM and University of BordeauxInstitut Européen de Chimie et BiologiePessacFrance
| | - Frank Sobott
- Antwerp UniversityBiomolecular & Analytical Mass SpectrometryAntwerpBelgium
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonWC1E 6BTUK
- United Kingdom and Institute of Structural and Molecular BiologyDepartment of Biological Sciences, Birkbeck College, University of LondonLondonWC1E 7HXUK
| | - Stephen J. Valentine
- C. Eugene Bennett Department of ChemistryWest Virginia UniversityMorgantownWest Virginia
| | | |
Collapse
|
24
|
Butcher D, Miksovska J, Ridgeway ME, Park MA, Fernandez-Lima F. The effects of solution additives and gas-phase modifiers on the molecular environment and conformational space of common heme proteins. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:399-404. [PMID: 30421840 DOI: 10.1002/rcm.8347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE The molecular environment is known to impact the secondary and tertiary structures of biomolecules both in solution and in the gas phase, shifting the equilibrium between different conformational and oligomerization states. However, there is a lack of studies monitoring the impacts of solution additives and gas-phase modifiers on biomolecules characterized using ion mobility techniques. METHODS The effect of solution additives and gas-phase modifiers on the molecular environment of two common heme proteins, bovine cytochrome c and equine myoglobin, is investigated as a function of the time after desolvation (e.g., 100-500 ms) using nanoelectrospray ionization coupled to trapped ion mobility spectrometry with detection by time-of-flight mass spectrometry. Organic compounds used as additives/modifiers (methanol, acetonitrile, acetone) were either added to the aqueous protein solution before ionization or added to the ion mobility bath gas by nebulization. RESULTS Changes in the mobility profiles are observed depending on the starting solution composition (i.e., in aqueous solution at neutral pH or in the presence of organic content: methanol, acetone, or acetonitrile) and the protein. In the presence of gas-phase modifiers (i.e., N2 doped with methanol, acetone, or acetonitrile), a shift in the mobility profiles driven by the gas-modifier mass and size and changes in the relative abundances and number of IMS bands are observed. CONCLUSIONS We attribute the observed changes in the mobility profiles in the presence of gas-phase modifiers to a clustering/declustering mechanism by which organic molecules adsorb to the protein ion surface and lower energetic barriers for interconversion between conformational states, thus redefining the free energy landscape and equilibria between conformers. These structural biology experiments open new avenues for manipulation and interrogation of biomolecules in the gas phase with the potential to emulate a large suite of solution conditions, ultimately including conditions that more accurately reflect a variety of intracellular environments.
Collapse
Affiliation(s)
- David Butcher
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| | - Jaroslava Miksovska
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | | | | | - Francisco Fernandez-Lima
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
25
|
Jeanne Dit Fouque K, Garabedian A, Leng F, Tse-Dinh YC, Fernandez-Lima F. Microheterogeneity of Topoisomerase IA/IB and Their DNA-Bound States. ACS OMEGA 2019; 4:3619-3626. [PMID: 30842985 PMCID: PMC6396120 DOI: 10.1021/acsomega.8b02887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/11/2019] [Indexed: 05/14/2023]
Abstract
Topoisomerases are important complex enzymes that modulate DNA topology to maintain chromosome superstructure and integrity. These enzymes are involved in many cellular processes that resolve specific DNA superstructures and intermediates. The low abundance combined with the biological heterogeneity of relevant intermediates of topoisomerases makes their structural information not readily accessible using traditional structural biology tools (e.g., NMR and X-ray crystallography). In the present work, a second-generation trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) was used to study Escherichia coli topoisomerase IA (EcTopIA) and variola virus topoisomerase IB (vTopIB) as well as their complexes with a single-stranded DNA and a stem-loop DNA under native conditions. The higher trapping efficiency and extended mass range of the new, convex TIMS geometry allowed for the separation and identification of multiple conformational states for the two topoisomerases and their DNA complexes. Inspection of the conformational space of EcTopIA and vTopIB in complex with DNA showed that upon DNA binding, the number of conformational states is significantly reduced, suggesting that the DNA binding selects for a narrow range of conformers restricted by the interaction with the DNA substrate. The large microheterogeneity observed for the two DNA binding proteins suggests that they can have multiple biological functions. This work highlights the potential of TIMS-MS for the structural investigations of intrinsically disordered proteins (e.g., DNA binding proteins) as a way to gain a better understanding of the mechanisms involved in DNA substrate recognition, binding, and assembly of the catalytically active enzyme-DNA complex.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute,Florida International University, 11200 SW 8th St., AHC4-233, Miami, Florida 33199, United States
| | - Alyssa Garabedian
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute,Florida International University, 11200 SW 8th St., AHC4-233, Miami, Florida 33199, United States
| | - Fenfei Leng
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute,Florida International University, 11200 SW 8th St., AHC4-233, Miami, Florida 33199, United States
| | - Yuk-Ching Tse-Dinh
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute,Florida International University, 11200 SW 8th St., AHC4-233, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department
of Chemistry and Biochemistry and Biomolecular Sciences Institute,Florida International University, 11200 SW 8th St., AHC4-233, Miami, Florida 33199, United States
| |
Collapse
|
26
|
Jeanne Dit Fouque K, Salgueiro LM, Cai R, Sha W, Schally AV, Fernandez-Lima F. Structural Motif Descriptors as a Way To Elucidate the Agonistic or Antagonistic Activity of Growth Hormone-Releasing Hormone Peptide Analogues. ACS OMEGA 2018; 3:7432-7440. [PMID: 31458901 PMCID: PMC6644384 DOI: 10.1021/acsomega.8b00375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/21/2018] [Indexed: 05/05/2023]
Abstract
The synthesis of analogues of hypothalamic neuropeptide growth hormone-releasing hormone (GHRH) is an efficient strategy for designing new therapeutic agents. Several promising synthetic agonist and antagonist analogues of GHRH have been developed based on amino acid mutations of the GHRH (1-29) sequence. Because structural information on the activity of the GHRH agonists or antagonists is limited, there is a need for more effective analytical workflows capable of correlating the peptide sequence with biological activity. In the present work, three GHRH agonists-MR-356, MR-406, and MR-409-and three GHRH antagonists-MIA-602, MIA-606, and MIA-690-were investigated to assess the role of substitutions in the amino acid sequence on structural motifs and receptor binding affinities. The use of high resolution trapped ion mobility spectrometry coupled to mass spectrometry allowed the observation of a large number of peptide-specific mobility bands (or structural motif descriptors) as a function of the amino acid sequence and the starting solution environment. A direct correlation was observed between the amino acid substitutions (i.e., basic residues and d/l-amino acids), the structural motif descriptors, and the biological function (i.e., receptor binding affinities of the GHRH agonists and antagonists). The simplicity, ease, and high throughput of the proposed workflow based on the structural motif descriptors can significantly reduce the cost and time during screening of new synthetic peptide analogues.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department
of Chemistry and Biochemistry, Florida International
University, 11200 SW 8th Street, AHC4-233, Miami, Florida 33199, United States
| | - Luis M. Salgueiro
- Veterans
Affairs Medical Center, 1201 NW 16th Street, Research Service (151), Room
2A103C, Miami, Florida 33125, United States
- Departments
of Pathology and Medicine, Divisions of Hematology/Oncology and Endocrinology,
Miller School of Medicine, University of
Miami, 1600 NW 10th Avenue
#1140, Miami, Florida 33136, United States
| | - Renzhi Cai
- Veterans
Affairs Medical Center, 1201 NW 16th Street, Research Service (151), Room
2A103C, Miami, Florida 33125, United States
- Departments
of Pathology and Medicine, Divisions of Hematology/Oncology and Endocrinology,
Miller School of Medicine, University of
Miami, 1600 NW 10th Avenue
#1140, Miami, Florida 33136, United States
| | - Wei Sha
- Veterans
Affairs Medical Center, 1201 NW 16th Street, Research Service (151), Room
2A103C, Miami, Florida 33125, United States
- Departments
of Pathology and Medicine, Divisions of Hematology/Oncology and Endocrinology,
Miller School of Medicine, University of
Miami, 1600 NW 10th Avenue
#1140, Miami, Florida 33136, United States
| | - Andrew V. Schally
- Veterans
Affairs Medical Center, 1201 NW 16th Street, Research Service (151), Room
2A103C, Miami, Florida 33125, United States
- Departments
of Pathology and Medicine, Divisions of Hematology/Oncology and Endocrinology,
Miller School of Medicine, University of
Miami, 1600 NW 10th Avenue
#1140, Miami, Florida 33136, United States
| | - Francisco Fernandez-Lima
- Department
of Chemistry and Biochemistry, Florida International
University, 11200 SW 8th Street, AHC4-233, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International
University, 11200 SW 8th Street, AHC4-211, Miami, Florida 33199, United States
- E-mail:
| |
Collapse
|
27
|
Garabedian A, Bolufer A, Leng F, Fernandez-Lima F. Peptide Sequence Influence on the Conformational Dynamics and DNA binding of the Intrinsically Disordered AT-Hook 3 Peptide. Sci Rep 2018; 8:10783. [PMID: 30018295 PMCID: PMC6050235 DOI: 10.1038/s41598-018-28956-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/28/2018] [Indexed: 11/09/2022] Open
Abstract
The intrinsically disordered ATHP3 was studied at native conditions and in complex with DNA using single amino acid substitutions and high-resolution ion mobility spectrometry coupled to mass spectrometry (trapped IMS-MS). Results showed that ATHP3 can exist in multiple conformations at native conditions (at least 10 conformers were separated), with a variety of proline cis/trans orientations, side chain orientations and protonation sites. When in complex with AT rich DNA hairpins, the -RGRP- core is essential for stabilizing the ATHP3: DNA complex. In particular, the arginine in the sixth position plays an important role during binding to AT-rich regions of hairpin DNA, in good agreement with previous NMR and X-ray data. Mobility based correlation matrices are proposed as a way to reveal differences in structural motifs across the peptide mutants based on the conformational space and relative conformer abundance.
Collapse
Affiliation(s)
- Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, United States
| | - Alexander Bolufer
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, United States.,Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, United States. .,Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, United States.
| |
Collapse
|
28
|
Chai M, Young MN, Liu FC, Bleiholder C. A Transferable, Sample-Independent Calibration Procedure for Trapped Ion Mobility Spectrometry (TIMS). Anal Chem 2018; 90:9040-9047. [DOI: 10.1021/acs.analchem.8b01326] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Butcher D, Chapagain P, Leng F, Fernandez-Lima F. Differentiating Parallel and Antiparallel DNA Duplexes in the Gas Phase Using Trapped Ion Mobility Spectrometry. J Phys Chem B 2018; 122:6855-6861. [PMID: 29886735 DOI: 10.1021/acs.jpcb.7b12544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Deoxyribonucleic acids can form a wide variety of structural motifs which differ greatly from the typical antiparallel duplex stabilized by Watson-Crick base pairing. Many of these structures are thought to occur in vivo and may have essential roles in the biology of the cell. Among these is the parallel-stranded duplex-a structural motif in which DNA strands associate in a head-to-head fashion with the 5' ends at the same end of the duplex-which is stabilized by reverse Watson-Crick base pairing. In this study, parallel- and antiparallel-stranded DNA duplexes formed from two different 12-mer oligonucleotides were studied using native electrospray ionization combined with trapped ion mobility spectrometry and mass spectrometry. The DNA duplex charge plays an important role in the gas-phase mobility profile, with a more compact form in negative mode than in positive mode (ΔΩ ≈ 100 Å2 between -4 and +4). Despite sequence mismatches, homo- and hetero-DNA duplexes were formed in solution and transfer to the gas phase, where a more compact structure was observed for the parallel compared to the antiparallel duplexes (ΔΩ ≈ 50 Å2), in good agreement with theoretical calculations. Theoretical studies suggest that a reduction (or compaction) along the helical axis of the parallel and antiparallel DNA duplexes is observed upon transfer to the gas phase.
Collapse
|
30
|
Dit Fouque KJ, Moreno J, Hegemann JD, Zirah S, Rebuffat S, Fernandez-Lima F. Identification of Lasso Peptide Topologies Using Native Nanoelectrospray Ionization-Trapped Ion Mobility Spectrometry–Mass Spectrometry. Anal Chem 2018; 90:5139-5146. [DOI: 10.1021/acs.analchem.7b05230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Javier Moreno
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Julian D. Hegemann
- Department of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Séverine Zirah
- Muséum National d’Histoire Naturelle, Laboratoire MCAM, Sorbonne Universités, 75005 Paris, France
| | - Sylvie Rebuffat
- Muséum National d’Histoire Naturelle, Laboratoire MCAM, Sorbonne Universités, 75005 Paris, France
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
31
|
Garabedian A, Baird M, Porter J, Jeanne Dit Fouque K, Shliaha PV, Jensen ON, Williams TD, Fernandez-Lima F, Shvartsburg A. Linear and Differential Ion Mobility Separations of Middle-Down Proteoforms. Anal Chem 2018; 90:2918-2925. [PMID: 29359922 PMCID: PMC6366606 DOI: 10.1021/acs.analchem.7b05224] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Comprehensive characterization of proteomes comprising the same proteins with distinct post-translational modifications (PTMs) is a staggering challenge. Many such proteoforms are isomers (localization variants) that require separation followed by top-down or middle-down mass spectrometric analyses, but condensed-phase separations are ineffective in those size ranges. The variants for "middle-down" peptides were resolved by differential ion mobility spectrometry (FAIMS), relying on the mobility increment at high electric fields, but not previously by linear IMS on the basis of absolute mobility. We now use complete histone tails with diverse PTMs on alternative sites to demonstrate that high-resolution linear IMS, here trapped IMS (TIMS), broadly resolves the variants of ∼50 residues in full or into binary mixtures quantifiable by tandem MS, largely thanks to orthogonal separations across charge states. Separations using traveling-wave (TWIMS) and/or involving various time scales and electrospray ionization source conditions are similar (with lower resolution for TWIMS), showing the transferability of results across linear IMS instruments. The linear IMS and FAIMS dimensions are substantially orthogonal, suggesting FAIMS/IMS/MS as a powerful platform for proteoform analyses.
Collapse
Affiliation(s)
- Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199
| | - Matthew Baird
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260
| | - Jacob Porter
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199
| | | | - Pavel V. Shliaha
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Todd D. Williams
- Mass Spectrometry Laboratory, University of Kansas, Lawrence, KS 66045
| | | | - Alexandre Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260
| |
Collapse
|
32
|
Jeanne Dit Fouque K, Moreno J, Hegemann JD, Zirah S, Rebuffat S, Fernandez-Lima F. Metal ions induced secondary structure rearrangements: mechanically interlocked lassovs.unthreaded branched-cyclic topoisomers. Analyst 2018; 143:2323-2333. [DOI: 10.1039/c8an00138c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal ions can play a significant role in a variety of important functions in protein systems including cofactor for catalysis, protein folding, assembly, structural stability and conformational change.
Collapse
Affiliation(s)
| | - Javier Moreno
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | | | - Séverine Zirah
- Laboratory Molecules of Communication and Adaptation of Microorganisms
- National Museum of Natural History
- Sorbonne Univ
- 75005 Paris
- France
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms
- National Museum of Natural History
- Sorbonne Univ
- 75005 Paris
- France
| | | |
Collapse
|