1
|
Huang J, Chakraborty A, Tadepalli LS, Paul A. Adoption of a Tetrahedral DNA Nanostructure as a Multifunctional Biomaterial for Drug Delivery. ACS Pharmacol Transl Sci 2024; 7:2204-2214. [PMID: 39144555 PMCID: PMC11320733 DOI: 10.1021/acsptsci.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
DNA nanostructures have been widely researched in recent years as emerging biomedical materials for drug delivery, biosensing, and cancer therapy, in addition to their hereditary function. Multiple precisely designed single-strand DNAs can be fabricated into complex, three-dimensional DNA nanostructures through a simple self-assembly process. Among all of the synthetic DNA nanostructures, tetrahedral DNA nanostructures (TDNs) stand out as the most promising biomedical nanomaterial. TDNs possess the merits of structural stability, cell membrane permeability, and natural biocompatibility due to their compact structures and DNA origin. In addition to their inherent advantages, TDNs were shown to have great potential in delivering therapeutic agents through multiple functional modifications. As a multifunctional material, TDNs have enabled innovative pharmaceutical applications, including antimicrobial therapy, anticancer treatment, immune modulation, and cartilage regeneration. Given the rapid development of TDNs in the biomedical field, it is critical to understand how to successfully produce and fine-tune the properties of TDNs for specific therapeutic needs and clinical translation. This article provides insights into the synthesis and functionalization of TDNs and summarizes the approaches for TDN-based therapeutics delivery as well as their broad applications in the field of pharmaceutics and nanomedicine, challenges, and future directions.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Aishik Chakraborty
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Collaborative
Specialization in Musculoskeletal Health Research and Bone and Joint
Institute, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Lakshmi Suchitra Tadepalli
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Arghya Paul
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- School of
Biomedical Engineering, The University of
Western Ontario, London, Ontario N6A 5B9, Canada
- Collaborative
Specialization in Musculoskeletal Health Research and Bone and Joint
Institute, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Department
of Chemistry, The University of Western
Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
2
|
Sankar K, Kuzmanović U, Schaus SE, Galagan JE, Grinstaff MW. Strategy, Design, and Fabrication of Electrochemical Biosensors: A Tutorial. ACS Sens 2024; 9:2254-2274. [PMID: 38636962 DOI: 10.1021/acssensors.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Advanced healthcare requires novel technologies capable of real-time sensing to monitor acute and long-term health. The challenge relies on converting a real-time quantitative biological and chemical signal into a desired measurable output. Given the success in detecting glucose and the commercialization of glucometers, electrochemical biosensors continue to be a mainstay of academic and industrial research activities. Despite the wealth of literature on electrochemical biosensors, reports are often specific to a particular application (e.g., pathogens, cancer markers, glucose, etc.), and most fail to convey the underlying strategy and design, and if it is transferable to detection of a different analyte. Here we present a tutorial review for those entering this research area that summarizes the basic electrochemical techniques utilized as well as discusses the designs and optimization strategies employed to improve sensitivity and maximize signal output.
Collapse
|
3
|
Jiang J, Wang B, Luo L, Ying N, Shi G, Zhang M, Su H, Zeng D. A two-step electrochemical biosensor based on Tetrazyme for the detection of fibrin. Biotechnol Appl Biochem 2024; 71:193-201. [PMID: 37904286 DOI: 10.1002/bab.2531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023]
Abstract
In this study, an electrochemical biosensor was constructed for the detection of fibrin, specifically by a simple two-step approach, with a novel artificial enzyme (Tetrazyme) based on the DNA tetrahedral framework as signal probe. The multichannel screen-printed electrode with the activated surface cannot only remove some biological impurities, but also serve as a carrier to immobilize a large number of antigen proteins. The DNA tetrahedral nanostructure was employed to ensure the high sensitivity of the probe for biological analysis. The hemin was chimeric into the G-quadruplex to constitute the complex with peroxidase catalytic activity (hemin/G4-DNAzyme), subsequently, Tetrazyme was formed through combining of this complex and DNA tetrahedral nucleic acid framework. The artificial enzyme signal probe formed by the covalent combination of the homing peptide (Cys-Arg-Glu-Lys-Ala, CREKA), which is the aptamer of fibrin and the new artificial enzyme is fixed on the surface of the multichannel carbon electrode by CREKA-specific recognition, so as to realize the sensitive detection of fibrin. The feasibility of sensing platform was validated by cyclic voltammetry (CV) and amperometric i-t curve (IT) methods. Effects of Tetrazyme concentration, CREKA concentrations and hybridization time on the sensor were explored. Under the best optimal conditions of 0.6 μmol/L Tetrazyme, 80 μmol/L CREKA, and 2.5 h reaction time, the immunosensor had two linear detection ranges, 10-40 nmol/L, with linear regression equation Y = 0.01487X - 0.011 (R2 = 0.992), and 50-100 nmol/L, with linear regression equation Y = 0.00137X + 0.6405 (R2 = 0.998), the detection limit was 9.4 nmol/L, S/N ≥ 3. The biosensor could provide a new method with great potential for the detection of fibrin with good selectivity, stability, and reproducibility.
Collapse
Affiliation(s)
- Jiayi Jiang
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Bin Wang
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Linghuan Luo
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Na Ying
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Graduate, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaofan Shi
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengmeng Zhang
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Graduate, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoyuan Su
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dongdong Zeng
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
4
|
Shishparenok AN, Furman VV, Zhdanov DD. DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors. Cancers (Basel) 2023; 15:2151. [PMID: 37046816 PMCID: PMC10093432 DOI: 10.3390/cancers15072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
DNA nanotechnology has significantly advanced and might be used in biomedical applications, drug delivery, and cancer treatment during the past few decades. DNA nanomaterials are widely used in biomedical research involving biosensing, bioimaging, and drug delivery since they are remarkably addressable and biocompatible. Gradually, modified nucleic acids have begun to be employed to construct multifunctional DNA nanostructures with a variety of architectural designs. Aptamers are single-stranded nucleic acids (both DNAs and RNAs) capable of self-pairing to acquire secondary structure and of specifically binding with the target. Diagnosis and tumor therapy are prospective fields in which aptamers can be applied. Many DNA nanomaterials with three-dimensional structures have been studied as drug delivery systems for different anticancer medications or gene therapy agents. Different chemical alterations can be employed to construct a wide range of modified DNA nanostructures. Chemically altered DNA-based nanomaterials are useful for drug delivery because of their improved stability and inclusion of functional groups. In this work, the most common oligonucleotide nanomaterials were reviewed as modern drug delivery systems in tumor cells.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Vitalina V. Furman
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt 49A, 197101 St. Petersburg, Russia
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
5
|
Imaging strategies for receptor tyrosine kinase dimers in living cells. Anal Bioanal Chem 2023; 415:67-82. [PMID: 36190534 DOI: 10.1007/s00216-022-04334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/10/2023]
Abstract
Receptor tyrosine kinases (RTKs) are the essential regulators of cell signal transduction pathways and play important roles in biological processes. RTK dimerization is generally considered the first step in receptor activation and cell communication. And the abnormal expression of RTK dimers is closely related to the occurrence and development of many diseases. Therefore, the visualization of RTK dimerization is of great significance for monitoring physiological processes. The genetic and nongenetic imaging strategies have attracted widespread attention due to their high efficiency and high sensitivity. In this review, the RTKs and their dimers as well as the advances in strategies for imaging RTK dimers are introduced. Furthermore, we analyze the limitations of existing imaging strategies and put forward suggestions for the future development of imaging probes. We expect that this review will inspire more in-depth investigation of RTK dimers, which will also broaden the application of strategies of RTK dimers in biomedical areas.
Collapse
|
6
|
Liang M, Li N, Liu F, Zeng N, Yu C, Li S. Apurinic/apyrimidinic endonuclease triggered doxorubicin-releasing DNA nanoprism for target therapy. Cell Cycle 2022; 21:2627-2634. [PMID: 35943146 PMCID: PMC9704400 DOI: 10.1080/15384101.2022.2108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Drug delivery and triggered release in tumor cells would realize the ultimate goal of precise cancer treatment. An APE1 triggered DNA nanoprism was designed, aiming at the applications of both drug delivery and precise triggered drug release in cancer cell. We demonstrate that the AP-Prism was successfully used as a vehicle based on the intracellular endogenous enzyme APE1 triggered for controlled drug delivery and triggered release. The box like DNA prism was self-assembled by annealing process and Doxorubicin molecules were then inserted into the GC base pairs. The reaction of AP-Prism enzymolysis and stability of DNA prism were investigated. Encouraged by the demonstration of AP-Prism as a drug delivery carrier, the cellular uptake and Dox release were with investigated in a human cervical cancer cell HeLa and human embryonic kidney cell HEK-293 T. Thanks to the overexpression level of APE1 in cancer cells, DNA prism could selectively release the trapped doxorubicin in response to APE1 activity in cancer cells, and provide a new strategy for the development of precision medicine.
Collapse
Affiliation(s)
- Meng Liang
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Na Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fei Liu
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Nan Zeng
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China,CONTACT Changyuan Yu College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuo Li
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China,Shuo Li Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518053, China
| |
Collapse
|
7
|
Tan Q, Zhao S, Xu T, Wang Q, Lan M, Yan L, Chen X. Getting drugs to the brain: advances and prospects of organic nanoparticle delivery systems for assisting drugs to cross the blood-brain barrier. J Mater Chem B 2022; 10:9314-9333. [PMID: 36349976 DOI: 10.1039/d2tb01440h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The blood-brain barrier (BBB) plays an irreplaceable role in protecting the central nervous system (CNS) from bloodborne pathogens. However, the BBB complicates the treatment of CNS diseases because it prevents almost all therapeutic drugs from getting into the CNS. With the growing understanding of the physiological characteristics of the BBB and the development of nanotechnology, nanomaterial-based drug delivery systems have become promising tools for delivering drugs across the BBB to the CNS. Herein, we systematically summarize the recent progress in organic-nanoparticle delivery systems for treating CNS diseases and evaluate their mechanisms in overcoming the BBB with the aim to provide a comprehensive understanding of the advantages, disadvantages, and challenges of organic nanoparticles in delivering drugs across the BBB. This review may inspire new research ideas and directions for applying nanotechnology to treat CNS diseases.
Collapse
Affiliation(s)
- Qiuxia Tan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Shaojing Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Ting Xu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Qin Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Minhuan Lan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, UK.
| |
Collapse
|
8
|
Zhou XM, Zhuo Y, Tu TT, Yuan R, Chai YQ. Construction of Fast-Walking Tetrahedral DNA Walker with Four Arms for Sensitive Detection and Intracellular Imaging of Apurinic/Apyrimidinic Endonuclease 1. Anal Chem 2022; 94:8732-8739. [PMID: 35678832 DOI: 10.1021/acs.analchem.2c01171] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, a novel tetrahedral DNA walker with four arms was engineered to travel efficiently on the 3D-tracks via catalyzed hairpin assembly autonomously, realizing the sensitive detection and activity assessment as well as intracellular imaging of apurinic/apyrimidinic endonuclease 1 (APE1). In contrast to traditional DNA walkers, the tetrahedral DNA walker with the rigid 3D framework structure and nonplanar multi-sites walking arms endowed with high collision efficiency, showing a fast walking rate and high nuclease resistance. Impressively, the initial rate of the tetrahedral DNA walker with four arms was 4.54 times faster than that of the free bipedal DNA walker and produced a significant fluorescence recovery in about 40 min, achieving a sensitive detection of APE1 with a low detection limit of 5.54× 10-6 U/μL as well as ultrasensitive intracellular APE1 fluorescence activation imaging. This strategy provides a novel DNA walker for accurate identification of low-abundance cancer biomarker and potential medical diagnosis.
Collapse
Affiliation(s)
- Xue-Mei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ting-Ting Tu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
9
|
Li L, Wang J, Jiang H, Wen X, Yang M, Li S, Guo Q, Wang K. DNA tetrahedron-based split aptamer probes for reliable imaging of ATP in living cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Muire PJ, Thompson MA, Christy RJ, Natesan S. Advances in Immunomodulation and Immune Engineering Approaches to Improve Healing of Extremity Wounds. Int J Mol Sci 2022; 23:4074. [PMID: 35456892 PMCID: PMC9032453 DOI: 10.3390/ijms23084074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/04/2022] Open
Abstract
Delayed healing of traumatic wounds often stems from a dysregulated immune response initiated or exacerbated by existing comorbidities, multiple tissue injury or wound contamination. Over decades, approaches towards alleviating wound inflammation have been centered on interventions capable of a collective dampening of various inflammatory factors and/or cells. However, a progressive understanding of immune physiology has rendered deeper knowledge on the dynamic interplay of secreted factors and effector cells following an acute injury. There is a wide body of literature, both in vitro and in vivo, abstracted on the immunomodulatory approaches to control inflammation. Recently, targeted modulation of the immune response via biotechnological approaches and biomaterials has gained attention as a means to restore the pro-healing phenotype and promote tissue regeneration. In order to fully realize the potential of these approaches in traumatic wounds, a critical and nuanced understanding of the relationships between immune dysregulation and healing outcomes is needed. This review provides an insight on paradigm shift towards interventional approaches to control exacerbated immune response following a traumatic injury from an agonistic to a targeted path. We address such a need by (1) providing a targeted discussion of the wound healing processes to assist in the identification of novel therapeutic targets and (2) highlighting emerging technologies and interventions that utilize an immunoengineering-based approach. In addition, we have underscored the importance of immune engineering as an emerging tool to provide precision medicine as an option to modulate acute immune response following a traumatic injury. Finally, an overview is provided on how an intervention can follow through a successful clinical application and regulatory pathway following laboratory and animal model evaluation.
Collapse
Affiliation(s)
- Preeti J. Muire
- Combat Wound Care Research Department, US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX 78234, USA; (M.A.T.); (R.J.C.)
| | | | | | - Shanmugasundaram Natesan
- Combat Wound Care Research Department, US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX 78234, USA; (M.A.T.); (R.J.C.)
| |
Collapse
|
11
|
Egloff S, Melnychuk N, Cruz Da Silva E, Reisch A, Martin S, Klymchenko AS. Amplified Fluorescence in Situ Hybridization by Small and Bright Dye-Loaded Polymeric Nanoparticles. ACS NANO 2022; 16:1381-1394. [PMID: 34928570 DOI: 10.1021/acsnano.1c09409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Detection and imaging of RNA at the single-cell level is of utmost importance for fundamental research and clinical diagnostics. Current techniques of RNA analysis, including fluorescence in situ hybridization (FISH), are long, complex, and expensive. Here, we report a methodology of amplified FISH (AmpliFISH) that enables simpler and faster RNA imaging using small and ultrabright dye-loaded polymeric nanoparticles (NPs) functionalized with DNA. We found that the small size of NPs (below 20 nm) was essential for their access to the intracellular mRNA targets in fixed permeabilized cells. Moreover, proper selection of the polymer matrix of DNA-NPs minimized nonspecific intracellular interactions. Optimized DNA-NPs enabled sequence-specific imaging of different mRNA targets (survivin, actin, and polyA tails), using a simple 1 h staining protocol. Encapsulation of cyanine and rhodamine dyes with bulky counterions yielded green-, red-, and far-red-emitting NPs that were 2-100-fold brighter than corresponding quantum dots. These NPs enabled multiplexed detection of three mRNA targets simultaneously, showing distinctive mRNA expression profiles in three cancer cell lines. Image analysis confirmed the single-particle nature of the intracellular signal, suggesting single-molecule sensitivity of the method. AmpliFISH was found to be semiquantitative, correlating with RT-qPCR. In comparison with the commercial locked nucleic acid (LNA)-based FISH technique, AmpliFISH provides 8-200-fold stronger signal (dependent on the NP color) and requires only three steps vs ∼20 steps together with a much shorter time. Thus, combination of bright fluorescent polymeric NPs with FISH yields a fast and sensitive single-cell transcriptomic analysis method for RNA research and clinical diagnostics.
Collapse
Affiliation(s)
- Sylvie Egloff
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Nina Melnychuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Elisabete Cruz Da Silva
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Andreas Reisch
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Sophie Martin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| |
Collapse
|
12
|
The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther 2021; 6:351. [PMID: 34620843 PMCID: PMC8497566 DOI: 10.1038/s41392-021-00727-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
DNA, a genetic material, has been employed in different scientific directions for various biological applications as driven by DNA nanotechnology in the past decades, including tissue regeneration, disease prevention, inflammation inhibition, bioimaging, biosensing, diagnosis, antitumor drug delivery, and therapeutics. With the rapid progress in DNA nanotechnology, multitudinous DNA nanomaterials have been designed with different shape and size based on the classic Watson-Crick base-pairing for molecular self-assembly. Some DNA materials could functionally change cell biological behaviors, such as cell migration, cell proliferation, cell differentiation, autophagy, and anti-inflammatory effects. Some single-stranded DNAs (ssDNAs) or RNAs with secondary structures via self-pairing, named aptamer, possess the ability of targeting, which are selected by systematic evolution of ligands by exponential enrichment (SELEX) and applied for tumor targeted diagnosis and treatment. Some DNA nanomaterials with three-dimensional (3D) nanostructures and stable structures are investigated as drug carrier systems to delivery multiple antitumor medicine or gene therapeutic agents. While the functional DNA nanostructures have promoted the development of the DNA nanotechnology with innovative designs and preparation strategies, and also proved with great potential in the biological and medical use, there is still a long way to go for the eventual application of DNA materials in real life. Here in this review, we conducted a comprehensive survey of the structural development history of various DNA nanomaterials, introduced the principles of different DNA nanomaterials, summarized their biological applications in different fields, and discussed the current challenges and further directions that could help to achieve their applications in the future.
Collapse
|
13
|
Tian T, Zhang C, Li J, Liu Y, Wang Y, Ke X, Fan C, Lei H, Hao P, Li Q. Proteomic Exploration of Endocytosis of Framework Nucleic Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100837. [PMID: 33893713 DOI: 10.1002/smll.202100837] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Efficient cell internalization of framework nucleic acid nanostructures free of transfection agents provides new opportunities for developing biocompatible and intelligent nanoprobes and drug delivery carriers. Here, a proteomic identification method to screen target proteins that interact with tetrahedral DNA nanostructures (TDNs) during the process of endocytosis by combining drug affinity responsive target stability (DARTS) with liquid chromatography/tandem mass spectrometry (LC-MS/MS) techniques, is reported. It is found that that caveolin-1 (CAV1) and macropinocytosis-related protein sorting nexin5 (SNX5) are associated with the endocytosis of TNDs, which is further validated by microscale thermophoresis (MST) analysis. CAV1- and SNX5- knockout experiments reveal that both caveolae-mediated endocytosis and macropinocytosis mediate the cellular uptake of TDNs, which complement previous findings with fluorescence tracing methods. This method provides a generic strategy to analyze cellular internalization process of DNA nanostructures for biomedical applications.
Collapse
Affiliation(s)
- Tian Tian
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chengqian Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiang Li
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yifan Liu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Wang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haozhi Lei
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
14
|
Lacroix A, Sleiman HF. DNA Nanostructures: Current Challenges and Opportunities for Cellular Delivery. ACS NANO 2021; 15:3631-3645. [PMID: 33635620 DOI: 10.1021/acsnano.0c06136] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA nanotechnology has produced a wide range of self-assembled structures, offering unmatched possibilities in terms of structural design. Because of their programmable assembly and precise control of size, shape, and function, DNA particles can be used for numerous biological applications, including imaging, sensing, and drug delivery. While the biocompatibility, programmability, and ease of synthesis of nucleic acids have rapidly made them attractive building blocks, many challenges remain to be addressed before using them in biological conditions. Enzymatic hydrolysis, low cellular uptake, immune cell recognition and degradation, and unclear biodistribution profiles are yet to be solved. Rigorous methodologies are needed to study, understand, and control the fate of self-assembled DNA structures in physiological conditions. In this review, we describe the current challenges faced by the field as well as recent successes, highlighting the potential to solve biology problems or develop smart drug delivery tools. We then propose an outlook to drive the translation of DNA constructs toward preclinical design. We particularly believe that a detailed understanding of the fate of DNA nanostructures within living organisms, achieved through thorough characterization, is the next required step to reach clinical maturity.
Collapse
Affiliation(s)
- Aurélie Lacroix
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
15
|
Copp W, Pontarelli A, Wilds CJ. Recent Advances of DNA Tetrahedra for Therapeutic Delivery and Biosensing. Chembiochem 2021; 22:2237-2246. [PMID: 33506614 DOI: 10.1002/cbic.202000835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/16/2021] [Indexed: 11/11/2022]
Abstract
The chemical and self-assembly properties of nucleic acids make them ideal for the construction of discrete structures and stimuli-responsive devices for a diverse array of applications. Amongst the various three-dimensional assemblies, DNA tetrahedra are of particular interest, as these structures have been shown to be readily taken up by the cell, by the process of caveolin-mediated endocytosis, without the need for transfection agents. Moreover, these structures can be readily modified with a diverse range of pendant groups to confer greater functionality. This minireview highlights recent advances related to applications of this interesting DNA structure including the delivery of therapeutic agents ranging from small molecules to oligonucleotides in addition to its use for sensing and imaging various species within the cell.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Alexander Pontarelli
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
16
|
Fan Z, Ding Y, Yao B, Wang J, Zhang K. Electrochemiluminescence platform for transcription factor diagnosis by using CRISPR-Cas12a trans-cleavage activity. Chem Commun (Camb) 2021; 57:8015-8018. [PMID: 34286737 DOI: 10.1039/d1cc03071j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we exploited the double-stranded DNA (dsDNA) binding property of transcription factor (TF), combined with the trans cleavage characteristic of CRISPR-Cas12a, for the detection of NF-κB p50.
Collapse
Affiliation(s)
- Zhenqiang Fan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China.
| | - Yuedi Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China.
| | - Bo Yao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jiaying Wang
- Drug Clinical Trial Institution, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China.
| | - Kai Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China.
| |
Collapse
|
17
|
Wang W, Arias DS, Deserno M, Ren X, Taylor RE. Emerging applications at the interface of DNA nanotechnology and cellular membranes: Perspectives from biology, engineering, and physics. APL Bioeng 2020; 4:041507. [PMID: 33344875 PMCID: PMC7725538 DOI: 10.1063/5.0027022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
DNA nanotechnology has proven exceptionally apt at probing and manipulating biological environments as it can create nanostructures of almost arbitrary shape that permit countless types of modifications, all while being inherently biocompatible. Emergent areas of particular interest are applications involving cellular membranes, but to fully explore the range of possibilities requires interdisciplinary knowledge of DNA nanotechnology, cell and membrane biology, and biophysics. In this review, we aim for a concise introduction to the intersection of these three fields. After briefly revisiting DNA nanotechnology, as well as the biological and mechanical properties of lipid bilayers and cellular membranes, we summarize strategies to mediate interactions between membranes and DNA nanostructures, with a focus on programmed delivery onto, into, and through lipid membranes. We also highlight emerging applications, including membrane sculpting, multicell self-assembly, spatial arrangement and organization of ligands and proteins, biomechanical sensing, synthetic DNA nanopores, biological imaging, and biomelecular sensing. Many critical but exciting challenges lie ahead, and we outline what strikes us as promising directions when translating DNA nanostructures for future in vitro and in vivo membrane applications.
Collapse
Affiliation(s)
- Weitao Wang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - D. Sebastian Arias
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
18
|
Zhang J, Jia Y, Qi J, Yan W, Jiang X. Four-in-One: Advanced Copper Nanocomposites for Multianalyte Assays and Multicoding Logic Gates. ACS NANO 2020; 14:9107-9116. [PMID: 32662992 DOI: 10.1021/acsnano.0c04357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The usage of non-noble-metal nanomaterials for nanoprobes or functional modules is still a big challenge because of their poor stability, functionality, and surface plasmon resonance property. In this work, copper ion, mercaptosuccinic acid, and nanocrystalline cellulose are combined for facile one-step synthesis and self-assembly of ultrasmall copper nanoparticles to produce supercolloidal particles (NCC@MSA-Cu SPs). Cu SPs show advanced multifunctionality for fast point-of-care tests (POCTs) of four metal ions (Hg2+, Pb2+, Ag+, and Zr4+). These selective recognitions integrate four different chemical reaction mechanisms (ion etching, core-shell deposition, templated synthesis, and precipitation) to produce four distinct readout signals. The multisignal mode-guided multianalyte sensing strategy can effectively avoid interference that affects single signal mode-based sensing. Benefiting from the creative multi-input and multireadout abilities, the visual multicoding logic gates of OR, NOR, AND, and INHIBIT are built based on optical responses of Cu SPs.
Collapse
Affiliation(s)
- Jiangjiang Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yuexiao Jia
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Jie Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Weixiao Yan
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
19
|
Li Y, Zhang X, Pan W, Li N, Tang B. A Nongenetic Proximity-Induced FRET Strategy Based on DNA Tetrahedron for Visualizing the Receptor Dimerization. Anal Chem 2020; 92:11921-11926. [DOI: 10.1021/acs.analchem.0c02330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
20
|
Duangrat R, Udomprasert A, Kangsamaksin T. Tetrahedral DNA nanostructures as drug delivery and bioimaging platforms in cancer therapy. Cancer Sci 2020; 111:3164-3173. [PMID: 32589345 PMCID: PMC7469859 DOI: 10.1111/cas.14548] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Structural DNA nanotechnology enables DNA to be used as nanomaterials for novel nanostructure construction with unprecedented functionalities. Artificial DNA nanostructures can be designed and generated with precisely controlled features, resulting in its utility in bionanotechnological and biomedical applications. A tetrahedral DNA nanostructure (TDN), the most popular DNA nanostructure, with high stability and simple synthesis procedure, is a promising candidate as nanocarriers in drug delivery and bioimaging platforms, particularly in precision medicine as well as diagnosis for cancer therapy. Recent evidence collectively indicated that TDN successfully enhanced cancer therapeutic efficiency both in vitro and in vivo. Here, we summarize the development of TDN and highlight various aspects of TDN applications in cancer therapy based on previous reports, including anticancer drug loading, photodynamic therapy, therapeutic oligonucleotides, bioimaging platforms, and other molecules and discuss a perspective in opportunities and challenges for future TDN‐based nanomedicine.
Collapse
Affiliation(s)
- Ratchanee Duangrat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anuttara Udomprasert
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Thaned Kangsamaksin
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
Tam DY, Ho JWT, Chan MS, Lau CH, Chang TJH, Leung HM, Liu LS, Wang F, Chan LLH, Tin C, Lo PK. Penetrating the Blood-Brain Barrier by Self-Assembled 3D DNA Nanocages as Drug Delivery Vehicles for Brain Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28928-28940. [PMID: 32432847 DOI: 10.1021/acsami.0c02957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of biocompatible drug delivery vehicles for cancer therapy in the brain remains a big challenge. In this study, we designed self-assembled DNA nanocages functionalized with or without blood-brain barrier (BBB)-targeting ligands, d and we investigated their penetration across the BBB. Our DNA nanocages were not cytotoxic and they were substantially taken up in brain capillary endothelial cells and Uppsala 87 malignant glioma (U-87 MG) cells. We found that ligand modification is not essential for this DNA system as the ligand-free DNA nanocages (LF-NCs) could still cross the BBB by endocytosis inin vitro and in vivo models. Our spherical DNA nanocages were more permeable across the BBB compared with tubular DNA nanotubes. Remarkably, in vivo studies revealed that DNA nanocages could carry anticancer drugs across the BBB and inhibit the tumor growth in a U-87 MG xenograft mouse model. This is the first example showing the potential of DNA nanocages as innovative delivery vehicles to the brain for cancer therapy. Unlike other delivery systems, our work suggest that a DNA nanocage-based platform provides a safe and cost-effective tool for targeted delivery to the brain and therapy for brain tumors.
Collapse
Affiliation(s)
- Dick Yan Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Jonathan Weng-Thim Ho
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Miu Shan Chan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Cia Hin Lau
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Tristan Juin Han Chang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Hoi Man Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Ling Sum Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Fei Wang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Leanne Lai Hang Chan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chung Tin
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
22
|
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
23
|
Xie N, Wang H, Quan K, Feng F, Huang J, Wang K. Self-assembled DNA-Based geometric polyhedrons: Construction and applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Fan Z, Lin Z, Wang Z, Wang J, Xie M, Zhao J, Zhang K, Huang W. Dual-Wavelength Electrochemiluminescence Ratiometric Biosensor for NF-κB p50 Detection with Dimethylthiodiaminoterephthalate Fluorophore and Self-Assembled DNA Tetrahedron Nanostructures Probe. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11409-11418. [PMID: 32067445 DOI: 10.1021/acsami.0c01243] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this work, we fabricated a dual-wavelength electrochemiluminescence ratiometric biosensor based on electrochemiluminescent resonance energy transfer (ECL-RET). In this biosensor, Au nanoparticle-loaded graphitic phase carbon nitride (Au-g-C3N4) as a donor and Au-modified dimethylthiodiaminoterephthalate (TAT) analogue (Au@TAT) as an acceptor were investigated for the first time. Besides, tetrahedron DNA probe was immobilized onto Au-g-C3N4 to improve the binding efficiency of the transcription factor and ECL ratiometric changes on the basis of the ratio of ECL intensities at 595 and 460 nm, which were obtained through the formation of a sandwich structure of DNA probe-antigen-antibody. Our biosensor achieved the assay of NF-κB p50 with a detection limit of 5.8 pM as well as high stability and specificity.
Collapse
Affiliation(s)
- Zhenqiang Fan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zongqiong Lin
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, Shaanxi, P. R. China
| | - Zepeng Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jianfeng Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Minhao Xie
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jianfeng Zhao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Kai Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, Shaanxi, P. R. China
| |
Collapse
|
25
|
Yang L, Yin X, Gai P, Li F. A label-free homogeneous electrochemical cytosensor for the ultrasensitive detection of cancer cells based on multiaptamer-functionalized DNA tetrahedral nanostructures. Chem Commun (Camb) 2020; 56:3883-3886. [PMID: 32134083 DOI: 10.1039/d0cc00788a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We developed a label-free homogeneous electrochemical cytosensor for ultrasensitive detection of cancer cells based on multiaptamer-functionalized DNA tetrahedral nanostructures, which avoided expensive labeling and sophisticated immobilization procedures, providing opportunities for precisely detecting cancer cells in clinical applications.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| | | | | | | |
Collapse
|
26
|
Gao X, Li X, Sun X, Zhang J, Zhao Y, Liu X, Li F. DNA Tetrahedra-Cross-linked Hydrogel Functionalized Paper for Onsite Analysis of DNA Methyltransferase Activity Using a Personal Glucose Meter. Anal Chem 2020; 92:4592-4599. [DOI: 10.1021/acs.analchem.0c00018] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xin Gao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xiuyuan Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xinzhi Sun
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Jingyan Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yuecan Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
27
|
Wang T, Peng Q, Guo B, Zhang D, Zhao M, Que H, Wu H, Yan Y. An integrated electrochemical biosensor based on target-triggered strand displacement amplification and "four-way" DNA junction towards ultrasensitive detection of PIK3CA gene mutation. Biosens Bioelectron 2020; 150:111954. [PMID: 31929087 DOI: 10.1016/j.bios.2019.111954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/16/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
A novel electrochemical biosensor was constructed for specific and ultrasensitive detection of PIK3CAH1047R gene mutation based on NsbI restriction enzyme-mediated strand displacement amplification (NsbI-SDA) and four-way DNA junction for the first time. In this biosensor, the NsbI restriction enzyme combined with strand displacement amplification (SDA) was able to specifically distinguish PIK3CAH1047R gene mutation and increase the number of DNA copies to improve electrochemical response. In the presence of target mutation gene, DNA fragments produced by the cleavage event of NsbI restriction enzyme could trigger the SDA reaction to generate massive linker chains. When the linker chains were captured on the electrode, the four-way DNA junction was then attached at the end of linker chain. By integrating electroactive molecules of methylene blue (MB) into four-way DNA junction, this sandwich-like electrochemical biosensor was able to determine the specific distinction of target mutation gene with a low detection limit of 0.001%. Finally, this strategy could be used to analyze mutation gene spiked into human serum samples, indicating the potential application in genetic analysis and clinical disease diagnosis.
Collapse
Affiliation(s)
- Tong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qiling Peng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China; Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Decai Zhang
- Department of Laboratory Diagnosis, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Haiying Que
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
28
|
Yang F, Jiang XY, Liang WB, Chai YQ, Yuan R, Zhuo Y. 3D Matrix-Arranged AuAg Nanoclusters As Electrochemiluminescence Emitters for Click Chemistry-Driven Signal Switch Bioanalysis. Anal Chem 2020; 92:2566-2572. [DOI: 10.1021/acs.analchem.9b04256] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fang Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xin-Ya Jiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Wen-Bin Liang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
29
|
Zhu C, Yang J, Zheng J, Chen S, Huang F, Yang R. Triplex-Functionalized DNA Tetrahedral Nanoprobe for Imaging of Intracellular pH and Tumor-Related Messenger RNA. Anal Chem 2019; 91:15599-15607. [DOI: 10.1021/acs.analchem.9b03659] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cong Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jinfeng Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shiya Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410076, China
| |
Collapse
|
30
|
Progress Toward Absorption, Distribution, Metabolism, Elimination, and Toxicity of DNA Nanostructures. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Progress in DNA Tetrahedral Nanomaterials and Their Functionalization Research. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61198-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
33
|
Guo X, Li M, Zhao R, Yang Y, Wang R, Wu F, Jia L, Zhang Y, Wang L, Qu Z, Wang F, Zhu Y, Hao R, Zhang X, Song H. Structural and positional impact on DNAzyme-based electrochemical sensors for metal ions. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102035. [DOI: 10.1016/j.nano.2019.102035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
|
34
|
Luan M, Shi M, Pan W, Li N, Tang B. A gold-selenium-bonded nanoprobe for real-time in situ imaging of the upstream and downstream relationship between uPA and MMP-9 in cancer cells. Chem Commun (Camb) 2019; 55:5817-5820. [PMID: 31041939 DOI: 10.1039/c9cc01454c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel Au-Se nanoprobe with remarkable anti-interference ability for glutathione was developed for real-time in situ monitoring of the upstream and downstream regulatory relationship between uPA and MMP-9 proteins in the pathway.
Collapse
Affiliation(s)
- Mingming Luan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | |
Collapse
|
35
|
Zhang K, Huang W, Huang Y, Li H, Wang K, Zhu X, Xie M. DNA Tetrahedron Based Biosensor for Argonaute2 Assay in Single Cells and Human Immunodeficiency Virus Type-1 Related Ribonuclease H Detection in Vitro. Anal Chem 2019; 91:7086-7096. [DOI: 10.1021/acs.analchem.9b00011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Wanting Huang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Yue Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hao Li
- School of Biological Science and Technology, University of Jinan, No. 106 Jiwei Road, Jinan, Shandong 250022, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Minhao Xie
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| |
Collapse
|
36
|
Su Y, Li D, Liu B, Xiao M, Wang F, Li L, Zhang X, Pei H. Rational Design of Framework Nucleic Acids for Bioanalytical Applications. Chempluschem 2019; 84:512-523. [DOI: 10.1002/cplu.201900118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Yuwei Su
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Dan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Bingyi Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Fei Wang
- Joint Research Center for Precision MedicineShanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus 6600th Nanfeng Road, Fengxian District Shanghai 201499 P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Xueli Zhang
- Joint Research Center for Precision MedicineShanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus 6600th Nanfeng Road, Fengxian District Shanghai 201499 P. R. China
- Southern Medical University Affiliated Fengxian Hospital Shanghai 201499 P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| |
Collapse
|
37
|
Zhang H, Guan Y, Li X, Lian L, Wang X, Gao W, Zhu B, Liu X, Lou D. Ultrasensitive Biosensor for Detection of Mercury(II) Ions Based on DNA-Cu Nanoclusters and Exonuclease III-assisted Signal Amplification. ANAL SCI 2019; 34:1155-1161. [PMID: 30305592 DOI: 10.2116/analsci.18p124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This paper describes a novel method for label-free mercury(II) ion detection based on exonuclease III-induced target signal recycling amplification using double-stranded DNA templated copper nanoclusters. The synthesized DNA-Cu nanoclusters were used with exonuclease III loop amplification technology for ultra-high sensitivity detection of mercury(II) ions, which were detected by significantly decreased fluorescence intensity. Under the optimal experimental conditions, there was a clear linear relationship between Hg2+ concentration in the range of 0.04 to 8 nM and fluorescence intensity. The detection limit for Hg2+ was 4 pM. In addition, the interference of other metal ions on the mercury(II) ion detection was also studied. To confirm the application of the fluorescent sensor, it was applied to determine the concentrations of mercury(II) ions in tap water, and the results showed that the method can be used to detect mercury(II) ions in water samples successfully.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| | - Yanan Guan
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| | - Xiaoshuang Li
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| | - Lili Lian
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| | - Xiyue Wang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| | - Wenxiu Gao
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| | - Bo Zhu
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| | - Xuying Liu
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| | - Dawei Lou
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| |
Collapse
|
38
|
Chen Y, Li N, Wang J, Zhang X, Pan W, Yu L, Tang B. Enhancement of mitochondrial ROS accumulation and radiotherapeutic efficacy using a Gd-doped titania nanosensitizer. Theranostics 2019; 9:167-178. [PMID: 30662560 PMCID: PMC6332802 DOI: 10.7150/thno.28033] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is an extensively used treatment modality in the clinic and can kill malignant cells by generating cytotoxic reactive oxygen species (ROS). Unfortunately, excessive dosages of radiation are typically required because only a small proportion of the radiative energy is adsorbed by the soft tissues of a tumor, which results in the nonselective killing of normal cells and severe systemic side effects. An efficient nanosensitizer that makes cancer cells more sensitive to radiotherapy under a relatively low radiation dose would be highly desirable. Methods: In this study, we developed a Gd-doped titania nanosensitizer that targets mitochondria to achieve efficient radiotherapy. Upon X-ray irradiation, the nanosensitizer triggers a “domino effect” of ROS accumulation in mitochondria. This overabundance of ROS leads to mitochondrial permeability transition and ultimately irreversible cell apoptosis. Confocal laser imaging, western blotting and flow cytometry analysis were used to explore the biological process of intrinsic apoptosis induced by the nanosensitizer. Clonogenic survival assay, cell migration and invasion experiments were employed to evaluate the radiosensitizing effect of the nanosensitizer in vitro. Finally, to evaluate the therapeutic outcome of the nanosensitizer in vivo, MCF-7 tumor model was used. Results: Confocal laser images and western blotting data demonstrated that the nanosensitizer in conjunction with X-ray irradiation could induce cell apoptosis in ROS-mediated apoptotic signal pathways. A clonogenic survival assay revealed that cells treated with the prepared nanosensitizer exhibited a lower number of viable cell colonies than that of the nontargeted group under X-ray irradiation. Notably, with only a single dose of radiotherapy, the mitochondria-targeted nanosensitizer elicited the complete ablation of tumors in a mouse model. Conclusion: The designed nanosensitizer in combination with X-ray radiation exposure could be used for radiotherapy against cancer in living cells and in vivo. Moreover, the nanosensitizer with mitochondria targeting played a pivotal role in triggering a “domino effect” of ROS and cell apoptosis. The current strategy could provide new opportunities in designing efficient radiosensitizers for future cancer therapy.
Collapse
|
39
|
Meng F, Chai H, Ma X, Tang Y, Miao P. FRET investigation toward DNA tetrahedron-based ratiometric analysis of intracellular telomerase activity. J Mater Chem B 2019; 7:1926-1932. [DOI: 10.1039/c9tb00001a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ratiometric sensing of telomerase activity is realized at a single-cell level based on a novel DNA nanoprobe reconciling an extension primer, a DNA tetrahedron and a flare probe.
Collapse
Affiliation(s)
- Fanyu Meng
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
- University of Science and Technology of China
| | - Hua Chai
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
- University of Science and Technology of China
| | - Xiaoyi Ma
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
- University of Science and Technology of China
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
- University of Science and Technology of China
| |
Collapse
|
40
|
Wang S, Wei S, Wang S, Zhu X, Lei C, Huang Y, Nie Z, Yao S. Chimeric DNA-Functionalized Titanium Carbide MXenes for Simultaneous Mapping of Dual Cancer Biomarkers in Living Cells. Anal Chem 2018; 91:1651-1658. [PMID: 30567426 DOI: 10.1021/acs.analchem.8b05343] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acquiring multilayer information on diverse biomarkers with different spatial distributions at the cellular level is crucial for monitoring the progression of cancers. Herein, a dual-signal-tagged chimeric DNA-functionalized titanium carbide MXenes nanoprobe (dcDNA-Ti3C2) that responds to biomarkers with different cellular locations from plasma membrane to cytoplasm was designed toward this end. In the presence of cancer biomarkers, including transmembrane glycoprotein mucin 1 (MUC1) and cytoplasmic microRNA-21 (miR-21), the recognition between MUC1 and its aptamer in the dcDNA-Ti3C2 probe induces the separation of TAMRA-MUC1 aptamer from Ti3C2 MXenes, thereby resulting in an increase in red fluorescence; and the hybridization of miR-21 with the hairpin probe triggers the increase of green fluorescence. As a result, dual analysis of MUC1 and miR-21 at low-nanomolar concentrations in vitro, as well as in situ simultaneous imaging of the biomarkers within MCF-7 breast cancer cells, was achieved. The feasibility of the nanoprobe was further demonstrated by monitoring the expression changes of both the biomarkers in cancer cells under different inhibitor combinations. Therefore, this strategy allows us to acquire the expression levels and spatial distributions of different biomarkers in living cells, providing a helpful tool for reliable diagnosis of cancers and basic understanding their progression.
Collapse
Affiliation(s)
- Song Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University , Changsha 410082 , P. R. China
| | - Shaohua Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University , Changsha 410082 , P. R. China
| | - Shigong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University , Changsha 410082 , P. R. China
| | - Xiaohua Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University , Changsha 410082 , P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University , Changsha 410082 , P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University , Changsha 410082 , P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University , Changsha 410082 , P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University , Changsha 410082 , P. R. China
| |
Collapse
|
41
|
Jorge AF, Eritja R. Overview of DNA Self-Assembling: Progresses in Biomedical Applications. Pharmaceutics 2018; 10:E268. [PMID: 30544945 PMCID: PMC6320858 DOI: 10.3390/pharmaceutics10040268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022] Open
Abstract
Molecular self-assembling is ubiquitous in nature providing structural and functional machinery for the cells. In recent decades, material science has been inspired by the nature's assembly principles to create artificially higher-order structures customized with therapeutic and targeting molecules, organic and inorganic fluorescent probes that have opened new perspectives for biomedical applications. Among these novel man-made materials, DNA nanostructures hold great promise for the modular assembly of biocompatible molecules at the nanoscale of multiple shapes and sizes, designed via molecular programming languages. Herein, we summarize the recent advances made in the designing of DNA nanostructures with special emphasis on their application in biomedical research as imaging and diagnostic platforms, drug, gene, and protein vehicles, as well as theranostic agents that are meant to operate in-cell and in-vivo.
Collapse
Affiliation(s)
- Andreia F Jorge
- Coimbra Chemistry Centre (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
42
|
Li Y, Yang S, Zheng J, Zou Z, Yang R, Tan W. "Trojan Horse" DNA Nanostructure for Personalized Theranostics: Can It Knock on the Door of Preclinical Practice? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15028-15044. [PMID: 30295491 DOI: 10.1021/acs.langmuir.8b02008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanotheranostics, combing diagnostic and therapeutic components in an all-in-one nanomaterial, possess exciting potentials for precision nanomedicine. However, a major obstacle for current nanotheranostics to enter preclinical and/or clinical trials is the intrinsic toxicities of these nanomaterials. As an emerging biomaterial, the bioinspired DNA nanostructure shows advantages for constructing better nanotheranostics due to its excellent features, including native biocompatibility, full programmability, and ready accessibility. In this feature article, we highlight recent advances in the design of DNA-nanostructure-based diagnostics and/or therapeutics capable of specifically responding to biological stimuli in a dynamic way, with a particular focus on the design mechanism, responsive performance, and potential for preclinical and/or clinical trials in personalized theranostics.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Sheng Yang
- School of Chemistry and Biological Engineering , Changsha University of Science and Technology , Changsha 410004 , P. R. China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Zhen Zou
- School of Chemistry and Biological Engineering , Changsha University of Science and Technology , Changsha 410004 , P. R. China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
- School of Chemistry and Biological Engineering , Changsha University of Science and Technology , Changsha 410004 , P. R. China
| | - Weihong Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| |
Collapse
|
43
|
Li Y, Chang Y, Yuan R, Chai Y. Highly Efficient Target Recycling-Based Netlike Y-DNA for Regulation of Electrocatalysis toward Methylene Blue for Sensitive DNA Detection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25213-25218. [PMID: 29979026 DOI: 10.1021/acsami.8b08545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, the highly efficient target recycling-based netlike Y-shaped DNA (Y-DNA), which regulated the electrocatalysis of Fe3O4@CeO2-Pt nanoparticles (Fe3O4@CeO2-PtNPs) toward methylene blue (MB) for signal amplification, was developed to prepare a sensitive DNA biosensor for detecting the DNA associated with oral cancer. Specifically, with the help of highly efficient enzyme-assisted target recycling (EATR) amplification strategy, one target DNA input was converted to corresponding plenty of DNA strands S1-Fe3O4@CeO2-Pt and S2-MB output, which could be employed to interact with HP2 immobilized on the electrode surface to form stable netlike Y-DNA without any waste of recycling products. Meanwhile, the formation of netlike Y-DNA could regulate electrocatalytic efficiency of Fe3O4@CeO2-PtNPs, inducing the proximity of Fe3O4@CeO2-PtNPs to MB and significantly enhancing electrochemical signal. Further, the signal could also be amplified by Fe3O4@CeO2-PtNPs modified on the electrode surface. By virtue of this ingenious design, a novel netlike Y-DNA structure based on highly efficient EATR was simply constructed and successfully applied to an electrochemical DNA biosensor along with electrocatalysis of Fe3O4@CeO2-PtNPs, achieving the sensitive detection of target DNA ranging from 10 fM to 50 nM with a detection limit of 3.5 fM. Impressively, the biosensor here demonstrates an admirable method for regulating the electrocatalysis of NPs toward substrates to enhance signal, and we believe that this biosensor is a potential candidate for the sensitive detection of target DNA or other disease-related nucleic acids.
Collapse
Affiliation(s)
- Yunrui Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Yuanyuan Chang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| |
Collapse
|
44
|
Huang R, He N, Li Z. Recent progresses in DNA nanostructure-based biosensors for detection of tumor markers. Biosens Bioelectron 2018. [DOI: 10.1016/j.bios.2018.02.053] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Abstract
Nucleic acids have been actively exploited to develop various exquisite nanostructures due to their unparalleled programmability. Especially, framework nucleic acids (FNAs) with tailorable functionality and precise addressability hold great promise for biomedical applications. In this review, we summarize recent progress of FNA-enabled biosensing in homogeneous solutions, on heterogeneous surfaces, and inside cells. We describe the strategies to translate the structural order and rigidity of FNAs to interfacial engineering with high controllability, and approaches to realize multiplexing for highly parallel in vitro detection. We also envision the marriage of the currently available FNA tool sets with other emerging technologies to develop a new generation of biosensors for precision diagnosis and bioimaging.
Collapse
Affiliation(s)
- Fan Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qian Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
46
|
|
47
|
Zhou X, Zhao M, Duan X, Guo B, Cheng W, Ding S, Ju H. Collapse of DNA Tetrahedron Nanostructure for "Off-On" Fluorescence Detection of DNA Methyltransferase Activity. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40087-40093. [PMID: 29111659 DOI: 10.1021/acsami.7b13551] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a potential detection technique, highly rigid and versatile functionality of DNA tetrahedron nanostructures is often used in biosensing systems. In this work, a novel multifunctional nanostructure has been developed as an "off-on" fluorescent probe for detection of target methyltransferase by integrating the elements of DNA tetrahedron, target recognition, and dual-labeled reporter. This sensing system is initially in an "OFF" state owing to the close proximity of fluorophores and quenchers. After the substrate is recognized by target methyltransferase, the DNA tetrahedron can be methylated to produce methylated DNA sites. These sites can be recognized and cut by the restriction endonuclease DpnI to bring about the collapse of the DNA tetrahedron, which leads to the separation of the dual-labeled reporters from the quenchers, and thus the recovery of fluorescence signal to produce an "ON" state. The proposed DNA tetrahedron-based sensing method can detect Dam methyltransferase in the range of 0.1-90 U mL-1 with a detection limit of 0.045 U mL-1 and shows good specificity and reproducibility for detection of Dam methyltransferase in a real sample. It has been successfully applied for screening various methylation inhibitors. Thus, this work possesses a promising prospect for detection of DNA methyltransfrase in the field of clinical diagnostics.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
- Department of Clinical Laboratory, The Affiliated Hospital of Medical College, Qingdao University , Qingdao 266101, China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
| | - Xiaolei Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
| | - Bin Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
| | - Huangxian Ju
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| |
Collapse
|
48
|
Zheng X, Peng R, Jiang X, Wang Y, Xu S, Ke G, Fu T, Liu Q, Huan S, Zhang X. Fluorescence Resonance Energy Transfer-Based DNA Nanoprism with a Split Aptamer for Adenosine Triphosphate Sensing in Living Cells. Anal Chem 2017; 89:10941-10947. [PMID: 28931278 DOI: 10.1021/acs.analchem.7b02763] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have developed a DNA nanoprobe for adenosine triphosphate (ATP) sensing in living cells, based on the split aptamer and the DNA triangular prism (TP). In which nucleic acid aptamer was split into two fragments, the stem of the split aptamer was respectively labeled donor and acceptor fluorophores that underwent a fluorescence resonance energy transfer if two ATP molecules were bound as target molecule to the recognition module. Hence, ATP as a target induced the self-assembly of split aptamer fragments and thereby brought the dual fluorophores into close proximity for high fluorescence resonance energy transfer (FRET) efficiency. In the in vitro assay, an almost 5-fold increase in FA/FD signal was observed, the fluorescence emission ratio was found to be linear with the concentration of ATP in the range of 0.03-2 mM, and the nanoprobe was highly selective toward ATP. For the strong protecting capability to nucleic acids from enzymatic cleavage and the excellent biocompatibility of the TP, the DNA TP nanoprobe exhibited high cellular permeability, fast response, and successfully realized "FRET-off" to "FRET-on" sensing of ATP in living cells. Moreover, the intracellular imaging experiments indicated that the DNA TP nanoprobe could effectively detect ATP and distinguish among changes of ATP levels in living cells. More importantly, using of the split aptamer and the FRET-off to FRET-on sensing mechanism could efficiently avoid false-positive signals. This design provided a strategy to develop biosensors based on the DNA nanostructures for intracellular molecules analysis.
Collapse
Affiliation(s)
- Xiaofang Zheng
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University , Changsha 410082, People's Republic of China
| | - Ruizi Peng
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University , Changsha 410082, People's Republic of China
| | - Xi Jiang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University , Changsha 410082, People's Republic of China
| | - Yaya Wang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University , Changsha 410082, People's Republic of China
| | - Shuai Xu
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University , Changsha 410082, People's Republic of China
| | - Guoliang Ke
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University , Changsha 410082, People's Republic of China
| | - Ting Fu
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University , Changsha 410082, People's Republic of China
| | - Qiaoling Liu
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University , Changsha 410082, People's Republic of China
| | - Shuangyan Huan
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University , Changsha 410082, People's Republic of China
| | - Xiaobing Zhang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University , Changsha 410082, People's Republic of China
| |
Collapse
|
49
|
Xie N, Liu S, Yang X, He X, Huang J, Wang K. DNA tetrahedron nanostructures for biological applications: biosensors and drug delivery. Analyst 2017; 142:3322-3332. [DOI: 10.1039/c7an01154g] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein, we review and summarise the development and biological applications of DNA tetrahedron, including cellular biosensors and drug delivery systems.
Collapse
Affiliation(s)
- Nuli Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Shiyuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| |
Collapse
|
50
|
Vaishnav JK, Mukherjee TK. Tuning of resonance energy transfer from 4′,6-diamidino-2-phenylindole to an ultrasmall silver nanocluster across the lipid bilayer. Phys Chem Chem Phys 2017; 19:27305-27312. [DOI: 10.1039/c7cp05225a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Liposome mediated efficient tuning of FRET between photoexcited 4′,6-diamidino-2-phenylindole (DAPI) and an ultrasmall silver nanocluster (Ag NC) has been demonstrated using steady-state and time-resolved fluorescence spectroscopy.
Collapse
Affiliation(s)
- Jamuna K. Vaishnav
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore-453552
- India
| | | |
Collapse
|