1
|
Dalecky L, Sottile F, Hung L, Cazals L, Desolneux A, Chevalier A, Rueff JP, Bertrand L. Non-resonant inelastic X-ray scattering for discrimination of pigments. Phys Chem Chem Phys 2024; 26:4363-4371. [PMID: 38235804 DOI: 10.1039/d3cp04753a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Inelastic X-ray scattering (IXS) spectroscopy has been used in many fields of solid-state physics and theoretical chemistry as an accurate and quantitative probe of elementary excitations. We show that non-resonant IXS spectra in the energy loss range below 100 eV exhibit a strong contrast across a wide range of commercially available pigments, opening new routes for their discrimination. These signatures combine plasmonic transitions, collective excitations and low energy absorption edges. We have performed IXS to discriminate different artists' pigments within complex mixtures and to quantitatively determine rutile and anatase polymorphs of TiO2. The integration of experimental data on pigment powders with suitable ab initio simulations shows a precise fit of the spectroscopic data both in the position of the resonances and in their relative intensity.
Collapse
Affiliation(s)
- Lauren Dalecky
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190 Gif-sur-Yvette, France.
| | - Francesco Sottile
- ETSF and LSI, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, F-91120 Palaiseau, France
| | - Linda Hung
- Energy and Materials Division, Toyota Research Institute, Los Altos, CA 94022, USA
| | - Laure Cazals
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190 Gif-sur-Yvette, France.
| | - Agnès Desolneux
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, 91190 Gif-sur-Yvette, France
| | - Aurélia Chevalier
- Conservation of Cultural Heritage - Aurélia Chevalier Sàrl, Route des Jeunes 4bis, 1227 Les Acacias, Genève, Switzerland
| | - Jean-Pascal Rueff
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48 Saint-Aubin, 91192 Gif-sur-Yvette, France
- Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Sorbonne Université, CNRS, 75005 Paris, France
| | - Loïc Bertrand
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Mendoza D, Dong ST, Lassalle-Kaiser B. In situ/operando X-ray spectroscopy applied to electrocatalytic CO2 reduction: status and perspectives. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Georgiou R, Sahle CJ, Sokaras D, Bernard S, Bergmann U, Rueff JP, Bertrand L. X-ray Raman Scattering: A Hard X-ray Probe of Complex Organic Systems. Chem Rev 2022; 122:12977-13005. [PMID: 35737888 DOI: 10.1021/acs.chemrev.1c00953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper provides a review of the characterization of organic systems via X-ray Raman scattering (XRS) and a step-by-step guidance for its application. We present the fundamentals of XRS required to use the technique and discuss the main parameters of the experimental set-ups to optimize spectral and spatial resolution while maximizing signal-to-background ratio. We review applications that target the analysis of mixtures of organic compounds, the identification of minor spectral features, and the spatial discrimination in heterogeneous systems. We discuss the recent development of the direct tomography technique, which utilizes the XRS process as a contrast mechanism for assessing the three-dimensional spatially resolved carbon chemistry of complex organic materials. We conclude by exposing the current limitations and provide an outlook on how to overcome some of the existing challenges and advance future developments and applications of this powerful technique for complex organic systems.
Collapse
Affiliation(s)
- Rafaella Georgiou
- Université Paris-Saclay, CNRS, Ministère de la Culture, UVSQ, MNHN, IPANEMA, F-91192 Saint-Aubin, France.,Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, 91192, Gif-sur-Yvette, France
| | | | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Sylvain Bernard
- Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS, UMR 7590, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, 75005 Paris, France
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jean-Pascal Rueff
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, 91192, Gif-sur-Yvette, France.,Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université, CNRS, 75005 Paris, France
| | - Loïc Bertrand
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Disentangling the chemistry of Australian plant exudates from a unique historical collection. Proc Natl Acad Sci U S A 2022; 119:e2116021119. [PMID: 35617429 DOI: 10.1073/pnas.2116021119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Significance For millennia, Aboriginal Australian peoples have used the extraordinary physicochemical properties of plant exudates from practical applications to cultural expression. We employ state-of-the-art spectroscopy to characterize the molecular compositions of well-preserved, native Australian plant exudates (Xanthorrhoea, Callitris, Eucalyptus, and Acacia) from a historic collection assembled over a century ago. This work demonstrates the benefits of X-ray Raman spectroscopy for the analysis of these complex natural systems. It provides key information for a broader understanding of their terpenoid, aromatic, phenolic, and polysaccharide composition and subsequent chemical classification. It complements Fourier-transform infrared and pyrolysis-gas chromatography-mass spectrometry by allowing bulk-sensitive analysis in a fully noninvasive manner and probes molecular features which remain silent in these commonly employed analyses.
Collapse
|
5
|
Bertrand L, Thoury M, Gueriau P, Anheim É, Cohen S. Deciphering the Chemistry of Cultural Heritage: Targeting Material Properties by Coupling Spectral Imaging with Image Analysis. Acc Chem Res 2021; 54:2823-2832. [PMID: 34143613 DOI: 10.1021/acs.accounts.1c00063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The chemical study of materials from natural history and cultural heritage, which provide information for art history, archeology, or paleontology, presents a series of specific challenges. The complexity of these ancient and historical materials, which are chemically heterogeneous, the product of alteration processes, and inherently not reproducible, is a major obstacle to a thorough understanding of their making and long-term behavior (e.g., fossilization). These challenges required the development of methodologies and instruments coupling imaging and data processing approaches that are optimized for the specific properties of the materials. This Account discusses how these characteristics not only constrain their study but also open up specific innovative avenues for providing key historical information. Synchrotron methods have extensively been used since the late 1990s to study heritage objects, in particular for their potential to provide speciation information from excitation spectroscopies and to image complex heritage objects and samples in two and three dimensions at high resolution. We examine in practice how the identification of key intrinsic chemical specificities has offered fertile ground for the development of novel synchrotron approaches allowing a better stochastic description of the properties of ancient and historical materials. These developments encompass three main aspects: (1) The multiscale heterogeneity of these materials can provide an essential source of information in the development of probes targeting their multiple scales of homogeneity. (2) Chemical alteration can be described in many ways, e.g., by segmenting datasets in a semiquantitative way to jointly inform morphological and chemical transformation pathways. (3) The intrinsic individuality of chemical signatures in artifacts triggers the development of specific strategies, such as those focusing on weak signal detection. We propose a rereading of the advent of these new methodologies for analysis and characterization and examine how they have led to innovative strategies combining materials science, instrument development, history, and data science. In particular, we show that spectral imaging and the search for correlations in image datasets have provided a powerful way to address what archeologists have called the uncertainty and ambiguity of the material record. This approach has implications beyond synchrotron techniques and extends in particular to a series of rapidly developing approaches that couple spectral and spatial information, as in hyperspectral imaging and spatially resolved mass spectrometry. The preeminence of correlations holds promise for the future development of machine learning methods for processing data on historical objects. Beyond heritage, these developments are an original source of inspiration for the study of materials in many related fields, such as environmental, geochemical, or life sciences, which deal with systems whose alteration and heterogeneity cannot be neglected.
Collapse
Affiliation(s)
- Loïc Bertrand
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, F-91190 Gif-sur-Yvette, France
| | - Mathieu Thoury
- Université Paris-Saclay, CNRS, ministère de la culture, UVSQ, MNHN, IPANEMA, F-91192 Saint-Aubin, France
| | - Pierre Gueriau
- Institute of Earth Sciences, University of Lausanne, Geopolis, CH-1015 Lausanne, Switzerland
| | - Étienne Anheim
- Centre de recherches historiques, EHESS, CNRS, F-75006 Paris, France
| | - Serge Cohen
- Université Paris-Saclay, CNRS, ministère de la culture, UVSQ, MNHN, IPANEMA, F-91192 Saint-Aubin, France
| |
Collapse
|
6
|
Alleon J, Montagnac G, Reynard B, Brulé T, Thoury M, Gueriau P. Pushing Raman spectroscopy over the edge: purported signatures of organic molecules in fossil animals are instrumental artefacts. Bioessays 2021; 43:e2000295. [PMID: 33543495 DOI: 10.1002/bies.202000295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 11/07/2022]
Abstract
Widespread preservation of fossilized biomolecules in many fossil animals has recently been reported in six studies, based on Raman microspectroscopy. Here, we show that the putative Raman signatures of organic compounds in these fossils are actually instrumental artefacts resulting from intense background luminescence. Raman spectroscopy is based on the detection of photons scattered inelastically by matter upon its interaction with a laser beam. For many natural materials, this interaction also generates a luminescence signal that is often orders of magnitude more intense than the light produced by Raman scattering. Such luminescence, coupled with the transmission properties of the spectrometer, induced quasi-periodic ripples in the measured spectra that have been incorrectly interpreted as Raman signatures of organic molecules. Although several analytical strategies have been developed to overcome this common issue, Raman microspectroscopy as used in the studies questioned here cannot be used to identify fossil biomolecules.
Collapse
Affiliation(s)
- Julien Alleon
- Institute of Earth Sciences, University of Lausanne, Géopolis, Lausanne, CH-1015, Switzerland
| | - Gilles Montagnac
- Université de Lyon, ENS de Lyon, Université Lyon 1, CNRS, LGL-TPE, Lyon, F-69007, France
| | - Bruno Reynard
- Université de Lyon, ENS de Lyon, Université Lyon 1, CNRS, LGL-TPE, Lyon, F-69007, France
| | | | - Mathieu Thoury
- Universitè Paris-Saclay, CNRS, ministère de la Culture, UVSQ, MNHN, Institut photonique d'analyse non-destructive européen des matériaux anciens, Saint-Aubin, 91192, France
| | - Pierre Gueriau
- Institute of Earth Sciences, University of Lausanne, Géopolis, Lausanne, CH-1015, Switzerland
| |
Collapse
|
7
|
Shibayama N, Maekawa H, Nakamura Y, Haruyama Y, Niibe M, Ito S. Control of Molecular Orientation of Spiro-OMeTAD on Substrates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50187-50191. [PMID: 33084297 DOI: 10.1021/acsami.0c15509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
2,2',7,7'-Tetrakis(N,N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD) is utilized as a p-type semiconductor layer in perovskite solar cells and solid-state dye-sensitized solar cells. Spiro-OMeTAD has been known to have a spiro center, leading to a random orientation. Although the molecular orientation of organic semiconductor materials influences the conductivity, which is directly related to semiconductor device characteristics, the molecular orientation of spiro-OMeTAD has not been fully discussed. In this study, we prepared spiro-OMeTAD layers on various substrates and investigated their orientation by grazing-incidence wide-angle X-ray scattering (GIWAXS) and near-edge X-ray absorption fine structure (NEXAFS). Additionally, we demonstrated that the molecular orientation of spiro-OMeTAD could be controlled by changing their surface energies by changing the substrate materials. Consequently, we could improve the electrical conductivity by improving its molecular orientation. The results of this study provide a guideline for the preparation of organic semiconductor material layers using the wet-coating method.
Collapse
Affiliation(s)
- Naoyuki Shibayama
- Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Megro, Tokyo 153-8902, Japan
| | - Hiroyuki Maekawa
- Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
| | - Yuiga Nakamura
- Japan Synchrotron Radiation Research Institute, Sayo-gun 679-5198, Hyogo, Japan
| | - Yuichi Haruyama
- Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
- Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Ako, Hyogo 678-1205, Japan
| | - Masahito Niibe
- Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
- Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Ako, Hyogo 678-1205, Japan
| | - Seigo Ito
- Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
| |
Collapse
|
8
|
Georgiou R, Gueriau P, Sahle CJ, Bernard S, Mirone A, Garrouste R, Bergmann U, Rueff JP, Bertrand L. Carbon speciation in organic fossils using 2D to 3D x-ray Raman multispectral imaging. SCIENCE ADVANCES 2019; 5:eaaw5019. [PMID: 31497643 PMCID: PMC6716953 DOI: 10.1126/sciadv.aaw5019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/25/2019] [Indexed: 05/30/2023]
Abstract
The in situ two-dimensional (2D) and 3D imaging of the chemical speciation of organic fossils is an unsolved problem in paleontology and cultural heritage. Here, we use x-ray Raman scattering (XRS)-based imaging at the carbon K-edge to form 2D and 3D images of the carbon chemistry in two exceptionally preserved specimens, a fossil plant dating back from the Carboniferous and an ancient insect entrapped in 53-million-year-old amber. The 2D XRS imaging of the plant fossil reveals a homogeneous chemical composition with micrometric "pockets" of preservation, likely inherited from its geological history. The 3D XRS imaging of the insect cuticle displays an exceptionally well preserved remaining chemical signature typical of polysaccharides such as chitin around a largely hollowed-out inclusion. Our results open up new perspectives for in situ chemical speciation imaging of fossilized organic materials, with the potential to enhance our understanding of organic specimens and their paleobiology.
Collapse
Affiliation(s)
- Rafaella Georgiou
- IPANEMA, CNRS, ministère de la culture, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, BP 48 St. Aubin, 91192 Gif-sur-Yvette, France
- Synchrotron SOLEIL, l’Orme des Merisiers, BP 48 St. Aubin, 91192 Gif-sur-Yvette, France
| | - Pierre Gueriau
- IPANEMA, CNRS, ministère de la culture, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, BP 48 St. Aubin, 91192 Gif-sur-Yvette, France
- Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015 Lausanne, Switzerland
| | - Christoph J. Sahle
- ESRF–The European Synchrotron, 71, avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Sylvain Bernard
- Muséum National d’Histoire Naturelle, Sorbonne Université, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 75005 Paris, France
| | - Alessandro Mirone
- ESRF–The European Synchrotron, 71, avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Romain Garrouste
- Institut de Systématique Evolution Biodiversité (ISYEB), UMR 7205 MNHN/CNRS/Sorbonne Univ./EPHE/Univ. Antilles, Muséum National d’Histoire Naturelle, 57 rue Cuvier, CP 50, F-75005 Paris, France
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Jean-Pascal Rueff
- Synchrotron SOLEIL, l’Orme des Merisiers, BP 48 St. Aubin, 91192 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique–Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - Loïc Bertrand
- IPANEMA, CNRS, ministère de la culture, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, BP 48 St. Aubin, 91192 Gif-sur-Yvette, France
- Synchrotron SOLEIL, l’Orme des Merisiers, BP 48 St. Aubin, 91192 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Ablett JM, Prieur D, Céolin D, Lassalle-Kaiser B, Lebert B, Sauvage M, Moreno T, Bac S, Balédent V, Ovono A, Morand M, Gélebart F, Shukla A, Rueff JP. The GALAXIES inelastic hard X-ray scattering end-station at Synchrotron SOLEIL. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:263-271. [PMID: 30655494 DOI: 10.1107/s160057751801559x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
GALAXIES is an in-vacuum undulator hard X-ray micro-focused beamline dedicated to the study of the electronic structure of materials with high energy resolution using both photoelectron spectroscopy and inelastic X-ray scattering and under both non-resonant (NR-IXS) and resonant (RIXS) conditions. Due to the penetrating power of hard X-rays and the `photon-in/photon-out' technique, the sample environment is not a limitation. Materials under extreme conditions, for example in diamond anvil cells or catalysis chambers, thus constitute a major research direction. Here, the design and performance of the inelastic X-ray scattering end-station that operates in the energy range from ∼4 keV up to 12 keV is reported, and its capabilities are highlighted using a selection of data taken from recently performed experiments. The ability to scan `on the fly' the incident and scattered/emitted X-ray energies, and the sample position enables fast data collection and high experimental throughput. A diamond X-ray transmission phase retarder, which can be used to generate circularly polarized light, will also be discussed in the light of the recent RIXS-MCD approach.
Collapse
Affiliation(s)
- J M Ablett
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - D Prieur
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - D Céolin
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - B Lassalle-Kaiser
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - B Lebert
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - M Sauvage
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - Th Moreno
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - S Bac
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - V Balédent
- Laboratoire de Physique des Solides, 91400 Orsay, France
| | - A Ovono
- École Nationale Supérieure d'Ingénieurs de Limoges, France
| | - M Morand
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, MNHN, IRD UMR 206, 4 Place Jussieu, F-75005 Paris, France
| | - F Gélebart
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, MNHN, IRD UMR 206, 4 Place Jussieu, F-75005 Paris, France
| | - A Shukla
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, MNHN, IRD UMR 206, 4 Place Jussieu, F-75005 Paris, France
| | - J P Rueff
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Le Guillou C, Bernard S, De la Pena F, Le Brech Y. XANES-Based Quantification of Carbon Functional Group Concentrations. Anal Chem 2018; 90:8379-8386. [DOI: 10.1021/acs.analchem.8b00689] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Corentin Le Guillou
- Unité Matériaux et Transformations (UMET) MR-CNRS 8207, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Sylvain Bernard
- Muséum National d’Histoire Naturelle, Sorbonne Université, CNRS UMR 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, 75005 Paris, France
| | - Francisco De la Pena
- Unité Matériaux et Transformations (UMET) MR-CNRS 8207, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Yann Le Brech
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, UMR 7274, 54001 Nancy, France
| |
Collapse
|