1
|
Qiang J, Zhou C, Wang B, Huo Z, Su X. A highly sensitive dual-mode detection platform based on the novel copper/molybdenum bimetallic nanoclusters and Co-Fe layered doubled hydroxide nanozyme for butyrylcholinesterase activity sensing. Talanta 2024; 282:126973. [PMID: 39369658 DOI: 10.1016/j.talanta.2024.126973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Herein, a novel copper/molybdenum bimetallic nanoclusters (Cu/Mo NCs) with intense blue emission were synthesized by using polyvinylpyrrolidone (PVP) as template and ascorbic acid as reducing agent. Owing to the synergistic effect between Cu and Mo, the fluorescence intensity of Cu/Mo NCs was significantly improved about 6-time than monometallic copper nanoclusters. A novel and sensitive ratiometric fluorescence and colorimetric dual-mode sensing platform for monitoring butyrylcholinesterase (BChE) was strategically constructed by the integration of Cu/Mo NCs with excellent optical properties and Co-Fe layered doubled hydroxide (CoFe-LDH) with superior peroxidase-like activity for the first time. In the presence of H2O2, nonfluorescent and colorless o-phenylenediamine (OPD) was oxidized to fluorescent and yellow 2,3-diaminophenazine (DAP) with maximum fluorescence emission peak at 564 nm and ultraviolet absorption peak at 418 nm by CoFe-LDH with peroxidase-like activity. Simultaneously, the generation of DAP could effectively quench Cu/Mo NCs fluorescence at 444 nm through the inner-filter effect (IFE). The hydrolysis of S-butyrylthiocholine iodide (BTCh) can be catalyzed by butyrylcholinesterase (BChE) to generate thiocholine (TCh) that could hinder the oxidation of OPD, leading to the fluorescence and ultraviolet absorption of DAP decreased, meanwhile, the fluorescence of Cu/Mo NCs recovered. The ratiometric fluorescence signal F564/F444 and colorimetric system both performed a satisfactory response to the concentration of BChE in the range 0.5 to 90 U L-1 and 1 to 100 U L-1 with the LOD of 0.18 U L-1 and 0.36 U L-1, respectively. The dual-mode sensing for BChE exhibited outstanding application potential in biosensing.
Collapse
Affiliation(s)
- Jianxin Qiang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bo Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, Jilin University, Changchun, 130012, China
| | - Zejiao Huo
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
2
|
Guo Z, Peng J, Zhou Z, Wang F, He M, Lu S, Chen X. Benzorhodol derived far-red/near-infrared fluorescent probes for selective and sensitive detection of butyrylcholinesterase activity in living cells and the non-alcoholic fatty liver of zebrafish. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4054-4059. [PMID: 38869016 DOI: 10.1039/d4ay00662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Liver diseases are a growing public health concern and the development of non-alcoholic fatty liver disease (NAFLD) has a significant impact on human metabolism. Butyrylcholinesterase (BChE) is a vital biomarker for NAFLD, making it crucial to monitor BChE activity with high sensitivity and selectivity. In this study, we designed and synthesized a range of benzorhodol-derived far-red/near-infrared fluorescent probes, FRBN-B, NF-SB, and NF-B, for the quantitative detection and imaging of BChE. These probes differed in the size of their conjugated systems and in the number of incorporated cyclopropanecarboxylates, acting as the recognition site for BChE. Comprehensive characterization showed that FRBN-B and NF-SB fluorescence was triggered by BChE-mediated hydrolysis, while an additional cyclopropanecarboxylate in NF-B impeded the fluorescence release. High selectivity towards BChE was observed for FRBN-B and NF-SB, with a detection limit of 7.2 × 10-3 U mL-1 for FRBN-B and 1.9 × 10-3 U mL-1 for NF-SB. The probes were further employed in the evaluation of BChE inhibitor efficacy and imaging of intracellular BChE activity. Additionally, FRBN-B was utilized for imaging the BChE activity level in liver tissues in zebrafish, demonstrating its potential as a diagnostic tool for NAFLD.
Collapse
Affiliation(s)
- Ziwei Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Junqian Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Zhiqiang Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Mingfang He
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Xing L, Ma P, Chen F. A novel turn-on near-infrared fluorescent probe for highly sensitive in vitro and in vivo detection of acetylcholinesterase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123954. [PMID: 38290281 DOI: 10.1016/j.saa.2024.123954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
Acetylcholinesterase (AChE) is a key enzyme in the cholinergic pathway of the nervous systems, with its aberrant expression linked to various diseases. In this study, we have developed a novel Turn-On near-infrared fluorescent probe, TQ-AChE, for the sensitive and selective detection of AChE activity. Characterized by its near-infrared emission at 740 nm, TQ-AChE effectively overcomes the limitations of traditional fluorescent probes, such as short excitation wavelengths and limited tissue penetration, crucial for both in vitro and in vivo applications. The probe's low limit of detection (LOD) of 0.02 U/mL for AChE makes it highly sensitive, enabling rapid quantification of AChE activity in serum effectively. Cell imaging studies demonstrate that TQ-AChE can confirm higher AChE activity expression in normal liver cells compared to liver cancer cells. TQ-AChE can also monitor AChE fluctuations in APAP-induced acute effectively, facilitating the evaluation of the efficacy of liver detoxifying agents. Additionally, in vivo studies in mouse models validate the potential of the probe in real-time monitoring of AChE expression in liver injury. The ability of TQ-AChE to visualize AChE expression signifies its potential as a promising tool for early liver disease diagnosis and therapeutic monitoring, opening new possibilities in hepatological research and clinical diagnostics.
Collapse
Affiliation(s)
- Lei Xing
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130030, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130030, China.
| |
Collapse
|
4
|
Wang H, Lai J, Xu X, Yu W, Wang X. Combination of gold nanoclusters and silicon quantum dots for ratiometric fluorometry: One system, two mechanisms. J Pharm Biomed Anal 2024; 240:115940. [PMID: 38198882 DOI: 10.1016/j.jpba.2023.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
A ratiometric fluorometry based on silicon quantum dots (SiQDs) and gold nanoclusters (AuNCs) is constructed for detecting activity of butyrylcholinesterase (BChE) in human serum. By using thiobutyrylcholine iodide (BTCh) as the substrate of BChE-catalyzed hydrolysis reaction, variation of fluorescence emission from AuNCs is employed as an indicator of BChE activity since one of the hydrolysis products, thiocholine (TCh), would influence the aggregation state of AuNCs and consequently led to the change of fluorescence quantum efficiency of AuNCs. It is interesting that there are two mechanisms working for the fluorescence emission of aggregated AuNCs: aggregation-induced emission enhancement (AIEE) and aggregation-caused quenching (ACQ) with the presence of TCh at very low and higher concentration levels, respectively. Although both of these mechanisms can be utilized for sensing BChE, their opposite influence on the fluorescence emission of aggregated AuNCs should be worthy of attention, especially in the process of developing fluorescence methods for detecting trace targets by using AuNCs. In order to eliminate the fluctuation of fluorophotometer, SiQDs is chosen as the fluorophore to develop by ratiometric fluorescence methods in this work. Additionally, obvious aggregation of AuNCs induces significant decrease of inner filter effect (IFE) on the fluorescence emitted from SiQDs, while mild aggregation of AuNCs demonstrates little IFE. The linear ranges for detecting activity of BChE are 0.004 - 0.05 U/L and 0.5 - 20 U/L by ratiometric fluorometry based on the AIEE and ACQ, respectively. The very different responses originated from AIEE and ACQ of AuNCs would respectively make their own contributions to the determination of BChE activities at very low or high levels, which facilitate the developments of enhanced or quenched fluorescence methods. However, the detection of BChE activities at medium levels might suffer from the combination of AIEE and ACQ with ambiguous fractions. Therefore, it must be careful during the processes of developing and applying fluorescence methods based on the AIEE and ACQ of AuNCs, as well as the process of evaluating their analytical performance.
Collapse
Affiliation(s)
- Haozhi Wang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jinyu Lai
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Xiaohui Xu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Wei Yu
- Department of Plastic and Reconstructive Microsurgery, China-Japan Union Hospital, Jilin University, Xiantai Street 126, Changchun 130033, China
| | - Xinghua Wang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| |
Collapse
|
5
|
Jiang Y, Cui H, Yu Q. A novel near-infrared fluorescent probe for high-sensitivity detection of butyrylcholinesterase in various pathological states. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123801. [PMID: 38142494 DOI: 10.1016/j.saa.2023.123801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Butyrylcholinesterase (BChE) is a crucial hydrolytic enzyme predominantly synthesized in the liver, playing a significant role in conditions like liver disorders, diabetes, Alzheimer's disease, and fat metabolism regulation. This study aims to address the current limitations in visualizing BChE activity in diseases at various states by introducing an ultra-sensitive near-infrared fluorescent probe, FDCM-BChE. The probe was engineered to have several properties, such as a large Stokes shift, rapid response time, high stability, excellent selectivity, and low detection limits. We validated the efficacy of FDCM-BChE in quantifying BChE activity in human serum and leveraged its low cytotoxicity for cellular imaging. The study revealed the downregulation of BChE activity in liver cancer and hepatic injury and the upregulation in diabetes. Thus, FDCM-BChE shows promise as a tool for specific applications, providing insights into diseases associated with BChE activity.
Collapse
Affiliation(s)
- Yueyao Jiang
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Haizhen Cui
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Qian Yu
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
6
|
Tang X, Zhang Y, Wang Q, Li Z, Zhang C. Detection of acetylcholinesterase and butyrylcholinesterase in vitro and in vivo using a new fluorescent probe. Chem Commun (Camb) 2024; 60:2082-2085. [PMID: 38293842 DOI: 10.1039/d3cc06055a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A new fluorescence probe OHPD that could specifically identify acetylcholinesterase/butyrylcholinesterase has been developed and successfully applied to imaging in vivo. Probe OHPD shows significant color change, high selectivity, high sensitivity, and low detection limit for the detection of cholinesterase. Moreover, the real-time imaging in situ indicated that endogenous cholinesterase was mainly present in the yolk sac of zebrafish.
Collapse
Affiliation(s)
- Xiaojie Tang
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Yuan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Qiuyue Wang
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Chengxiao Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
7
|
Dirak M, Chan J, Kolemen S. Optical imaging probes for selective detection of butyrylcholinesterase. J Mater Chem B 2024; 12:1149-1167. [PMID: 38196348 DOI: 10.1039/d3tb02468g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Butyrylcholinesterase (BChE), a member of the human serine hydrolase family, is an essential enzyme for cholinergic neurotransmission as it catalyzes the hydrolysis of acetylcholine. It also plays central roles in apoptosis, lipid metabolism, and xenobiotic detoxification. On the other side, abnormal levels of BChE are directly associated with the formation of pathogenic states such as neurodegenerative diseases, psychiatric and cardiovascular disorders, liver damage, diabetes, and cancer. Thus, selective and sensitive detection of BChE level in living organisms is highly crucial and is of great importance to further understand the roles of BChE in both physiological and pathological processes. However, it is a very complicated task due to the potential interference of acetylcholinesterase (AChE), the other human cholinesterase, as these two enzymes share a very similar substrate scope. To this end, optical imaging probes have attracted immense attention in recent years as they have modular structures, which can be tuned precisely to satisfy high selectivity toward BChE, and at the same time they offer real time and nondestructive imaging opportunities with a high spatial and temporal resolution. Here, we summarize BChE selective imaging probes by discussing the critical milestones achieved during the development process of these molecular sensors over the years. We put a special emphasis on design principles and biological applications of highly promising new generation activity-based probes. We also give a comprehensive outlook for the future of BChE-responsive probes and highlight the ongoing challenges. This collection marks the first review article on BChE-responsive imaging agents.
Collapse
Affiliation(s)
- Musa Dirak
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Safacan Kolemen
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey.
| |
Collapse
|
8
|
Zhang J, Wang M, Liu J, Lv Y, Su X. Construction of a Label-Free Ratiometric Biosensor Based on Target Recycling Amplification and Hg-ZnSe QDs for Assay of BChE and OPs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11884-11891. [PMID: 37554068 DOI: 10.1021/acs.jafc.3c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Herein, we constructed a label-free ratiometric fluorescence biosensing strategy for the determination of butyrylcholinesterase (BChE) activity and organophosphorus (OPs) concentration. BChE promoted the hydrolysis of iodized s-butyrylthiocholine (BTCh) into a reducing substance thiocholine, which can decompose CoOOH nanosheets (CoOOH NSs) to Co2+. Subsequently, the single-stranded DNA (ssDNA) on the surface of CoOOH NSs was released. Then, ssDNA hybridized with hairpin DNA (h-DNA) and triggered the target recycling amplification process, producing large amounts of G-quadruplex. After adding thioflavin T (ThT), the target BChE was converted into activatable G-quadruplex/ThT with an amplified yellow fluorescence signal. The addition of OPs could significantly inhibit the hydrolysis of BTCh by BChE and thus unable to produce the yellow fluorescence G-quadruplex/ThT complex. Throughout the entire process, the fluorescence intensity of Hg-ZnSe QDs as a reference signal remained unchanged at 630 nm. Furthermore, this work provided an effective approach for detecting the BChE activity in serum samples and OPs in fruits and vegetables.
Collapse
Affiliation(s)
- Jiabao Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Mengke Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, China
| | - Jinying Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
9
|
Dong H, Zhao L, Wang T, Chen Y, Hao W, Zhang Z, Hao Y, Zhang C, Wei X, Zhang Y, Zhou Y, Xu M. Dual-Mode Ratiometric Electrochemical and Turn-On Fluorescent Detection of Butyrylcholinesterase Utilizing a Single Probe for the Diagnosis of Alzheimer's Disease. Anal Chem 2023; 95:8340-8347. [PMID: 37192372 DOI: 10.1021/acs.analchem.3c00974] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Biomarkers detection in blood with high accuracy is crucial for the diagnosis and treatment of many diseases. In this study, the proof-of-concept fabrication of a dual-mode sensor based on a single probe (Re-BChE) using a dual-signaling electrochemical ratiometric strategy and a "turn-on" fluorescent method is presented. The probe Re-BChE was synthesized in a single step and demonstrated dual mode response toward butyrylcholinesterase (BChE), a promising biomarker of Alzheimer's disease (AD). Due to the specific hydrolysis reaction, the probe Re-BChE demonstrated a turn-on current response for BChE at -0.28 V, followed by a turn-off current response at -0.18 V, while the fluorescence spectrum demonstrated a turn-on response with an emission wavelength of 600 nm. The developed ratiometric electrochemical sensor and fluorescence detection demonstrated high sensitivity with BChE concentrations with a low detection limit of 0.08 μg mL-1 and 0.05 μg mL-1, respectively. Importantly, the dual-mode sensor presents the following advantages: (1) dual-mode readout can correct the impact of systematic or background error, thereby achieving more accurate results; (2) the responses of dual-mode readout originate from two distinct mechanisms and relatively independent signal transduction, in which there is no interference between two signaling routes. Additionally, compared with the reported single-signal electrochemical assays for BChE, both redox potential signals were detected in the absence of biological interference within a negative potential window. Furthermore, it was discovered that the outcomes of direct dual-mode electrochemical and fluorescence quantifications of the level of BChE in serum were in agreement with those obtained from the use of commercially available assay kits for BChE sensing. This method has the potential to serve as a useful point-of-care tool for the early detection of AD.
Collapse
Affiliation(s)
- Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Le Zhao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Tao Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yanan Chen
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Wanqing Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Ziyi Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yizhao Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Cunliang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Xiuhua Wei
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| |
Collapse
|
10
|
Pang Y, Ma Z, Song Q, Wang Z, Shi YE. Sensitive detection of butyrylcholinesterase activity based on a stimuli-responsive fluorescence reaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122886. [PMID: 37210854 DOI: 10.1016/j.saa.2023.122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
A fluorogenic reaction between the chelate of Mn(II)-citric acid and terephthalic acid (PTA) was discovered, which was carried out through heating the aqueous mixture of Mn2+, citric acid and PTA. Detailed investigations indicated the reaction products were 2-hydroxyterephthalic acid (PTA-OH), which was attributed to the reaction between PTA and OH, formed by the triggering of Mn(II)-citric acid in the presence of dissolved O2. PTA-OH showed a strong blue fluorescence, peaked at 420 nm, and the fluorescence intensity presented a sensitive response to pH of the reaction system. Based on these mechanisms, the fluorogenic reaction was used for the detection of butyrylcholinesterase activity, achieving a detection limit of 0.15 U/L. The detection strategy was successfully applied in human serum samples, and it was also extended for the detection of organophosphorus pesticides and radical scavengers. Such a facile fluorogenic reaction and its stimuli-responsive properties offered an effective tool for designing detection pathways in the fields of clinical diagnosis, environmental monitoring and bioimaging.
Collapse
Affiliation(s)
- Yuexin Pang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Zerui Ma
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Qian Song
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Zhenguang Wang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Yu-E Shi
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
11
|
Jiang X, Li Y, Liu H, Zhang Q, Li D, Zhu W, He Y, Zhang G, Zhao Y. Carbon dots doped with nitrogen as an ultrasensitive fluorescent probe for thrombin activity monitoring and inhibitor screening. Talanta 2023; 259:124532. [PMID: 37054621 DOI: 10.1016/j.talanta.2023.124532] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
A simple and sensitive fluorometric assay based on nitrogen-doped carbon dots (N-CDs) was developed for the determination of thrombin (TB) activity in human serum samples and living cells. The novel N-CDs were prepared by a facile one-pot hydrothermal method using 1,2-ethylenediamine and levodopa as precursors. Such N-CDs exhibited green fluorescence with excitation/emission peaks at 390/520 nm and a high fluorescence quantum yield of approximately 39.2%. H-D-Phenylalanyl-L-pipecolyl-Larginine-p-nitroaniline-dihydrochloride (S-2238) was hydrolyzed by TB to produce p-nitroaniline which was capable of quenching the fluorescence of N-CDs due to an inner filter effect. This assay was used to detect TB activity with a low detection limit of 11.3 fM. The proposed sensing method was then expanded to the TB inhibitor screening and exhibited excellent applicability. As a typical TB inhibitor, argatroban was determined in a concentration as low as 1.43 nM. The method has also been successfully employed for the determination of TB activity in living HeLa cells. This work showed significant potential for TB activity assay in clinical and biomedicine applications.
Collapse
Affiliation(s)
- Xinxin Jiang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Qin Zhang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Dandan Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Wanglisha Zhu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yanping He
- People's Hospital of Xinjin District, Chengdu Clinical Laboratory, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
12
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
13
|
Pei X, Fang Y, Gu H, Zheng S, Bin X, Wang F, He M, Lu S, Chen X. A turn-on fluorescent probe based on ESIPT and AIEE mechanisms for the detection of butyrylcholinesterase activity in living cells and in non-alcoholic fatty liver of zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122044. [PMID: 36327810 DOI: 10.1016/j.saa.2022.122044] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) are two important cholinesterase enzymes in human metabolism which are closely related to various diseases of the liver. BChE and AChE are difficult to be distinguished due to their similarity in biochemical properties. Therefore, developing BChE-specific probes with high sensitivity and low background reading is desirable for the relevant biological applications. Herein, we reported the design and synthesis of a fluorescent probe HBT-BChE for biological detection and imaging of BChE. The probe is triggered by BChE-mediated hydrolysis, releasing a fluorophore that holds AIEE and ESIPT properties with large Stokes shift (>100 nm), rendering the probe features of low background interference and high sensitivity. The probe can also distinguish BChE from AChE with a low detection limit of 7.540 × 10-4 U/mL. Further in vitro studies have shown the ability of HBT-BChE to detect intracellular BChE activity, as well as to evaluate the efficiency of the BChE inhibitor. More importantly, the in vivo studies of imaging the BChE activity level in liver tissues using zebrafish as the model animal demonstrated the potential of HBT-BChE as a powerful tool for non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Xiangyu Pei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - YuHang Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Hao Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Shiyue Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Xinni Bin
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Mingfang He
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
14
|
New synthetic quinaldine conjugates: Assessment of their anti-cholinesterase, anti-tyrosinase and cytotoxic activities, and molecular docking analysis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Sun W, Wang N, Zhou X, Sheng Y, Su X. Co, N co-doped porous carbon-based nanozyme as an oxidase mimic for fluorescence and colorimetric biosensing of butyrylcholinesterase activity. Mikrochim Acta 2022; 189:363. [PMID: 36044087 DOI: 10.1007/s00604-022-05446-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022]
Abstract
A Co, N co-doped porous carbon-based nanozyme (Co-N-C nanozyme) has been fabricated. Taking advantages of the excellent oxidase catalytic activity and significant stability of Co-N-C nanozyme, we propose a fluorescence and colorimetric system based on Co-N-C nanozyme and red-emitting carbon quantum dots (RCDs) for butyrylcholinesterase (BChE) sensing. As the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) was catalyzed and oxidized by Co-N-C nanozyme, the generated oxTMB had a new absorption peak at 652 nm, which resulted in the significant quenching of the fluorescence of the carbon quantum dots at 610 nm. Under the catalysis of BChE, thiocholine was generated from the hydrolysis of S-butyrylthiocholine iodide (BTCh), and the as-generated thiocholine effectively inhibited the oxidation of TMB catalyzed by Co-N-C nanozyme, leading to a decrease of the absorption of oxTMB at 652 nm and effective fluorescence recovery of RCDs. By measuring the absorbance of produced oxTMB at 652 nm and the fluorescence of RCDs at 610 nm, the fluorescence and colorimetric system both exhibited an outstanding linear response to the activity of BChE in the range 0.5 to 40 U L-1, with a detection limit of 0.16 U L-1 and 0.21 U L-1, respectively. Furthermore, this established dual-channel biosensing strategy has been successfully applied to the determination of BChE in human serum samples. The present work has effectively expanded the development and application of nanozyme in biosensing.
Collapse
Affiliation(s)
- Wenying Sun
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaobin Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuxuan Sheng
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
16
|
Chen BB, Chang S, Jiang L, Lv J, Gao YT, Wang Y, Qian RC, Li DW, Hafez ME. Reversible polymerization of carbon dots based on dynamic covalent imine bond. J Colloid Interface Sci 2022; 621:464-469. [PMID: 35483178 DOI: 10.1016/j.jcis.2022.04.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/18/2022]
Abstract
Carbon dots (CDs), as new type of carbon-based nanoparticles, are considered to be an aggregate with irreversible polymerization. Achieving the reversible tunability of CDs luminescence based on their reversible polymerization is a challenging subject. Herein, we, for the first time, design and construct the blue-emitting CDs with reversible polymerization by a room-temperature Schiff base reaction between tannic acid and ethylenediamine. The formation of CDs is proven to be due to the crosslinking polymerization of precursors caused by imine bond. As a dynamic covalent bond, imine bond endows CDs with controllable structural transformation properties, and the prepared CDs can be depolymerized and polymerized reversibly by pH-controlled imine bond cleavage and re-formation. These properties of reversible fluorescence photoswitching make the CDs have a good application prospect in reversible information encryption.
Collapse
Affiliation(s)
- Bin-Bin Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China
| | - Shuai Chang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Lei Jiang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ya-Ting Gao
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yue Wang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
17
|
Chen S, Li Z, Huang Z, Jia Q. Construction of a copper nanocluster/MnO 2 nanosheet-based fluorescent platform for butyrylcholinesterase activity detection and anti-Alzheimer's drug screening. J Mater Chem B 2022; 10:4783-4788. [PMID: 35343562 DOI: 10.1039/d2tb00318j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An abnormal level of butyrylcholinesterase (BChE) activity is highly connected with hepatic damage and Alzheimer's disease. Herein, a facile and efficient method was proposed for BChE detection by incorporating polyethyleneimine-capped copper nanoclusters (PEI-CuNCs) with manganese dioxide (MnO2) nanosheets. The emission of PEI-CuNCs can be significantly quenched by MnO2 nanosheets via the inner filter effect. With the addition of BChE, the hydrolysis of butyrylthiocholine iodide produces thiocholine which can reduce MnO2 nanosheets to Mn2+, thus resulting in the fluorescence recovery of PEI-CuNCs. Based on that, a fluorescence "turn-on" sensing platform for BChE activity determination was constructed with a detection limit of 2.26 U L-1. This sensing method is able to detect BChE in human serum samples and identify the serums of normal persons and cirrhotic patients effectively, indicating its great potential in the clinical diagnosis of liver diseases. Furthermore, the approach can also be used to screen BChE inhibitors, which are promising medications to alleviate the symptoms of Alzheimer's disease.
Collapse
Affiliation(s)
- Sihan Chen
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Zheng Li
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
18
|
Chen M, Zhang J, Chang J, Li H, Zhai Y, Wang Z. Ultrasensitive detection of butyrylcholinesterase activity based on self-polymerization modulated fluorescence of sulfur quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120756. [PMID: 34952437 DOI: 10.1016/j.saa.2021.120756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Butyrylcholinesterase (BChE) is an important clinical diagnosing index for liver dysfunction and organophosphate toxicity. However, the current assays for BChE activity are suffering from the relative poor detection sensitivity. In this work, an ultrasensitive fluorescence assay for BChE activity was developed based on the self-polymerization modulated fluorescence of sulfur quantum dots (S-dots). The luminescence of S-dots can be quenched by the self-polymerized dopamine. The hydrolysate of substrates, thiocholine, under the catalysis of BChE can reduce dopamine, which results in the inhibition of self-polymerization and the fluorescence recovery of S-dots. BChE can be quantitatively detected by recording the recovered fluorescence of S-dots, and a linear relationship is observed between the ratio of fluorescence and the concentration of BChE in the range from 0.01 to 10 U/L. A limit of detection as low as 0.0069 U/L calculated, which is the lowest number so far. The assay also shows excellent selectivity towards various interference species and acetylcholinesterase. These features allowed the direct detection of BChE activity in human serum, demonstrating the great practical applications of our assay.
Collapse
Affiliation(s)
- Mengyu Chen
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jingdan Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jianyu Chang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Huiya Li
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Yongqing Zhai
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Zhenguang Wang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
19
|
Yu Z, Li X, Lu X, Guo Y. Rational construction of a novel probe for the rapid detection of butyrylcholinesterase stress changes in apoptotic cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj01678h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The occurrence of numerous neurodegenerative diseases is associated with abnormal levels of butyrylcholinesterase (BChE).
Collapse
Affiliation(s)
- Zhenqing Yu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Xiang Li
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaofeng Lu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
20
|
Gao YT, Chen BB, Jiang L, Lv J, Chang S, Wang Y, Qian RC, Li DW, Hafez ME. Dual-Emitting Carbonized Polymer Dots Synthesized at Room Temperature for Ratiometric Fluorescence Sensing of Vitamin B12. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50228-50235. [PMID: 34651499 DOI: 10.1021/acsami.1c12993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ratiometric fluorescence (FL) probes are highly desirable for highly sensitive and reliable assays. Dual-emitting carbonized polymer dots (CPDs) have great application prospects in building ratiometric FL sensors. However, dual-emitting CPDs are usually synthesized at high temperatures and high pressures, which not only increases the cost but also complicates the structure of CPDs. Here, we developed a facile strategy for the fabrication of dual-emitting CPDs at room temperature using tetrachlorobenzoquinone and ethylenediamine. The formation of CPDs was induced by Schiff base condensation reaction, enabling the following cross-linking polymerization process. The dual-emitting CPDs demonstrate good photostability and antioxidant capacity. Importantly, the typical dual-emission bands of the as-prepared CPDs are found to have a blue emission band at 445 nm with a maximum excitation of 350 nm and a yellow emission band at 575 nm with a maximum excitation of 440 nm. Based on the dual-emitting property of CPDs, a ratiometric FL nanoprobe is obtained for sensitive determination of vitamin B12 (VB12), as the inner filtering and static quenching effects between VB12 and CPDs allow effective quenching of the blue FL of CPDs, while the yellow FL is maintained. The established assay shows linear detection ranges of 0.25-100 μM with a low limit of detection of 0.14 μM. These findings provide new guidance for the facile preparation of CPDs with excellent dual-emitting optical properties, indicating good prospects in biosensing.
Collapse
Affiliation(s)
- Ya-Ting Gao
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Bin-Bin Chen
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lei Jiang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shuai Chang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yue Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
21
|
Ma J, Ma L, Cao L, Miao Y, Dong J, Shi YE, Wang Z. Point-of-care testing of butyrylcholinesterase activity through modulating the photothermal effect of cuprous oxide nanoparticles. Mikrochim Acta 2021; 188:392. [PMID: 34697648 DOI: 10.1007/s00604-021-05033-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
Butyrylcholinesterase (BChE) is an important indicator for clinical diagnosis of liver dysfunction, organophosphate toxicity, and poststroke dementia. Point-of-care testing (POCT) of BChE activity is still a challenge, which is a critical requirement for the modern clinical diagnose. A portable photothermal BChE assay is proposed through modulating the photothermal effects of Cu2O nanoparticles. BChE can catalyze the decomposition of butyrylcholine, producing thiocholine, which further reduce and coordinate with CuO on surface of Cu2O nanoparticle. This leads to higher efficiency of formation of Cu9S8 nanoparticles, through the reaction between Cu2O nanoparticle and NaHS, together with the promotion of photothermal conversion efficiency from 3.1 to 59.0%, under the excitation of 1064 nm laser radiation. An excellent linear relationship between the temperature change and the logarithm of BChE concentration is obtained in the range 1.0 to 7.5 U/mL, with a limit of detection of 0.076 U/mL. In addition, the portable photothermal assay shows strong detection robustness, which endows the accurate detection of BChE in human serum, together with the screening and quantification of organophosphorus pesticides. Such a simple, sensitive, and robust assay shows great potential for the applications to clinical BChE detection and brings a new horizon for the development of temperature based POCT.
Collapse
Affiliation(s)
- Jinzhu Ma
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Lili Ma
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Lili Cao
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Yuming Miao
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Jiangxue Dong
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Yu-E Shi
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| | - Zhenguang Wang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
22
|
Ma Z, Li P, Jiao M, Shi YE, Zhai Y, Wang Z. Ratiometric sensing of butyrylcholinesterase activity based on the MnO 2 nanosheet-modulated fluorescence of sulfur quantum dots and o-phenylenediamine. Mikrochim Acta 2021; 188:294. [PMID: 34363549 DOI: 10.1007/s00604-021-04949-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Butyrylcholinesterase (BChE) can modulate the expression level of cholinesterase, which emerges as an important clinical diagnose index. However, the currently reported assays for BChE are suffering from the problem of interferences. A ratiometric fluorescence assay was developed based on the MnO2 nanosheet (NS)-modulated fluorescence of sulfur quantum dots (S-dots) and o-phenylenediamine (OPD). MnO2 NS can not only quench the fluorescence of blue emissive S-dots, but also enhance the yellow emissive OPD by catalyzing its oxidation reactions. Upon introducing BChE and substrate into the system, their hydrolysate can reduce MnO2 into Mn2+, leading to the fluorescence recovery of S-dots and failure of OPD oxidation. BChE activity can be quantitatively detected by recording the change of fluorescence signals in the blue and yellow regions. A linear relationship is observed between the ratio of F435/F560 and the concentration of BChE in the range 30 to 500 U/L, and a limit of detection of 17.8 U/L has been calculated. The ratiometric fluorescence assay shows an excellent selectivity to acetylcholinesterase and tolerance to various other species. The method developed provides good detection performances in human serum medium and for screening of inhibitors.
Collapse
Affiliation(s)
- Zerui Ma
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Pan Li
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Meng Jiao
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Yu-E Shi
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| | - Yongqing Zhai
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Zhenguang Wang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
23
|
Sensitive detection of butyrylcholinesterase activity based on a separation-free photothermal assay. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
24
|
Wu W, Liao X, Chen Y, Ji L, Chao H. Mitochondria-Targeting and Reversible Near-Infrared Emissive Iridium(III) Probe for in vivo ONOO -/GSH Redox Cycles Monitoring. Anal Chem 2021; 93:8062-8070. [PMID: 34037386 DOI: 10.1021/acs.analchem.1c01409] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Peroxynitrite (ONOO-) and glutathione (GSH), two unique reactive species, play an essential regulating role in the oxidation and antioxidation in the living body and are closely associated with various physiological and pathological processes, like cancer, cardiovascular disorders, diabetes, inflammation, Alzheimer's disease, and hepatotoxicity. Thus, it is crucial to study mitochondria ONOO-/GSH redox cycles by an effective molecular tool. In this work, a mitochondria-targeting and redox-reversible near-infrared (NIR) phosphorescent iridium complex, Ir-diol, has been synthesized and used for the detection and imaging of a cellular redox state by visualizing endogenous ONOO-/GSH content. Ir-diol shows excellent photophysical properties, including NIR emission (the maximum emissive wavelength for 704 nm, approximately) and high phosphorescent quantum yield (Φ = 0.136) and exhibits high sensitivity and selectivity toward ONOO-/GSH redox cycles in aqueous solution and living cells. Therefore, these features, combined with low cytotoxicity and excellent cell permeability, enable probe Ir-diol to monitor the changes of the intracellular ONOO-/GSH level induced by drug both in vitro and in vivo.
Collapse
Affiliation(s)
- Weijun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.,MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 400201, P. R. China
| |
Collapse
|
25
|
Zhang Q, Fu C, Guo X, Gao J, Zhang P, Ding C. Fluorescent Determination of Butyrylcholinesterase Activity and Its Application in Biological Imaging and Pesticide Residue Detection. ACS Sens 2021; 6:1138-1146. [PMID: 33503372 DOI: 10.1021/acssensors.0c02398] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Butyrylcholinesterase (BChE) is an essential human cholinesterase relevant to liver conditions and neurodegenerative diseases, which makes it a pivotal biomarker of health. It therefore remains challenging and highly desired to elaborate efficient chemical tools for BChE with simple operations and satisfactory working performance. In this work, a background-free detection strategy was built by virtue of the judicious coupling of a specific BChE-enzymatic reaction and in situ cyclization. High sensitivity with a low limit of detection (LOD) of 0.075 μg/mL could be readily achieved from the blank background and the as-produced emissive indicators, and the specific reaction site contributed to the high selectivity over other bio-species even acetylcholinesterase (AChE). In addition to the multifaceted spectral experiments to verify the sensing mechanism, this work assumed comprehensive studies on the application. The bio-investigation ranged from cells to an organism, declaring a noteworthy prospect in disease diagnosis, especially for Alzheimer's disease (AD), a common neurodegenerative disease with over-expressed BChE. Moreover, its excellent work for inhibition efficacy elucidation was also proved with the accuracy IC50 of tacrine for BChE (8.6 nM), giving rise to an expanded application for trace pesticide determination.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Caixia Fu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Xinjie Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Jian Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
26
|
Qu Z, Yu T, Liu Y, Bi L. Determination of butyrylcholinesterase activity based on thiamine luminescence modulated by MnO 2 nanosheets. Talanta 2021; 224:121831. [PMID: 33379049 DOI: 10.1016/j.talanta.2020.121831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
In this paper, a novel strategy for biosensing butyrylcholinesterase (BChE) activity is developed based on manganese dioxide (MnO2) nanosheets to modulate the photoluminescence of thiamine (TH). The oxidase-like activity of MnO2 nanosheets enables them to catalyze the oxidation of non-fluorescent substrate TH to generate strong fluorescent thiochrome (TC). When the target BChE is introduced to form thiocholine in the presence of S-butyrylthiocholine iodide (BTCh), MnO2 nanosheets are reduced by thiocholine to Mn2+, resulting in the loss of their oxidase-like activity and the reduction of TC fluorescence. Based on this, a BChE activity fluorescence biosensor is constructed utilizing the luminescence behavior variation of TH and the oxidase-like activity of MnO2 nanosheets. The fluorescence biosensor shows a sensitive response to BChE, and the detection limit reaches 0.036 U L-1. In addition, the feasibility of the biosensor in real samples analysis is studied with satisfactory results.
Collapse
Affiliation(s)
- Zhengyi Qu
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Tian Yu
- College of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Yuzhong Liu
- Jilin University First Hospital, Changchun, 130021, PR China
| | - Lihua Bi
- College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
27
|
A ratiometric lanthanide-free fluorescent probe based on two-dimensional metal-organic frameworks and carbon dots for the determination of anthrax biomarker. Mikrochim Acta 2021; 188:84. [DOI: 10.1007/s00604-021-04701-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/08/2021] [Indexed: 01/25/2023]
|
28
|
Li W, Rong Y, Wang J, Li T, Wang Z. MnO2 switch-bridged DNA walker for ultrasensitive sensing of cholinesterase activity and organophosphorus pesticides. Biosens Bioelectron 2020; 169:112605. [DOI: 10.1016/j.bios.2020.112605] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/15/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
|
29
|
Guo L, Zhang YJ, Yu YL, Wang JH. In Situ Generation of Prussian Blue by MIL-53 (Fe) for Point-of-Care Testing of Butyrylcholinesterase Activity Using a Portable High-Throughput Photothermal Device. Anal Chem 2020; 92:14806-14813. [PMID: 33058681 DOI: 10.1021/acs.analchem.0c03575] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Butyrylcholinesterase (BuChE), the primary source of serum cholinesterase activity, is an indispensable biochemical marker for clinical diagnosis of liver function and organophosphorus poisoning. The requirement for bulky and expensive instruments represents a huge hindrance for point-of-care testing (POCT) of BuChE, especially in resource-limited settings. Herein, an easy-operated, economic, and portable photothermal (PT) biosensing platform for high-throughput BuChE detection was rationally designed. BuChE could "light up" the PT signal through in situ generation of Prussian blue (PB) by MIL-53 (Fe), which allowed us to translate biological signals into temperature signals. Such temperature change signals could be monitored at high throughput (six samples for a single measurement) by a miniature self-made integrated PT device via combining separable 96-well plates, a three-dimensional (3D) printed sample bracket, 808 nm lasers, and thermometers, satisfying the requirement for rapid on-site detection in a large batch with low cost. In addition, the large specific surface area, 3D network structure, and high porosity of MIL-53 (Fe) offered a beneficial platform for its reaction with enzymatic hydrolysate, resulting in high sensing sensitivity and low detection limit (0.3 U L-1), which was at least 20 000 times lower than the normal human serum BuChE activity. This facile, affordable, and broad applicability PT sensing platform provides a beneficial reference for the rational design of other disease diagnostic approaches suitable for POCT.
Collapse
Affiliation(s)
- Lan Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Ya-Jie Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
30
|
Rational design of a near-infrared fluorescence probe for highly selective sensing butyrylcholinesterase (BChE) and its bioimaging applications in living cell. Talanta 2020; 219:121278. [DOI: 10.1016/j.talanta.2020.121278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/02/2023]
|
31
|
A Bioorthogonally Synthesized and Disulfide-Containing Fluorescence Turn-On Chemical Probe for Measurements of Butyrylcholinesterase Activity and Inhibition in the Presence of Physiological Glutathione. Catalysts 2020. [DOI: 10.3390/catal10101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Butyrylcholinesterase (BChE) is a biomarker in human blood. Aberrant BChE activity has been associated with human diseases. Here we developed a fluorescence resonance energy transfer (FRET) chemical probe to specifically quantify BChE activity in serum, while simultaneously discriminating against glutathione (GSH). The FRET chemical probe 11 was synthesized from a key trifunctional bicyclononyne exo-6 and derivatives of 5-(2-aminoethylamino)-1-naphthalenesulfonic acid (EDANS) and 4-[4-(dimethylamino)phenylazo]benzoic acid (DABCYL). EDANS fluorescence visualization and kinetic analysis of 11 in the presence of diverse compounds confirmed the outstanding reactivity and specificity of 11 with thiols. The thiol-dependent fluorescence turn-on property of 11 was attributed to a general base-catalyzed SN2 nucleophilic substitution mechanism and independent of metal ions. Moreover, all thiols, except GSH, reacted swiftly with 11. Kinetic studies of 11 in the presence of covalently modified GSH derivatives corroborated that the steric hindrance of 11 imposing on GSH was the likely cause of the distinguished reactivity. Since GSH commonly interferes in assays measuring BChE activity in blood samples, the 11-based fluorescent assay was employed to directly quantify BChE activity without GSH interference, and delivered a linear range of 4.3–182.2 U L−1 for BChE activity with detection limit of 4.3 U L−1, and accurately quantified serum BChE activity in the presence of 10 μM GSH. Finally, the 11-based assay was exploited to determine Ki of 5 nM for tacrine inhibition on BChE catalysis. We are harnessing the modulated characteristics of 6 to synthesize advanced chemical probes able to more sensitively screen for BChE inhibitors and quantify BChE activity in serum.
Collapse
|
32
|
Saidi I, Nimbarte VD, Schwalbe H, Waffo-Téguo P, Harrath AH, Mansour L, Alwasel S, Ben Jannet H. Anti-tyrosinase, anti-cholinesterase and cytotoxic activities of extracts and phytochemicals from the Tunisian Citharexylum spinosum L.: Molecular docking and SAR analysis. Bioorg Chem 2020; 102:104093. [PMID: 32717693 DOI: 10.1016/j.bioorg.2020.104093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
Previously phytochemical investigations carried out on the flowers and trunk bark extracts of Citharexylum spinosum L. tree, allowed the isolation of twenty molecules belonging to several families of natural substances [triterpene acids, iridoid glycosides, phenylethanoid glycosides, 8,3'-neolignan glycosides, together with other phenolic compounds]. In the present work, a biological evaluation (anti-tyrosinase, anticholinesterase and cytotoxic activities) was performed on the prepared extracts and the isolated secondary metabolites. The results showed that the EtOAc extract of the trunk bark displayed the highest anti-tyrosinase effect with a percent inhibition of 55.0 ± 1.8% at a concentration of 100 µg/mL. The highest anticholinesterase activity was presented by the same extract with an IC50 value of 99.97 ± 3.01 µg/mL. The EtOAc extract of flowers and that of the trunk bark displayed the best cytotoxic property with IC50 values of 96.00 ± 2.85 and 88.75 ± 2.00 µg/mL, respectively, against the human cervical cancer cell line (HeLa), and IC50 values of 188.23 ± 3.88 and 197.00 ± 4.25 µg/mL, respectively, against the human lung cancer (A549) cell lines. Biological investigation of the pure compounds showed that the two 8,3'-neolignan glycosides, plucheosides D1-D2, generate the highest anti-tyrosinase potency with a percent inhibition of 61.4 ± 2.0 and 79.5 ± 2.3%, respectively, at a concentration of 100 µM. The iridoid glycosides exhibited a significant anticholinesterase activity with IC50 values ranging from 17.19 ± 1.02 to 52.24 ± 2.50 µM. Triterpene pentacyclic acids and iridoid glycosides exerted encouraging cytotoxic effects against HeLa with IC50 values ranging from 9.00 ± 1.10 to 25.00 ± 1.00 µM. The study of the structure-activity relationship (SAR) has been sufficiently and widely discussed. The natural compounds that exhibited the significant bioactivities were docked.
Collapse
Affiliation(s)
- Ilyes Saidi
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39), Equipe: Chimie Médicinale et Produits Naturels, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia
| | - Vijaykumar D Nimbarte
- Institute for Organic Chemistry and Chemical Biology. Center for Biomolecular Magnetic Resonance Goethe University Frankfurt am Main Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology. Center for Biomolecular Magnetic Resonance Goethe University Frankfurt am Main Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | - Pierre Waffo-Téguo
- Univ. de Bordeaux, ISVV, EA 4577, Unité de recherche Œnologie 210 chemin de leysotte, CS50008, 33882 Villenave d'Ornon, France; INRA, ISVV, USC 1366 Œnologie, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Lamjed Mansour
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Hichem Ben Jannet
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39), Equipe: Chimie Médicinale et Produits Naturels, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia.
| |
Collapse
|
33
|
Li T, Gao Y, Li H, Zhang C, Xing Y, Jiao M, Shi YE, Li W, Zhai Y, Wang Z. Ultrasensitive detection of butyrylcholinesterase activity based on the inner filter effect of MnO 2 nanosheets on sulfur nanodots. Analyst 2020; 145:5206-5212. [PMID: 32578586 DOI: 10.1039/d0an00939c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Butyrylcholinesterase (BChE) activity is an important index for a variety of diseases. In this work, a "turn-on" assay is proposed based on controlling the inner filter effect (IFE) of MnO2 nanosheets (NSs) on sulfur nanodots (S-dots). The fluorescence of S-dots is effectively quenched by the MnO2 NSs, due to the wide overlap of the emission spectrum of S-dots and absorption spectrum of MnO2 NSs, together with the superior light absorption capability of MnO2 NSs. BChE can catalyze acetylthiocholine and produce thiocholine, which effectively decomposes the MnO2 NSs into Mn2+, resulting in the disappearance of the IFE and recovery of fluorescence of S-dots. Two-stage linear relationships between the ratio of fluorescence intensity and concentration of BChE are observed from 0.05 to 10 and from 10 to 500 U L-1. A limit of detection of 0.035 U L-1 is achieved, which is the best performance so far. The as-proposed assay is robust enough for practical detection in human serum, and it can avoid interference from its sister enzyme (acetylcholinesterase) and glutathione at the micromolar level. The presented results provide a clue for the functionalization of S-dots, and offer a powerful tool as an analytic technique for nanomedicine and environmental science.
Collapse
Affiliation(s)
- Tianzi Li
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen P, Zheng C, Chen C, Huang K, Wang X, Hu P, Geng J. Thiol inhibition of Hg cold vapor generation in SnCl 2/NaBH 4 system: A homogeneous bioassay for H 2O 2/glucose and butyrylcholinesterase/pesticide sensing by atomic spectrometry. Anal Chim Acta 2020; 1111:8-15. [PMID: 32312400 DOI: 10.1016/j.aca.2020.03.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/18/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023]
Abstract
Recently, the use of atomic spectrometry (AS) for biochemical analysis has attracted considerable attention due to its high sensitivity, selectivity and anti-interference ability. In this work, we conducted a detailed study on a phenomenon of thiol inhibition of mercury (Hg2+) cold vapor generation (CVG) and found L-cysteine (L-Cys), glutathione (GSH), dithiothreitol, N-Acetyl-L-cysteine, 3-mercaptopropionic acid, β-mercaptoethanol, and NaI can inhibit the CVG of Hg2+, while EDTA has no inhibitory effect. Furthermore, changing the content of -SH can effectively adjust the CVG atomic fluorescence spectrometer (CVG-AFS) signal of Hg2+. As as a consequence, an AS-based homogeneous bioassay was constructed by adjusting the oxidation ratio and production quantity of -SH in the system. The quantitative analysis of the system was demonstrated by using AFS as a representative detector. Hydrogen peroxide (H2O2) and glucose were used as representative analytes for the validation of Hg2+ atomic fluorescence signal turn-off strategy, and butyrylcholinesterase (BChE) as well as parathion (organophosphorus pesticides, OPs) as utilized as representative targets for the signal turn-on strategy. Under optimal experimental conditions, the homogeneous CVG-AFS sensor can be successfully used to detect 3 μM H2O2, 30 μM glucose, 0.25 U/L BChE, and 0.4 μg/mL parathion. In addition, the detection results of glucose and BChE in human serum samples agreed well with those obtained by using glucometer and kit, showing the promising potential of this method for practical applications. Therefore, this work provides a perspective for the construction of AS-based homogeneous bioassays and shows great potential for the detection of biomarkers.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Chuan Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China; Institute of Pharmacology & School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xiu Wang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Pingyue Hu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
35
|
Khan ZM, Saifi S, Shumaila, Aslam Z, Khan SA, Zulfequar M. A facile one step hydrothermal synthesis of carbon quantum dots for label -free fluorescence sensing approach to detect picric acid in aqueous solution. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112201] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
36
|
Zhang XP, Zhao CX, Shu Y, Wang JH. Gold Nanoclusters/Iron Oxyhydroxide Platform for Ultrasensitive Detection of Butyrylcholinesterase. Anal Chem 2019; 91:15866-15872. [DOI: 10.1021/acs.analchem.9b04304] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao-Ping Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, P. R. China
| | - Chen-Xi Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, P. R. China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, P. R. China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, P. R. China
| |
Collapse
|
37
|
Yoo S, Han MS. A fluorescent probe for butyrylcholinesterase activity in human serum based on a fluorophore with specific binding affinity for human serum albumin. Chem Commun (Camb) 2019; 55:14574-14577. [PMID: 31663530 DOI: 10.1039/c9cc07737e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-specific binding of a fluorescent probe to human serum albumin is problematic because it induces signal interference when the probe detects the target biomarker in human serum. To eliminate this problem, we used intrinsically problematic non-specific fluorescence in designing a fluorescent probe for butyrylcholinesterase activity in serum. The probe containing a fluorophore with specific binding affinity for albumin could sensitively detect butyrylcholinesterase activity in serum with high selectivity to acetylcholinesterase and screen the efficiency of butyrylcholinesterase inhibitors.
Collapse
Affiliation(s)
- Soyeon Yoo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
38
|
Geng F, Zou C, Liu J, Zhang Q, Guo X, Fan Y, Yu H, Yang S, Liu Z, Li L. Development of luminescent nanoswitch for sensing of alkaline phosphatase in human serum based onAl3+-PPi interaction and Cu NCs with AIE properties. Anal Chim Acta 2019; 1076:131-137. [DOI: 10.1016/j.aca.2019.05.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/22/2019] [Accepted: 05/11/2019] [Indexed: 11/16/2022]
|
39
|
Yang Y, Liu H, Chen Z, Wu T, Jiang Z, Tong L, Tang B. A Simple 3D-Printed Enzyme Reactor Paper Spray Mass Spectrometry Platform for Detecting BuChE Activity in Human Serum. Anal Chem 2019; 91:12874-12881. [DOI: 10.1021/acs.analchem.9b02728] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Huimin Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Tianhong Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| |
Collapse
|
40
|
Fluorescent carbon dots functionalization. Adv Colloid Interface Sci 2019; 270:165-190. [PMID: 31265929 DOI: 10.1016/j.cis.2019.06.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023]
Abstract
Carbon dots (CDs), as a new type of luminescent zero-dimensional carbon nanomaterial, have been applied in a variety of fields. Currently, functionalization of CDs is an extremely useful method for effectively tuning their intrinsic structure and surface state. Heteroatom doping and surface modification are two functionalization strategies for improving the photophysical performance and broadening the range of applications for fluorescent CDs. Heteroatom doping in CDs can be used to tune their intrinsic properties, which has received significant research interests because of its simplicity. Surface modification can be applied for varying active sites and the functional groups on the CDs surface, which can endow fluorescent CDs with the unique properties resulting from functional ligand. In this review, we summarize the structural and physicochemical properties of functional CDs. We focused our review on the latest developments in functionalization strategies for CDs and discuss the detailed characteristics of different functionalization methods. Ultimately, we hope to inform researchers on the latest progress in functionalization of CDs and provide perspectives on future developments for functionalization of CDs and their potential applications.
Collapse
|
41
|
Sharma S, Singh N, Nepovimova E, Korabecny J, Kuca K, Satnami ML, Ghosh KK. Interaction of synthesized nitrogen enriched graphene quantum dots with novel anti-Alzheimer’s drugs: spectroscopic insights. J Biomol Struct Dyn 2019; 38:1822-1837. [DOI: 10.1080/07391102.2019.1619625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| | - Namrata Singh
- Ramrao Adik Institute of Technology, DY Patil University, Navi Mumbai, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Manmohan L. Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| | - Kallol K. Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| |
Collapse
|
42
|
Chen G, Feng H, Xi W, Xu J, Pan S, Qian Z. Thiol-ene click reaction-induced fluorescence enhancement by altering the radiative rate for assaying butyrylcholinesterase activity. Analyst 2019; 144:559-566. [PMID: 30417195 DOI: 10.1039/c8an01808a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Butyrylcholinesterase (BChE) generally acts as an important plasma biomarker for clinical diagnosis due to its major contribution to human plasma cholinesterase levels, but its current fluorometric assay relying on fluorogenic substrates frequently suffers from the lack of sufficiently fast response time and specific recognition of substrates relative to the traditional Ellman's method. In this work, we report a fluorescent molecular probe for assaying BChE activity based on thiol-triggered fluorescence enhancement via thiol-ene click reactions. A low-temperature experiment and theoretical analysis exclude the possibility of weak fluorescence of the probe caused by an intramolecular photoinduced electron transfer process and support the main cause of an ultraslow radiative rate due to the introduction of two acrylyl groups. This probe has sensitive fluorescence responses to thiols via thiol-ene click chemistry, and it can distinguish between glutathione and cysteine or homocysteine in different emission colors. The rapid reaction kinetics of this probe enables it to monitor hydrolysis reactions catalyzed by butyrylcholinesterase (BChE) in a real-time manner. This probe is used to develop the first fluorometric assay of BChE activity based on fluorescence enhancement triggered by thiol-ene click chemistry using butyrylthiocholine as the substrate. The established BChE assay shows excellent sensitivity, and is capable of avoiding the interference from glutathione and acetylcholinesterase (AChE) in a complex matrix. The inhibition test of tacrine on BChE with this assay substantiates its feasibility in screening potential inhibitors of BChE. This work demonstrates a design strategy of fluorescent probes lighted up by thiol-ene click reactions, reveals the main cause of thiol-triggered fluorescence enhancement by altering the radiative rate, and provides the first fluorometric assay of BChE based on rapid thiol-ene click reactions.
Collapse
Affiliation(s)
- Guilin Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | | | | | | | | | | |
Collapse
|
43
|
A ratiometric fluorescence probe based on carbon dots for discriminative and highly sensitive detection of acetylcholinesterase and butyrylcholinesterase in human whole blood. Biosens Bioelectron 2019; 131:232-236. [DOI: 10.1016/j.bios.2019.02.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 11/22/2022]
|
44
|
Jayanthi M, Megarajan S, Subramaniyan SB, Kamlekar RK, Veerappan A. A convenient green method to synthesize luminescent carbon dots from edible carrot and its application in bioimaging and preparation of nanocatalyst. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Motaghi H, Mehrgardi MA. Spectrofluorometric genotyping of single nucleotide polymorphisms using carbon dots as fluorophores. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:154-159. [PMID: 30099312 DOI: 10.1016/j.saa.2018.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
In the present manuscript, a new spectrofluorometric method for the genotyping of various single nucleotide polymorphisms (SNPs) using carbon dots (CDs) is investigated. For the construction of the assay, thiolated probe DNA is self-assembled on a gold surface via sulfur‑gold chemistry and afterward, the probe is partially hybridized with a longer target DNA strand. Subsequently, the unhybridized section of the target DNA is hybridized with a capture DNA to form the DNA double-helix self-assembled monolayer on the gold surface. Finally, CDs surface amine groups are covalently attached to the 5' phosphate groups of various monobases (MB-CDs) using phosphoramidite chemistry. In this method, genotyping of SNPs is based on following the changes in fluorescence intensity of the MB-CDs suspensions before and after incubation with DNA modified gold surface. The assay is straightforward with no need for target labeling and is sensitive and low cost enough to genotype various SNPs independent of their position in a DNA double helix with an acceptable limit of detections in picomolar ranges.
Collapse
Affiliation(s)
- Hasan Motaghi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | |
Collapse
|
46
|
Zhang Y, Gao Z, Yang X, Yang G, Chang J, Jiang K. Highly fluorescent carbon dots as an efficient nanoprobe for detection of clomifene citrate. RSC Adv 2019; 9:6084-6093. [PMID: 35517272 PMCID: PMC9060956 DOI: 10.1039/c9ra00360f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
Highly fluorescent carbon dots (CDs) were synthesized through facile hydrothermal carbonization and ethylenediamine passivation of an easily available prawn shell precursor. The as-prepared CDs exhibit high water solubility, wavelength-tunable fluorescence with quantum yield up to 68.9%, high photostability and resistance against biomolecules, thus enabling the application as viable fluorescent nanoprobes for detection of guest quenchers. The fluorescence of the CDs can be effectively quenched by clomifene citrate (CC, a common drug for infertility) through static quenching, and therefore can serve as a simple and efficient fluorescent nanoprobe for determination of CC with wide linear range (0.25–10 μg mL−1) and low detection limit (0.2 μg mL−1). The CDs also showed low cytotoxicity, which enables the safe and accurate fluorescent detection of spiked CC in human serum, demonstrating their potential as a credible fluorescent CC nanoprobe in clinical examination. Highly fluorescent carbon dots (CDs) were synthesized through facile hydrothermal carbonization and ethylenediamine passivation of an easily available prawn shell precursor.![]()
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- P. R. China
- School of Laboratory Medicine
| | - Zhiyong Gao
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- P. R. China
| | - Xue Yang
- School of Laboratory Medicine
- Xinxiang Medical University
- Xinxiang 453003
- P. R. China
| | - Genqing Yang
- The Third Affiliated Hospital of Xinxiang Medical University
- Xinxiang 453000
- P. R. China
| | - Jiuli Chang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- P. R. China
| | - Kai Jiang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- P. R. China
- School of Environment
| |
Collapse
|
47
|
Abstract
Significant advances of typical nanomaterials in the luminescent detection of water and humidity are presented.
Collapse
Affiliation(s)
- Yongming Guo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials
- School of Environmental Science and Engineering
- Nanjing University of Information Science & Technology
| | - Wei Zhao
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province
- Engineering Technology Research Center of Henan Province for Solar Catalysis
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang 473061
| |
Collapse
|
48
|
Han T, Wang G. Peroxidase-like activity of acetylcholine-based colorimetric detection of acetylcholinesterase activity and an organophosphorus inhibitor. J Mater Chem B 2018; 7:2613-2618. [PMID: 32254993 DOI: 10.1039/c8tb02616e] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Colorimetric detection of acetylcholinesterase (AChE) and its inhibitor organophosphates (OPs) is attractive for its convenience, but the addition of exogenous catalyst to produce a chromogenic agent may result in complexity and interference. Herein, we first found that acetylcholine (ATCh) itself mimicked peroxidase's activity, based on which a simple and reliable colorimetric system containing ATCh- 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 was developed for the sensitive and selective assay of AChE activity and its inhibitor OPs. Due to the AChE-catalyzed hydrolysis of acetylcholine, the peroxidase-like activity was affected, which was used for highly sensitive detection of AChE activity with a low limit of detection (LOD) of 0.5 mU mL-1 and a linear detection range from 2.0 to 14 mU mL-1. Furthermore, due to the inhibition of OPs on AChE, OPs were also detected with the present ATCh regulated colorimetric system with LOD of 4.0 ng mL-1 and a linear dynamic range from 10 to 10 000 µg L-1. This strategy was also demonstrated to be applicable for pesticide detection in real samples. Meanwhile, the sensing platform can also be implemented on test strips for rapid and visual monitoring of OPs. Thus, this extremely simple colorimetric strategy without the addition of other exogenous catalysts holds great promise for on-site pesticide detection and can be further exploited for sensing applications in the environmental and food safety fields.
Collapse
Affiliation(s)
- Ting Han
- Key Laboratory of Chem-Biosensing, Anhui province, Key Laboratory of Functional Molecular Solids, Anhui province, College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, P. R. China.
| | | |
Collapse
|
49
|
Lu W, Jiao Y, Gao Y, Qiao J, Mozneb M, Shuang S, Dong C, Li CZ. Bright Yellow Fluorescent Carbon Dots as a Multifunctional Sensing Platform for the Label-Free Detection of Fluoroquinolones and Histidine. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42915-42924. [PMID: 30412373 DOI: 10.1021/acsami.8b16710] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Owing to their diverse properties, fluorescent carbon dots (CDs) have attracted more attention and present enormous potential in development of sensors, bioimaging, drug delivery, microfluidics, photodynamic therapy, light emitting diode, and so forth. Herein, a multifunctional sensing platform based on bright yellow fluorescent CDs (Y-CDs) was designed for the label-free detection of fluoroquinolones (FQs) and histidine (His). The Y-CDs with superior optical and biological merits including high chemical stability, good biocompatibility, and low cytotoxicity were simply synthesized via one-step hydrothermal treatment of o-phenylenediamine ( o-PD) and 4-aminobutyric acid (GABA). The Y-CDs can be utilized to directly monitor the amount of FQs based on fluorescence static quenching owing to the specific interaction between FQs and Y-CDs. Then, the fluorescence of this system can be effectively recovered upon addition of His. The multifunctional sensing platform exhibited high sensitivity and selectivity toward three kinds of FQs and His with low detection limits of 17-67 and 35 nM, respectively. Benefiting from these outstanding characters, the Y-CDs were successfully employed for trace detection of FQs in real samples such as antibiotic tablets and milk products. Furthermore, the probe was also extended to cellular imaging. All of the above prove that this multifunctional sensing platform presents great prospect in multiple applications such as biosensing, biomedicine, disease diagnosis, and environmental monitoring.
Collapse
Affiliation(s)
- Wenjing Lu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China
- Nanobioengineering/Bioelectronics Laboratory, and Department of Biomedical Engineering , Florida International University , Miami 33174 , United States
| | - Yuan Jiao
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China
| | - Yifang Gao
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China
| | - Jie Qiao
- Nanobioengineering/Bioelectronics Laboratory, and Department of Biomedical Engineering , Florida International University , Miami 33174 , United States
- School of Basic Medical Sciences , Shanxi Medical University , Taiyuan 030001 , China
| | - Maedeh Mozneb
- Nanobioengineering/Bioelectronics Laboratory, and Department of Biomedical Engineering , Florida International University , Miami 33174 , United States
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China
| | - Chen-Zhong Li
- Nanobioengineering/Bioelectronics Laboratory, and Department of Biomedical Engineering , Florida International University , Miami 33174 , United States
| |
Collapse
|
50
|
Basu N, Mandal D. Fluorescence response from the surface states of nitrogen-doped carbon nanodots: evidence of a heterogeneous population of molecular-sized fluorophores. Photochem Photobiol Sci 2018; 18:54-63. [PMID: 30289134 DOI: 10.1039/c8pp00077h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fluorescent Nitrogen-doped Carbon Nanodots (NCDs) of ∼4 nm diameter were prepared by acid-driven microwave irradiation of DMF solvent. Spectroscopic studies of the NCDs demonstrated that excitation of the carbon core did not contribute any fluorescence emission. Instead, the emission originated exclusively from the surface states. The fluorescence featured a prominent red edge excitation shift (REES), while changing the excitation wavelength over ∼0.5 eV indicated the emergence of different emitter species in the temporal evolution of fluorescence. These results combined to indicate a large degree of heterogeneity in the population of these surface-localized emitters, so that working with different excitation energies produced different sets of excited surface fluorophores that evolved independently of each other. Fluorescence anisotropy dynamics in the NCDs was attributable to the reorientational motion of the surface fluorophores which was decoupled from the rotational diffusion of the carbon core of the NCD. The anisotropy decay rates revealed that the fluorophores had size comparable to typical organic fluorophores, irrespective of excitation energy.
Collapse
Affiliation(s)
- Nabaruna Basu
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India.
| | - Debabrata Mandal
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India.
| |
Collapse
|