1
|
Wang Q, He X, Mao J, Wang J, Wang L, Zhang Z, Li Y, Huang F, Zhao B, Chen G, He H. Carbon Dots: A Versatile Platform for Cu 2+ Detection, Anti-Counterfeiting, and Bioimaging. Molecules 2024; 29:4211. [PMID: 39275059 PMCID: PMC11397538 DOI: 10.3390/molecules29174211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Carbon dots (CDs) have garnered extensive interest in basic physical chemistry as well as in biomedical applications due to their low cost, good biocompatibility, and great aqueous solubility. However, the synthesis of multi-functional carbon dots has always been a challenge for researchers. Here, we synthesized novel CDs with a high quantum yield of 28.2% through the straightforward hydrothermal method using Diaminomaleonitrile and Boc-D-2, 3-diaminopropionic acid. The size, chemical functional group, and photophysical properties of the CDs were characterized by TEM, FTIR, XPS, UV, and fluorescence. It was demonstrated in this study that the prepared CDs have a high quantum yield, excellent photostability, and low cytotoxicity. Regarding the highly water-soluble property of CDs, they were proven to possess selective and sensitive behavior against Cu2+ ions (linear range = 0-9 μM and limit of detection = 1.34 μM). Moreover, the CDs were utilized in fluorescent ink in anti-counterfeiting measures. Because of their low cytotoxicity and good biocompatibility, the CDs were also successfully utilized in cell imaging. Therefore, the as-prepared CDs have great potential in fluorescence sensing, anti-counterfeiting, and bioimaging.
Collapse
Affiliation(s)
- Qian Wang
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Xinyi He
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Jian Mao
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Junxia Wang
- PetroChina Changqing Petrochemical Company, Xi'an 710032, China
| | - Liangliang Wang
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Zhongchi Zhang
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Yongfei Li
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Fenglin Huang
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Bin Zhao
- Department of Statistics, North Dakota State University, Fargo, North Dakota, ND 58102, USA
| | - Gang Chen
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
2
|
Qi L, Liu S, Ping J, Yao X, Chen L, Yang D, Liu Y, Wang C, Xiao Y, Qi L, Jiang Y, Fang X. Recent Advances in Fluorescent Nanoparticles for Stimulated Emission Depletion Imaging. BIOSENSORS 2024; 14:314. [PMID: 39056590 PMCID: PMC11274644 DOI: 10.3390/bios14070314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024]
Abstract
Stimulated emission depletion (STED) microscopy, as a popular super-resolution imaging technique, has been widely used in bio-structure analysis and resolving the dynamics of biological processes beyond the diffraction limit. The performance of STED critically depends on the optical properties of the fluorescent probes. Ideally, the probe should process high brightness and good photostability, and exhibit a sensitive response to the depletion beam. Organic dyes and fluorescent proteins, as the most widely used STED probes, suffer from low brightness and exhibit rapid photobleaching under a high excitation power. Recently, luminescent nanoparticles (NPs) have emerged as promising fluorescent probes in biological imaging due to their high brightness and good photostability. STED imaging using various kinds of NPs, including quantum dots, polymer dots, carbon dots, aggregation-induced emission dots, etc., has been demonstrated. This review will comprehensively review recent advances in fluorescent NP-based STED probes, discuss their advantages and pitfalls, and outline the directions for future development.
Collapse
Affiliation(s)
- Liqing Qi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Songlin Liu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- School of Chemistry and Materials, University of Science and Technology of China, Hefei 230026, China
| | - Jiantao Ping
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Xingxing Yao
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Long Chen
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dawei Yang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Yijun Liu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Chenjing Wang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Yating Xiao
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
| | - Lubin Qi
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Yifei Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- School of Chemistry and Materials, University of Science and Technology of China, Hefei 230026, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
| | - Xiaohong Fang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- School of Chemistry and Materials, University of Science and Technology of China, Hefei 230026, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
- Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Dolai J, Joshi P, Mondal PP, Maity A, Mukherjee B, Jana NR. Blinking Carbon Dots as a Super-resolution Imaging Probe. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16003-16010. [PMID: 38512299 DOI: 10.1021/acsami.4c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Single-molecule localization microscopy (SMLM) emerges as a powerful approach for super-resolution imaging that provides unprecedented resolution at the nanometer length scale. However, the development of appropriate probes with specific photophysical traits and characteristics is crucial for this approach. This study demonstrates two different fluorescent carbon dots (CDs) derived from the same molecular precursor─one emitting in red and the other in green─as a SMLM-based super-resolution imaging probe for different applications with an average localization precision of 20 nm and a resolution of 60 nm. Both the CDs exhibit spontaneous blinking with high photon count and low duty cycle but with different blinking cycles. The red emissive CDs with a lower blinking cycle are ideal for quantitative analysis, whereas green emissive CDs with a higher blinking cycle are ideal for high-resolution imaging. We show that the difference in blinking features is linked to their chemical compositions, and the presence of much denser trap states in red emitting CDs is responsible for the reduction of its blinking cycle. This study shows that CDs can be designed as a potential probe for SMLM-based super-resolution imaging for diverse bioimaging applications.
Collapse
Affiliation(s)
- Jayanta Dolai
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Prakash Joshi
- Mondal Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - Partha Pratim Mondal
- Mondal Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
- Centre for Cryogenic Technology, Indian Institute of Science, Bangalore 560012, India
| | - Anupam Maity
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Buddhadev Mukherjee
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
4
|
Zhu X, Chen Q, Zhao H, Yang Q, Goudappagouda, Gelléri M, Ritz S, Ng D, Koynov K, Parekh SH, Chetty VK, Thakur BK, Cremer C, Landfester K, Müllen K, Terenzio M, Bonn M, Narita A, Liu X. Intrinsic Burst-Blinking Nanographenes for Super-Resolution Bioimaging. J Am Chem Soc 2024; 146:5195-5203. [PMID: 38275287 PMCID: PMC10910517 DOI: 10.1021/jacs.3c11152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Single-molecule localization microscopy (SMLM) is a powerful technique to achieve super-resolution imaging beyond the diffraction limit. Although various types of blinking fluorophores are currently considered for SMLM, intrinsic blinking fluorophores remain rare at the single-molecule level. Here, we report the synthesis of nanographene-based intrinsic burst-blinking fluorophores for highly versatile SMLM. We image amyloid fibrils in air and in various pH solutions without any additive and lysosome dynamics in live mammalian cells under physiological conditions. In addition, the single-molecule labeling of nascent proteins in primary sensory neurons was achieved with azide-functionalized nanographenes via click chemistry. SMLM imaging reveals higher local translation at axonal branching with unprecedented detail, while the size of translation foci remained similar throughout the entire network. These various results demonstrate the potential of nanographene-based fluorophores to drastically expand the applicability of super-resolution imaging.
Collapse
Affiliation(s)
- Xingfu Zhu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Qiang Chen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hao Zhao
- Organic
and Carbon Nanomaterials Unit, Okinawa Institute
of Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0495, Japan
| | - Qiqi Yang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Goudappagouda
- Organic
and Carbon Nanomaterials Unit, Okinawa Institute
of Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0495, Japan
| | - Márton Gelléri
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Sandra Ritz
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| | - David Ng
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sapun H. Parekh
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Basant Kumar Thakur
- Department
of Pediatrics III, University Hospital Essen, 45147 Essen, Germany
| | - Christoph Cremer
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Katharina Landfester
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Marco Terenzio
- Molecular
Neuroscience Unit, Okinawa Institute of
Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0495, Japan
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Organic
and Carbon Nanomaterials Unit, Okinawa Institute
of Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0495, Japan
| | - Xiaomin Liu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
5
|
Chen M, Liu C, Sun H, Yang F, Hou D, Zheng Y, Shi R, He X, Lin X. Application of Multicolor Fluorescent Carbon Dots Based on Tea Polyphenols in a White Light-Emitting Diode and Room-Temperature Phosphorescence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9182-9189. [PMID: 38343193 DOI: 10.1021/acsami.3c18131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Carbon dots (CDs) are new carbon nanomaterials, among which those prepared from biomass are popular due to their excellent optical properties and environmental friendliness. As representative natural phenolic compounds, tea polyphenols are ideal precursors with fluorescent aromatic rings and phenolic hydroxyl structures. Usually, polyphenolic precursors can only be used to produce blue or green fluorescent CDs, and fluorescence in long wavelength domains, such as orange or red, cannot be achieved. Herein, the high reactivity of the phenolic hydroxyl groups in tea polyphenols with o-phthalaldehyde was exploited to modulate the pH during the carbonation process, which led to redshifts of the fluorescence wavelengths. Different pH values during the reaction caused the precursors to take different reaction paths and form fluorescent groups exhibiting different conjugated structures, resulting in carbon dots providing different fluorescent colors. Finally, by utilizing the in situ hydrolysis of ethyl orthosilicate, the tea polyphenol-based carbon dots were embedded into a silica matrix, inducing phosphorescence of the carbon dots. This study provides a new approach for green preparation and application of natural polyphenolic CDs.
Collapse
Affiliation(s)
- Menglin Chen
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, Yunnan Province, China
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, Yunnan Province, China
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming 650224, Yunnan Province, China
| | - Hao Sun
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, Yunnan Province, China
| | - Fulin Yang
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, Yunnan Province, China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, Yunnan Province, China
| | - Yunwu Zheng
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, Yunnan Province, China
| | - Rui Shi
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming 650224, Yunnan Province, China
| | - Xiahong He
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming 650224, Yunnan Province, China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, Yunnan Province, China
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming 650224, Yunnan Province, China
| |
Collapse
|
6
|
Ma X, Liuye S, Ning K, Wang X, Cui S, Pu S. A photo-controlled fluorescent switching based on carbon dots and photochromic diarylethene for bioimaging. Photochem Photobiol Sci 2023; 22:2389-2399. [PMID: 37479954 DOI: 10.1007/s43630-023-00458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Carbon dots (CDs) as luminescent zero-dimensional carbon nanomaterials have good aqueous dissolution, photostability, high quantum yield, and tunability of emission color. It has great application potential in many fields, including bioimaging, labeling of biological species, drug delivery, and sensing in biomedical. However, controlling the fluorescence emission of carbon dots remains a formidable challenge. Herein, we designed and exploited a photo-controlled fluorescent switching based on photochromic diarylethene (DT) and CDs for bioimaging. It could be modulated reversibly between "ON" and "OFF" under UV/vis light exposure. The fluorescent modulation efficiency was as high as 95.3%. The fluorescent switching could be used to the bioimaging in HeLa cells with low cell toxicity. Therefore, this fluorescent switching could be a promising candidate in many potential application areas, especially in bioimaging.
Collapse
Affiliation(s)
- Xinhuan Ma
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Shiqi Liuye
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Kefan Ning
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Xinyao Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Shiqiang Cui
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China.
| |
Collapse
|
7
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
8
|
Huang YC, Lai JZ, Luo CL, Chuang CC, Lin TC, Wang PH, Chien FC. A Fluorescent Vector of Carbon Dot to Deliver Rab13 and Rab14 Plasmids for Promoting Neurite Outgrowth. ACS APPLIED BIO MATERIALS 2023; 6:3739-3749. [PMID: 37679053 DOI: 10.1021/acsabm.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The complex processes of neuron differentiation and neuron repair are critical for treating nervous system injuries and neurodegenerative diseases. Neurite outgrowth plays a crucial role in these processes by enabling the formation of connections between neurons and the generation of neuroplasticity to restore the function of the nervous system. In this study, we fabricated functionalized carbon dots (CDs) with distinctive photoluminescence and low cytotoxicity for use as fluorescence imaging probes and nanocarriers to deliver plasmid DNAs to neurons effectively for inducing neurite outgrowth. CDs were prepared through a reflux process in nitric acid solution, and their surface was then modified using polyethylenimine (PEI) to obtain positively charged CDs for increasing the absorption of plasmid DNAs and the efficiency of cell uptake. Experimental results indicated that the fabricated CDs maintained a low cytotoxicity and exhibited a high neuron uptake of up to 97%. An improvement in the plasmid DNA ingestion of neurons resulted in enhanced expression of Rab13-Q67L and Rab14 proteins, which considerably promoted neurite sprouting and elongation. After the fabricated PEI-modified CDs were used to deliver the Rab13-Q67L and Rab14 plasmids, more than 56% of the neurons had a neurite length that was greater than twice the size of their soma. Thus, DNA delivery through functionalized CDs has a high potential for use in gene therapy for neuronal injuries and diseases.
Collapse
Affiliation(s)
- Yung-Chin Huang
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Jian-Zong Lai
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Ching-Lung Luo
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Chia-Cheng Chuang
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Tzu-Chau Lin
- Photonic Materials Research Laboratory, Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Po-Hsiang Wang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Fan-Ching Chien
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
9
|
Nguyen AT, Baucom DR, Wang Y, Heyes CD. Compact, Fast Blinking Cd-Free Quantum Dots for Super-Resolution Fluorescence Imaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:251-259. [PMID: 37388960 PMCID: PMC10302876 DOI: 10.1021/cbmi.3c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 07/01/2023]
Abstract
Quantum dots (QDs) can be used as fluorescent probes in single molecule localization microscopy to achieve subdiffraction limit resolution (super-resolution fluorescence imaging). However, the toxicity of Cd in the prototypical CdSe-based QDs can limit their use in biological applications. Furthermore, commercial CdSe QDs are usually modified with relatively thick shells of both inorganic and organic materials to render them in the 10-20 nm size range, which is relatively large for biological labels. In this report, we present compact (4-6 nm) CuInS2/ZnS (CIS/ZnS) and compare them to commercially sourced CdSe/ZnS QDs for their blinking behavior, localization precision and super-resolution imaging. Although commercial CdSe/ZnS QDs are brighter than the more compact Cd-free CIS/ZnS QD, both give comparable results of 4.5-5.0-fold improvement in imaging resolution over conventional TIRF imaging of actin filaments. This likely results from the fact that CIS/ZnS QDs show very short on-times and long off times which leads to less overlap in the point spread functions of emitting CIS/ZnS QD labels on the actin filaments at the same labeling density. These results demonstrate that CIS/ZnS QDs are an excellent candidate to complement and perhaps even replace the larger and more toxic CdSe-based QDs for robust single- molecule super-resolution imaging.
Collapse
Affiliation(s)
- Anh T. Nguyen
- Department
of Chemistry and Biochemistry, University
of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| | - Dustin R. Baucom
- Department
of Chemistry and Biochemistry, University
of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| | - Yong Wang
- Department
of Physics, University of Arkansas, 825 West Dickson Street, Fayetteville, Arkansas 72701, United States
| | - Colin D. Heyes
- Department
of Chemistry and Biochemistry, University
of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
10
|
Zhou L, Cao H, Huang L, Jing Y, Wang M, Lin D, Yu B, Qu J. Narrowband photoblinking InP/ZnSe/ZnS quantum dots for super-resolution multifocal structured illumination microscopy enhanced by optical fluctuation. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1777-1785. [PMID: 39634114 PMCID: PMC11501639 DOI: 10.1515/nanoph-2023-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/03/2023] [Indexed: 12/07/2024]
Abstract
Cadmium-free quantum-dot (QD) fluorophores can bridge the gap between the macroscopic and microscopic domains in fluorescence super-resolution bioimaging. InP/ZnSe/ZnS QD photoblinking fluorescent probes can improve the performance of reactive super-resolution imaging techniques and spontaneously switch fluorophores between at least two states (open and close) without depending on intense laser light and specialized buffers for bioimaging. Multifocal structured illumination microscopy (MSIM) provides a two-fold resolution enhancement in sub-diffraction imaging, but higher resolutions are limited by the pattern frequency and signal-to-noise ratio. We exploit the synergy between MSIM and spontaneously switching InP/ZnSe/ZnS QD fluorophores to further increase the imaging resolution. We demonstrate the experimental combination of optical-fluctuation-enhanced super-resolution MSIM using ultrasonic-oscillation-assisted organic solvothermal synthesis of narrowband photoblinking InP/ZnSe/ZnS QDs. The InP/ZnSe/ZnS QDs show a monodisperse grain size of approximately 9 nm, fluorescence quantum yields close to 100%, and full width at half maximum below 30 nm. The structural, electronic, and optical properties are characterized through experiments and first-principles calculations. The enhanced MSIM imaging achieves an approximate fourfold improvement in resolution for fixed cells compared with widefield imaging. The proposed InP/ZnSe/ZnS QD fluorescent probes seem promising for super-resolution imaging using MSIM.
Collapse
Affiliation(s)
- Liangliang Zhou
- Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Huiqun Cao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, China
| | - Lilin Huang
- Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Yingying Jing
- Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Meiqin Wang
- Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Danying Lin
- Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Bin Yu
- Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Junle Qu
- Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
11
|
Sun N, Jia Y, Bai S, Li Q, Dai L, Li J. The power of super-resolution microscopy in modern biomedical science. Adv Colloid Interface Sci 2023; 314:102880. [PMID: 36965225 DOI: 10.1016/j.cis.2023.102880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Super-resolution microscopy (SRM) technology that breaks the diffraction limit has revolutionized the field of cell biology since its appearance, which enables researchers to visualize cellular structures with nanometric resolution, multiple colors and single-molecule sensitivity. With the flourishing development of hardware and the availability of novel fluorescent probes, the impact of SRM has already gone beyond cell biology and extended to nanomedicine, material science and nanotechnology, and remarkably boosted important breakthroughs in these fields. In this review, we will mainly highlight the power of SRM in modern biomedical science, discussing how these SRM techniques revolutionize the way we understand cell structures, biomaterials assembly and how assembled biomaterials interact with cellular organelles, and finally their promotion to the clinical pre-diagnosis. Moreover, we also provide an outlook on the current technical challenges and future improvement direction of SRM. We hope this review can provide useful information, inspire new ideas and propel the development both from the perspective of SRM techniques and from the perspective of SRM's applications.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Qi Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
| | - Luru Dai
- Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049.
| |
Collapse
|
12
|
Sun X, Mosleh N. Fluorescent Carbon Dots for Super-Resolution Microscopy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:890. [PMID: 36769896 PMCID: PMC9917526 DOI: 10.3390/ma16030890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Conventional fluorescence microscopy is limited by the optical diffraction of light, which results in a spatial resolution of about half of the light's wavelength, approximately to 250-300 nm. The spatial resolution restricts the utilization of microscopes for studying subcellular structures. In order to improve the resolution and to shatter the diffraction limit, two general approaches were developed: a spatially patterned excitation method and a single-molecule localization strategy. The success of super-resolution imaging relies on bright and easily accessible fluorescent probes with special properties. Carbon dots, due to their unique properties, have been used for super-resolution imaging. Considering the importance and fast development of this field, this work focuses on the recent progress and applications of fluorescent carbon dots as probes for super-resolution imaging. The properties of carbon dots for super-resolution microscopy (SRM) are analyzed and discussed. The conclusions and outlook on this topic are also presented.
Collapse
|
13
|
Mao J, Xue M, Guan X, Wang Q, Wang Z, Qin G, He H. Near-Infrared Blinking Carbon Dots Designed for Quantitative Nanoscopy. NANO LETTERS 2023; 23:124-131. [PMID: 36579734 DOI: 10.1021/acs.nanolett.2c03711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Blinking carbon dots (CDs) have attracted attention as a probe for single molecule localization microscopy (SMLM), yet quantitative analysis is limited because of inept blinking and low signal-to-noise ratio (SNR). Here we report the design and synthesis of near-infrared (NIR) blinking CDs with a maximum emission of around 750 nm by weaving a nitrogen-doped aromatic backbone with surplus carboxyl groups on the surface. The NIR-CDs allow conjugation to monovalent antibody fragments for labeling and imaging of cellular receptors as well as afford increases of 52% in SNR and 33% in localization precision over visible CDs. Analysis of fluorescent bursts allows for accurate counting of cellular receptors at the nanoscale resolution. Using NIR-CDs-based SMLM, we demonstrate oligomerization and internalization of programmed cell death-ligand 1 by a small molecule inhibitor for checkpoint blockade. Our NIR-CDs can become a generally applicable probe for quantitative nanoscopy in chemistry and biology.
Collapse
Affiliation(s)
- Jian Mao
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Minmin Xue
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xin Guan
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qian Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Zhirui Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guangyong Qin
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
14
|
Pramanik SK, Sreedharan S, Tiwari R, Dutta S, Kandoth N, Barman S, Aderinto SO, Chattopadhyay S, Das A, Thomas JA. Nanoparticles for super-resolution microscopy: intracellular delivery and molecular targeting. Chem Soc Rev 2022; 51:9882-9916. [PMID: 36420611 DOI: 10.1039/d1cs00605c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Following an overview of the approaches and techniques used to acheive super-resolution microscopy, this review presents the advantages supplied by nanoparticle based probes for these applications. The various clases of nanoparticles that have been developed toward these goals are then critically described and these discussions are illustrated with a variety of examples from the recent literature.
Collapse
Affiliation(s)
- Sumit Kumar Pramanik
- CSIR - Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India.
| | - Sreejesh Sreedharan
- Human Science Research Centre, University of Derby, Kedleston road, DE22 1GB, UK
| | - Rajeshwari Tiwari
- CSIR - Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India.
| | - Sourav Dutta
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, West Bengal, India.
| | - Noufal Kandoth
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, West Bengal, India.
| | - Surajit Barman
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, West Bengal, India.
| | - Stephen O Aderinto
- Department of Chemistry, University of Sheffield, Western Bank, Sheffield, S3 7HF, UK.
| | - Samit Chattopadhyay
- Department of Biological Sciences, BITS-Pilani, K K Birla Goa Campus, NH 17B, Zuarinagar, Goa 403726, India.
| | - Amitava Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, West Bengal, India.
| | - Jim A Thomas
- Department of Chemistry, University of Sheffield, Western Bank, Sheffield, S3 7HF, UK.
| |
Collapse
|
15
|
Wu M, Li X, Mu X, Zhang X, Wang H, Zhang XD. Multimodal molecular imaging in the second near-infrared window. Nanomedicine (Lond) 2022; 17:1585-1606. [PMID: 36476011 DOI: 10.2217/nnm-2022-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Near-infrared-II (NIR-II) fluorescence imaging has rapidly developed for the noninvasive investigation of physiological and pathological activities in living organisms with high spatiotemporal resolution. However, the penetration depth of fluorescence restricts its ability to provide deep anatomical information. Scientists integrate NIR-II fluorescence imaging with other imaging modes (such as photoacoustic and magnetic resonance imaging) to create multimodal imaging that can acquire detailed anatomical and quantitative information with deeper penetration by using multifunctional probes. This review offers a comprehensive picture of NIR-II-based dual/multimodal imaging probes and highlights advances in bioimaging and therapy. In addition, seminal studies and trends in multimodal imaging probes activated by NIR-II laser are summarized and several key points regarding future clinical translation are elucidated.
Collapse
Affiliation(s)
- Menglin Wu
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China.,Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xue Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xuening Zhang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China.,Department of Physics & Tianjin Key Laboratory of Low Dimensional Materials Physics & Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
16
|
Abstract
Super-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes. The use of NPs for super-resolution imaging is a recent development and this provides the focus for the current review. We give an overview of different super-resolution methods and discuss their demands on the properties of fluorescent NPs. We then review in detail the features, strengths, and weaknesses of each NP class to support these applications and provide examples from their utilization in various biological systems. Moreover, we provide an outlook on the future of the field and opportunities in material science for the development of probes for multiplexed subcellular imaging with nanometric resolution.
Collapse
Affiliation(s)
- Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | | | - Bingfu Lei
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Yingliang Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
17
|
Hallaji Z, Bagheri Z, Oroujlo M, Nemati M, Tavassoli Z, Ranjbar B. An insight into the potentials of carbon dots for in vitro live-cell imaging: recent progress, challenges, and prospects. Mikrochim Acta 2022; 189:190. [PMID: 35419708 DOI: 10.1007/s00604-022-05259-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
Carbon dots (CDs) are a strong alternative to conventional fluorescent probes for cell imaging due to their brightness, photostability, tunable fluorescence emission, low toxicity, inexpensive preparation, and chemical diversity. Improving the targeting efficiency by modulation of the surface functional groups and understanding the mechanisms of targeted imaging are the most challenging issues in cell imaging by CDs. Firstly, we briefly discuss important features of fluorescent CDs for live-cell imaging application in this review. Then, the newest modulated CDs for targeted live-cell imaging of whole-cell, cell organelles, pH, ions, small molecules, and proteins are elaborately discussed, and their challenges in these fields are explained.
Collapse
Affiliation(s)
- Zahra Hallaji
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, 14117-13116, Tehran, Iran
| | - Zeinab Bagheri
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983963113, Tehran, Iran.
| | - Mahdi Oroujlo
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983963113, Tehran, Iran
| | - Mehrnoosh Nemati
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983963113, Tehran, Iran
| | - Zeinab Tavassoli
- Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Bijan Ranjbar
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, 14117-13116, Tehran, Iran. .,Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, 14117-13116, Tehran, Iran.
| |
Collapse
|
18
|
Wang Q, Zhang Q, He H, Feng Z, Mao J, Hu X, Wei X, Bi S, Qin G, Wang X, Ge B, Yu D, Ren H, Huang F. Carbon Dot Blinking Fingerprint Uncovers Native Membrane Receptor Organizations via Deep Learning. Anal Chem 2022; 94:3914-3921. [PMID: 35188385 DOI: 10.1021/acs.analchem.1c04947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Oligomeric organization of G protein-coupled receptors is proposed to regulate receptor signaling and function, yet rapid and precise identification of the oligomeric status especially for native receptors on a cell membrane remains an outstanding challenge. By using blinking carbon dots (CDs), we now develop a deep learning (DL)-based blinking fingerprint recognition method, named deep-blinking fingerprint recognition (BFR), which allows automatic classification of CD-labeled receptor organizations on a cell membrane. This DL model integrates convolutional layers, long-short-term memory, and fully connected layers to extract time-dependent blinking features of CDs and is trained to a high accuracy (∼95%) for identifying receptor organizations. Using deep blinking fingerprint recognition, we found that CXCR4 mainly exists as 87.3% monomers, 12.4% dimers, and <1% higher-order oligomers on a HeLa cell membrane. We further demonstrate that the heterogeneous organizations can be regulated by various stimuli at different degrees. The receptor-binding ligands, agonist SDF-1α and antagonist AMD3100, can induce the dimerization of CXCR4 to 33.1 and 20.3%, respectively. In addition, cytochalasin D, which inhibits actin polymerization, similarly prompts significant dimerization of CXCR4 to 30.9%. The multi-pathway organization regulation will provide an insight for understanding the oligomerization mechanism of CXCR4 as well as for elucidating their physiological functions.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qian Zhang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhenzhen Feng
- Technical Center of Qingdao Customs District, Qingdao 266500, China
| | - Jian Mao
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiang Hu
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoyun Wei
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Simin Bi
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guangyong Qin
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
19
|
Yang H, Wu Y, Ruan H, Guo F, Liang Y, Qin G, Liu X, Zhang Z, Yuan J, Fang X. Surface-Engineered Gold Nanoclusters for Stimulated Emission Depletion and Correlated Light and Electron Microscopy Imaging. Anal Chem 2022; 94:3056-3064. [PMID: 35142221 DOI: 10.1021/acs.analchem.1c03935] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stimulated emission depletion (STED) nanoscopy is an emerging super-resolution imaging platform for the study of the cellular structure. Developing suitable fluorescent probes of small size, good photostability, and easy functionalization is still in demand. Herein, we introduce a new type of surface-engineered gold nanoclusters (Au NCs) that are ultrasmall (1.7 nm) and ultrabright (QY = 60%) for STED bioimaging. A rigid shell formed by l-arginine (l-Arg) and 6-aza-2-thiothymine (ATT) on the Au NC surface enables not only its strong fluorescence in aqueous solution but also its easy chemical modification for specific biomolecule labeling. Au NCs show remarkable performance as STED nanoprobes, including high depletion efficiency, good photobleaching resistance, and low saturation intensity. Super-resolution imaging has been achieved with these Au NCs, and targeted nanoscopic imaging of cellular tubulin has been demonstrated. Moreover, the circular structure of lysosomes in live cells has been revealed. As a Au NC is also an ideal probe for electron microscopy, dual imaging of Aβ42 aggregates with the single labeling probe of Au NCs has been realized in correlative light and electron microscopy (CLEM). This work reports, for the first time, the application of Au NCs as a novel probe in STED and CLEM imaging. With their excellent properties, Au NCs show promising potential for nanoscale bioimaging.
Collapse
Affiliation(s)
- Hongwei Yang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hefei Ruan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Guo
- Analysis and Testing Center, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China
| | - Yuxin Liang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gege Qin
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinghe Yuan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
20
|
M. J, S. S, M. M, D. P. Improved citric acid-derived carbon dots synthesis through microwave-based heating in a hydrothermal pressure vessel. RSC Adv 2022; 12:32401-32414. [DOI: 10.1039/d2ra06420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Carbon dots (CDs) synthesis from citric acid, ethylenediamine, and formamide by microwave-assisted hydrothermal carbonization in a pressurized vessel.
Collapse
Affiliation(s)
- Jorns M.
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Strickland S.
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Mullins M.
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Pappas D.
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
21
|
Jeong S, Widengren J, Lee JC. Fluorescent Probes for STED Optical Nanoscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:21. [PMID: 35009972 PMCID: PMC8746377 DOI: 10.3390/nano12010021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Progress in developing fluorescent probes, such as fluorescent proteins, organic dyes, and fluorescent nanoparticles, is inseparable from the advancement in optical fluorescence microscopy. Super-resolution microscopy, or optical nanoscopy, overcame the far-field optical resolution limit, known as Abbe's diffraction limit, by taking advantage of the photophysical properties of fluorescent probes. Therefore, fluorescent probes for super-resolution microscopy should meet the new requirements in the probes' photophysical and photochemical properties. STED optical nanoscopy achieves super-resolution by depleting excited fluorophores at the periphery of an excitation laser beam using a depletion beam with a hollow core. An ideal fluorescent probe for STED nanoscopy must meet specific photophysical and photochemical properties, including high photostability, depletability at the depletion wavelength, low adverse excitability, and biocompatibility. This review introduces the requirements of fluorescent probes for STED nanoscopy and discusses the recent progress in the development of fluorescent probes, such as fluorescent proteins, organic dyes, and fluorescent nanoparticles, for the STED nanoscopy. The strengths and the limitations of the fluorescent probes are analyzed in detail.
Collapse
Affiliation(s)
- Sejoo Jeong
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, Korea;
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm 10691, Sweden;
| | - Jong-Chan Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, Korea;
- New Biology Research Center, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, Korea
| |
Collapse
|
22
|
He H, Chen X, Feng Z, Liu L, Wang Q, Bi S. Nanoscopic Imaging of Nucleolar Stress Enabled by Protein-Mimicking Carbon Dots. NANO LETTERS 2021; 21:5689-5696. [PMID: 34181434 DOI: 10.1021/acs.nanolett.1c01420] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The nucleolus is a central hub for coordinating cellular stress responses during cancer development and treatment. Accurate identification of nucleolar stress response is crucially desired for nucleolus-based diagnostics and therapeutics but technically challenging due to the need to address the ultrastructural analysis. Here, we report a protein-like CD with the integration of fluorescent blinking domains and RNA-binding motifs, which offers the ability to perform enhanced super-resolution imaging of the nucleolar ultrastructure. This image allows extraction of multidimensional information from the nucleolus for accurate distinguishment of different cells from the same cell types. Furthermore, we demonstrate for the first time this CD-depicted nucleolar ultrastructure as a sensitive hallmark to identify and discriminate subtle responses to various stressors as well as to afford RNA-related information that has been inaccessible by conventional immunofluorescence methods. This protein-mimicking CD could become a broadly useful probe for nucleolar stress studies in cell diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoliang Chen
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhenzhen Feng
- Technical Center of Qingdao Customs District, Qingdao 266500, China
| | - Lihua Liu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qian Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Simin Bi
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
23
|
Jorns M, Pappas D. A Review of Fluorescent Carbon Dots, Their Synthesis, Physical and Chemical Characteristics, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1448. [PMID: 34070762 PMCID: PMC8228846 DOI: 10.3390/nano11061448] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
Carbon dots (CDs) are a particularly useful type of fluorescent nanoparticle that demonstrate biocompatibility, resistance to photobleaching, as well as diversity in composition and characteristics amongst the different types available. There are two main morphologies of CDs: Disk-shaped with 1-3 stacked sheets of aromatic carbon rings and quasi-spherical with a core-shell arrangement having crystalline and amorphous properties. They can be synthesized from various potentially environmentally friendly methods including hydrothermal carbonization, microwaving, pyrolysis or combustion, and are then purified via one or more methods. CDs can have either excitation wavelength-dependent or -independent emission with each having their own benefits in microscopic fluorescent imaging. Some CDs have an affinity for a particular cell type, organelle or chemical. This property allows the CDs to be used as sensors in a biological environment and can even provide quantitative information if the quenching or intensity of their fluorescence is dependent on the concentration of the analyte. In addition to fluorescent imaging, CDs can also be used for other applications including drug delivery, quality control, photodynamic therapy, and photocatalysis.
Collapse
Affiliation(s)
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
24
|
Wang Q, Feng Z, He H, Hu X, Mao J, Chen X, Liu L, Wei X, Liu D, Bi S, Wang X, Ge B, Yu D, Huang F. Nonblinking carbon dots for imaging and tracking receptors on a live cell membrane. Chem Commun (Camb) 2021; 57:5554-5557. [PMID: 33969837 DOI: 10.1039/d1cc01120k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Blinking occurs with nearly all fluorophores including organic dyes, fluorescent proteins, semiconductor quantum dots and carbon dots (CDs). We developed non-blinking and photoresistant fluorescent CDs by introducing multiple aromatic domains onto a single carbon dot and demonstrated their great potential for imaging and tracking of receptors on a live cell membrane.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Thompson S, Pappas D. Protein-, polymer-, and silica-based luminescent nanomaterial probes for super resolution microscopy: a review. NANOSCALE ADVANCES 2021; 3:1853-1864. [PMID: 34381961 PMCID: PMC8323812 DOI: 10.1039/d0na00971g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/15/2021] [Indexed: 06/13/2023]
Abstract
Super resolution microscopy was developed to overcome the Abbe diffraction limit, which effects conventional optical microscopy, in order to study the smaller components of biological systems. In recent years nanomaterials have been explored as luminescent probes for super resolution microscopy, as many have advantages over traditional fluorescent dye molecules. This review will summarize several different types of nanomaterial probes, covering quantum dots, carbon dots, and dye doped nanoparticles. For the purposes of this review the term "nanoparticle" will be limited to polymer-based, protein-based, and silica-based nanoparticles, including core-shell structured nanoparticles. Luminescent nanomaterials have shown promise as super-resolution probes, and continued research in this area will yield new advances in both materials science and biochemical microscopy at the nanometer scale.
Collapse
Affiliation(s)
- S Thompson
- Department of Chemistry and Biochemistry, Texas Tech University USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University USA
| |
Collapse
|
26
|
He H, Liu L, Chen X, Wang Q, Wang X, Nau WM, Huang F. Carbon Dot Blinking Enables Accurate Molecular Counting at Nanoscale Resolution. Anal Chem 2021; 93:3968-3975. [DOI: 10.1021/acs.analchem.0c04885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering China, University of Petroleum (East China), Qingdao 266580, China
| | - Lihua Liu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering China, University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoliang Chen
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering China, University of Petroleum (East China), Qingdao 266580, China
| | - Qian Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering China, University of Petroleum (East China), Qingdao 266580, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering China, University of Petroleum (East China), Qingdao 266580, China
| | - Werner M. Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, Bremen 28759, Germany
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering China, University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
27
|
Ye Z, Geng X, Wei L, Li Z, Lin S, Xiao L. Length-Dependent Distinct Cytotoxic Effect of Amyloid Fibrils beyond Optical Diffraction Limit Revealed by Nanoscopic Imaging. ACS NANO 2021; 15:934-943. [PMID: 33320527 DOI: 10.1021/acsnano.0c07555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fibrillar species have been proposed to play an essential role in the cytotoxicity of amyloid peptide and the pathogenesis of neurodegenerative diseases. Discrimination of Aβ aggregates in situ at high spatial resolution is therefore significant for the development of a therapeutic method. In this work, we adopt a rhodamine-like structure as luminescent centers to fabricate carbonized fluorescent nanoparticles (i.e., carbon dots, RhoCDs) with tunable emission wavelengths from green to red and burst-like photoblinking property for localization-based nanoscopic imaging. These RhoCDs contain lipophilic cationic and carboxyl groups which can specifically bind with Aβ1-40 aggregates via electrostatic interaction and hydrogen bonding. According to the nanoscopic imaging in the Aβ1-40 fibrillation and disaggregation process, different types of Aβ1-40 aggregates beyond the optical diffraction limit have been disclosed. Additionally, length-dependent toxic effect of Aβ1-40 aggregates beyond the optical diffraction limit is unveiled. Short amyloid assemblies with length of 187 ± 3.9 nm in the early stage are more toxic than the elongated amyloid fibrils. Second, disassembly of long fibrils into short species by Gramicidin S (GS-2) peptide might enhance the cytotoxicity. These results lay the foundation to develop functional fluorophore for nanoscopic imaging and also provide deep insight into morphology-dependent cytotoxicity from amyloid peptides.
Collapse
Affiliation(s)
- Zhongju Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Geng
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Wei
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Zhaohui Li
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shen Lin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
He H, Liu D, Feng Z, Guo A, Liu L, Chen X. Antifade Carbon Dots on a Plasmonic Substrate for Enhanced Protein Detection in Immunotherapy. ACS Sens 2020; 5:4027-4034. [PMID: 33253549 DOI: 10.1021/acssensors.0c01983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluorescence microscopic analysis of checkpoint protein expression is capable of predicting clinical outcomes for checkpoint blockade immunotherapy. However, accurate detection of their expression levels is hindered by fluorophore photobleaching and cell autofluorescence. We now develop a sensitive and robust fluorescence microscopy method that uses antifade graphite-structured carbon dots (GCDs) on a plasmonic Ag substrate (named ACPAS) for the accurate detection of checkpoint proteins in immunotherapy. In ACPAS, a Ag substrate is used to enhance the fluorescence of GCDs while a continuous illumination is implemented to quench cell autofluorescence, thus enabling a dramatic improvement in the signal-to-background ratio by up to 33-fold. We use ACPAS to monitor programmed death ligand-1 (PD-L1) expression levels on various tumor cells and finely differentiate their microscopic changes in combination with chemokine receptor CXCR4-targeted treatments. ACPAS analysis reveals for the first time that CXCR4 agonist (SDF-1α) and antagonist (AMD3100) can potentiate PD-L1 expression by down-regulating CXCR4 expression on tumor cells, which provides valuable information on the development of anti-PD-L1 and anti-CXCR4 combination therapy. We envision that ACPAS will become a broadly useful tool for protein expression studies in biomedicine and life sciences.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Di Liu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhenzhen Feng
- Technical Center of Qingdao Customs District, Qingdao 266500, China
| | - Aijun Guo
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Lihua Liu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoliang Chen
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
29
|
Ma Y, Ye Z, Zhang C, Wang X, Li HW, Wong MS, Luo HB, Xiao L. Deep Red Blinking Fluorophore for Nanoscopic Imaging and Inhibition of β-Amyloid Peptide Fibrillation. ACS NANO 2020; 14:11341-11351. [PMID: 32857496 DOI: 10.1021/acsnano.0c03400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Deposition and aggregation of β-amyloid (Aβ) peptides are demonstrated to be closely related to the pathogenesis of Alzheimer's disease (AD). Development of functional molecules capable of visualizing Aβ1-40 aggregates with nanoscale resolution and even modulating Aβ assembly has attracted great attention recently. In this work, we use monocyanine fluorophore as the lead structure to develop a set of deep red carbazole-based cyanine molecules, which can specifically bind with Aβ1-40 fibril via electrostatic and van der Waals interactions. Spectroscopic and microscopic characterizations demonstrate that one of these fluorophores, (E)-1-(2-(2-methoxyethoxy)ethyl)-4-(2-(9-methyl-9H-carbazol-3-yl)vinyl) quinolinium iodide (me-slg) can bind to Aβ1-40 aggregates with strong fluorescence enhancement. The photophysical properties of me-slg at the single-molecule level, including low "on/off" duty cycle, high photon output, and sufficient switching cycles, enable real-time nanoscopic imaging of Aβ1-40 aggregates. Morphology-dependent toxic effect of Aβ1-40 aggregates toward PC12 cells is unveiled from in situ nanoscopic fluorescence imaging. In addition, me-slg displays a strong inhibitory effect on Aβ1-40 fibrillation in a low inhibitor-protein ratio (e.g., I:P = 0.2). A noticeably reduced cytotoxic effect of Aβ1-40 after the addition of me-slg is also confirmed. These results afford promising applications in the design of a nanoscopic imaging probe for amyloid fibril as well as the development of inhibitors to modulate the fibrillation process.
Collapse
Affiliation(s)
- Yuanyuan Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongju Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chen Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xueli Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Man Shing Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
Liu Z, Liu J, Wang X, Mi F, Wang D, Wu C. Fluorescent Bioconjugates for Super-Resolution Optical Nanoscopy. Bioconjug Chem 2020; 31:1857-1872. [DOI: 10.1021/acs.bioconjchem.0c00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhihe Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Jie Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiaodong Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Feixue Mi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Dan Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| |
Collapse
|
31
|
Thompson S, Pappas D. Core Size does not Affect Blinking Behavior of Dye-Doped Ag@SiO 2 Core-Shell Nanoparticles for Super-Resolution Microscopy. RSC Adv 2020; 10:8735-8743. [PMID: 35356036 PMCID: PMC8963217 DOI: 10.1039/c9ra10421f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dye-doped nanoparticles have been investigated as bright, luminescent labels for super-resolution microscopy via localization methods. One key factor in super-resolution is the size of the luminescent label, which in some cases results in a frame shift between the label target and the label itself. Ag@SiO2 core–shell nanoparticles, doped with organic fluorophores, have shown promise as super-resolution labels. One key aspect of these nanoparticles is that they blink under certain conditions, allowing super-resolution localization with a single excitation source in aqueous solution. In this work, we investigated the effects of both the Ag core and the silica (SiO2) shell on the self-blinking properties of these nanoparticles. Both core size and shell thickness were manipulated by altering the reaction time to determine core and shell effects on photoblinking. Size and shell thickness were investigated individually under both dry and hydrated conditions and were then doped with a 1 mM solution of Rhodamine 110 for analysis. We observed that the cores themselves are weakly luminescent and are responsible for the blinking observed in the fully-synthesized metal-enhanced fluorescence nanoparticles. There was no statistically significant difference in photoblinking behavior—both intensity and duty cycle—with decreasing core size. This observation was used to synthesize smaller nanoparticles ranging from approximately 93 nm to 110 nm as measured using dynamic light scattering. The blinking particles were localized via super-resolution microscopy and show single particle self-blinking behavior. As the core size did not impact blinking performance or intensity, the nanoparticles can instead be tuned for optimal size without sacrificing luminescence properties. Dye-doped nanoparticles have been investigated as bright, luminescent labels for super-resolution microscopy via localization methods.![]()
Collapse
Affiliation(s)
- S Thompson
- Texas Tech University Department of Chemistry and Biochemistry, Lubbock, TX, USA
| | - Dimitri Pappas
- Texas Tech University Department of Chemistry and Biochemistry, Lubbock, TX, USA
| |
Collapse
|
32
|
Liu X, Chen SY, Chen Q, Yao X, Gelléri M, Ritz S, Kumar S, Cremer C, Landfester K, Müllen K, Parekh SH, Narita A, Bonn M. Nanographenes: Ultrastable, Switchable, and Bright Probes for Super-Resolution Microscopy. Angew Chem Int Ed Engl 2019; 59:496-502. [PMID: 31657497 PMCID: PMC6972658 DOI: 10.1002/anie.201909220] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Indexed: 01/03/2023]
Abstract
Super‐resolution fluorescence microscopy has enabled important breakthroughs in biology and materials science. Implementations such as single‐molecule localization microscopy (SMLM) and minimal emission fluxes (MINFLUX) microscopy in the localization mode exploit fluorophores that blink, i.e., switch on and off, stochastically. Here, we introduce nanographenes, namely large polycyclic aromatic hydrocarbons that can also be regarded as atomically precise graphene quantum dots, as a new class of fluorophores for super‐resolution fluorescence microscopy. Nanographenes exhibit outstanding photophysical properties: intrinsic blinking even in air, excellent fluorescence recovery, and stability over several months. As a proof of concept for super‐resolution applications, we use nanographenes in SMLM to generate 3D super‐resolution images of silica nanocracks. Our findings open the door for the widespread application of nanographenes in super‐resolution fluorescence microscopy.
Collapse
Affiliation(s)
- Xiaomin Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Shih-Ya Chen
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Qiang Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xuelin Yao
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Márton Gelléri
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Sandra Ritz
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Sachin Kumar
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Christoph Cremer
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany.,Department of Physics, University of Mainz (JGU), Mainz, Germany.,Institute for Pharmacy and Molecular Biotechnology (IPMB), and, Kirchhoff Institute for Physics (KIP), University of Heidelberg, Heidelberg, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Institute of Physical Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sapun H Parekh
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
33
|
Liu X, Chen S, Chen Q, Yao X, Gelléri M, Ritz S, Kumar S, Cremer C, Landfester K, Müllen K, Parekh SH, Narita A, Bonn M. Nanographene: ultrastabile, schaltbare und helle Sonden für die hochauflösende Mikroskopie. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xiaomin Liu
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Shih‐Ya Chen
- Institut für Molekularbiologie gGmbH (IMB) Mainz Deutschland
| | - Qiang Chen
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Xuelin Yao
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Márton Gelléri
- Institut für Molekularbiologie gGmbH (IMB) Mainz Deutschland
| | - Sandra Ritz
- Institut für Molekularbiologie gGmbH (IMB) Mainz Deutschland
| | - Sachin Kumar
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
- Department of Biomedical Engineering University of Texas at Austin Austin TX USA
| | - Christoph Cremer
- Institut für Molekularbiologie gGmbH (IMB) Mainz Deutschland
- Physikalisches Institut Universität Mainz (JGU) Mainz Deutschland
- Institut für Pharmazie und Molekulare Biotechnologie (IPMB), und Kirchhoff-Institut für Physik (KIP) Universität Heidelberg Heidelberg Deutschland
| | - Katharina Landfester
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Klaus Müllen
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
- Institut für Physikalische Chemie Johannes Gutenberg-Universität Mainz Mainz Deutschland
| | - Sapun H. Parekh
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
- Department of Biomedical Engineering University of Texas at Austin Austin TX USA
| | - Akimitsu Narita
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University Okinawa Japan
| | - Mischa Bonn
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| |
Collapse
|
34
|
Chakraborty C, Thompson S, Lyons VJ, Snoeyink C, Pappas D. Modulation and study of photoblinking behavior in dye doped silver-silica core-shell nanoparticles for localization super-resolution microscopy. NANOTECHNOLOGY 2019; 30:455704. [PMID: 31357181 PMCID: PMC7278086 DOI: 10.1088/1361-6528/ab368d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Blinking of fluorescent nanoparticles is a compelling phenomenon with widely debated mechanisms. The ability to inhibit or control blinking is important for applications in the field of optical, semiconductor and fluorescent imaging. Self-blinking nanomaterials are also attractive labels for localization-based super-resolution microscopy. In this work, we have synthesized silver core silica nanoparticles (Ag@SiO2) doped with Rhodamine 110 and studied the parameters that affect blinking. We found that under nitrogen rich conditions the nanoparticles shifted towards higher duty cycles. Also, it was found that hydrated nanoparticles showed a less drastic response to nitrogen rich conditions as compared to dried nanoparticles, indicating that surrounding matrix played a role in the response of nanoparticles to molecular oxygen. Further, the blinking is not a multi-body phenomena, super-resolution localization combined with intensity histogram analysis confirmed that single particles are emitting.
Collapse
Affiliation(s)
- Chumki Chakraborty
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
- Both authors contributed equally to this work
| | - S Thompson
- Department of Chemistry, Texas Tech University, Lubbock, TX 79409, United States of America
- Both authors contributed equally to this work
| | - Veronica J Lyons
- Department of Chemistry, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Craig Snoeyink
- Department of Mechanical Engineering, University at Buffalo, Buffalo, NY 14260, United States of America
| | - Dimitri Pappas
- Department of Chemistry, Texas Tech University, Lubbock, TX 79409, United States of America
| |
Collapse
|
35
|
Ye Z, Wei L, Li Y, Xiao L. Efficient Modulation of β-Amyloid Peptide Fibrillation with Polymer Nanoparticles Revealed by Super-Resolution Optical Microscopy. Anal Chem 2019; 91:8582-8590. [PMID: 31148450 DOI: 10.1021/acs.analchem.9b01877] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
β-Amyloid peptide (Aβ) aggregation is the essential hallmark of neurodegenerative disorders such as Alzheimer's disease. Efficient inhibitors are highly desired for the prevention of Aβ assembly that has been considered as the primary therapeutic strategy for neurodegenerative diseases. Apart from this, visualization of the aggregates and morphology at high spatial resolution is widely considered of crucial significance on biological treatment. In this work, we have developed small-sized (with diameter of ∼4.7 nm) and positively charged fluorescent conjugated polymer nanoparticles (CPNPs) with strong inhibition effect on Aβ1-40 peptides fibrillation. Interestingly, the CPNPs also possess excellent photophysical properties, including high photon counts, robust blinking, and repetitive fluorescence switching, that are especially suitable for localization-based super-resolution imaging. Spatial resolution of ∼20 nm for these blinking CPNPs is readily achieved. According to the optical microscopic results, it was found that binding of CPNPs to the terminal of seed fibrils can effectively inhibit the fibrillation process. Owing to these attractive biological and unique photophysical properties, the small-sized CPNPs show high potential in a variety of super-resolution based biological applications.
Collapse
Affiliation(s)
- Zhongju Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin , 300071 , China
| | - Lin Wei
- Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha , 410081 , China
| | - Yiliang Li
- Department of Rehabilitation Medicine , The Affiliated Baoan Hospital of Southern Medical University, The Second Affiliated Hospital of Shenzhen University, The People's Hospital of Baoan Shenzhen , Shenzhen , 510530 , China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin , 300071 , China
| |
Collapse
|
36
|
Affiliation(s)
- Pieter E. Oomen
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
| | - Mohaddeseh A. Aref
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
| | - Ibrahim Kaya
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 43180 Mölndal, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Laboratory, University of Gothenburg and Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Nhu T. N. Phan
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Laboratory, University of Gothenburg and Chalmers University of Technology, Gothenburg 41296, Sweden
- University of Göttingen Medical Center, Institute of Neuro- and Sensory Physiology, Göttingen 37073, Germany
| | - Andrew G. Ewing
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Laboratory, University of Gothenburg and Chalmers University of Technology, Gothenburg 41296, Sweden
| |
Collapse
|
37
|
He H, Li S, Shi X, Wang X, Liu X, Wang Q, Guo A, Ge B, Khan NU, Huang F. Quantitative Nanoscopy of Small Blinking Graphene Nanocarriers in Drug Delivery. Bioconjug Chem 2018; 29:3658-3666. [DOI: 10.1021/acs.bioconjchem.8b00589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Shan Li
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xinjian Shi
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xu Liu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qian Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Aijun Guo
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Naseer Ullah Khan
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
38
|
Wijesooriya CS, Nyamekye CKA, Smith EA. Optical Imaging of the Nanoscale Structure and Dynamics of Biological Membranes. Anal Chem 2018; 91:425-440. [DOI: 10.1021/acs.analchem.8b04755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Charles K. A. Nyamekye
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Emily A. Smith
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| |
Collapse
|
39
|
Zhi B, Cui Y, Wang S, Frank BP, Williams DN, Brown RP, Melby ES, Hamers RJ, Rosenzweig Z, Fairbrother DH, Orr G, Haynes CL. Malic Acid Carbon Dots: From Super-resolution Live-Cell Imaging to Highly Efficient Separation. ACS NANO 2018; 12:5741-5752. [PMID: 29883099 DOI: 10.1021/acsnano.8b01619] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
As-synthesized malic acid carbon dots are found to possess photoblinking properties that are outstanding and superior compared to those of conventional dyes. Considering their excellent biocompatibility, malic acid carbon dots are suitable for super-resolution fluorescence localization microscopy under a variety of conditions, as we demonstrate in fixed and live trout gill epithelial cells. In addition, during imaging experiments, the so-called "excitation wavelength-dependent" emission was not observed for individual as-made malic acid carbon dots, which motivated us to develop a time-saving and high-throughput separation technique to isolate malic acid carbon dots into fractions of different particle size distributions using C18 reversed-phase silica gel column chromatography. This post-treatment allowed us to determine how particle size distribution influences the optical properties of malic acid carbon dot fractions, that is, optical band gap energies and photoluminescence behaviors.
Collapse
Affiliation(s)
- Bo Zhi
- Department of Chemistry , University of Minnesota-Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Yi Cui
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Shengyang Wang
- Department of Chemistry , University of Minnesota-Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Benjamin P Frank
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Denise N Williams
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 , United States
| | - Richard P Brown
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 , United States
| | - Eric S Melby
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Robert J Hamers
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Zeev Rosenzweig
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , Baltimore , Maryland 21250 , United States
| | - D Howard Fairbrother
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Galya Orr
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Christy L Haynes
- Department of Chemistry , University of Minnesota-Twin Cities , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
40
|
Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat Methods 2018; 15:415-423. [PMID: 29808018 DOI: 10.1038/s41592-018-0012-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/16/2018] [Indexed: 01/23/2023]
Abstract
We review the use of luminescent nanoparticles in super-resolution imaging and single-molecule tracking, and showcase novel approaches to super-resolution imaging that leverage the brightness, stability, and unique optical-switching properties of these nanoparticles. We also discuss the challenges associated with their use in biological systems, including intracellular delivery and molecular targeting. In doing so, we hope to provide practical guidance for biologists and continue to bridge the fields of super-resolution imaging and nanoparticle engineering to support their mutual advancement.
Collapse
|