1
|
Vaas APJP, Yu RB, Quirino JP. Stacking in electrophoresis by electroosmotic flow-assisted admicelle to solvent microextraction. Anal Bioanal Chem 2024:10.1007/s00216-024-05554-9. [PMID: 39358467 DOI: 10.1007/s00216-024-05554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
An in-line sample concentration method for capillary electrophoresis called admicelle to solvent microextraction was proposed. In this technique, analytes were trapped in the cetyltrimethylammonium bromide admicelles formed in situ on the negatively charged capillary surface. A solvent plug was then partially injected hydrodynamically to collapse the admicelles, which liberated and focused the analytes at the solvent front. Voltage was applied across the capillary, completing the stacking process. Various solvents, namely, methanol, ethanol, and acetonitrile, were investigated. The optimal solvent for solvent to admicelle microextraction was 30% acetonitrile in 24 mM sodium tetraborate (pH 9.2). Sample injection time and solvent to sample injection ratio were also optimised. For this demonstration, the optimum sample injection time and solvent to sample injection ratio were 320 s and 1:2, respectively. Using the optimum conditions, UV detection sensitivity was enhanced 132-176-fold for the model anions. The LOQ, %intra-/inter-day (n = 6/n = 12, 2 days) repeatability, and linearity (R2) of admicelle to solvent microextraction were 0.08-2 µg/mL, 1.9-3.9%, 2.8-4.9%, and 0.992, respectively. Admicelle to solvent microextraction was applied to the analysis of various fortified water samples, with good repeatability (%RSD = 0.5-3.6%), and no matrix interferences.
Collapse
Affiliation(s)
- Andaravaas Patabadige Jude P Vaas
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, TAS, 7001, Australia
| | - Raymond B Yu
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, TAS, 7001, Australia.
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of the Philippines Manila, Manila, Philippines.
| | - Joselito P Quirino
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, TAS, 7001, Australia
| |
Collapse
|
2
|
Abdul Keyon AS, Ng N, Breadmore MC. Advancements in Multiple-Step On-Line Preconcentration Techniques for Enhanced Sensitivity in Capillary Electrophoresis. J Sep Sci 2024; 47:e202400519. [PMID: 39304608 DOI: 10.1002/jssc.202400519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Multiple-step on-line preconcentration, a combination of at least two stacking techniques has been developed to increase the sensitivity in capillary electrophoresis (CE) for analytes in various samples. It is usually conducted sequentially, or in some cases, synergistically, where different stacking modes occur simultaneously. Multiple-step techniques allow simultaneous preconcentration and separation of various kinds of analytes in different complex samples in a single CE run. This review aims to provide recent advances in multiple-step on-line preconcentration techniques in CE. We critically review technical papers published for the last 7 years up until July 2024, subsequently organized according to the combination of the main stacking techniques, that is, field amplification, large volume sample stacking, transient isotachophoresis, micelle to solvent or micelle to cyclodextrin stacking, and others. The procedures, fundamental mechanism, analytical figures of merits achieved, and their feasibility for complicated sample matrices are reviewed.
Collapse
Affiliation(s)
- Aemi Syazwani Abdul Keyon
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - NyukTing Ng
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - Michael Charles Breadmore
- Australian Centre for Research on Separation Science, School of Natural Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
3
|
Qin Y, Gao W, Xu J, Ping L, Tong S, Liu B, Chu C. A simple and green offline-online capillary electrophoresis stacking strategy for the simultaneous determination of hydrophobic compounds in complicated samples using sodium dodecyl sulfate as the solubilizer and pseudophase. Anal Chim Acta 2024; 1311:342736. [PMID: 38816165 DOI: 10.1016/j.aca.2024.342736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Capillary electrophoresis is a powerful analytical method featured with high separation efficiency, minimal sample requirements, and reduced organic solvents consumption. However, its low sensitivity hinders its wide application in determination of trace analytes especially for the weakly ionized hydrophobic compounds. Offline and Online capillary electrophoresis stacking methods are more favored to enhance detection sensitivity of analytes. The determination of two sesquiterpenes and an alkaloid from the dried root of Lindera aggregata merged as an example for developing a simple, sensitive and green method for the simultaneous determination of two hydrophobic compounds in complicated matrix samples. RESULTS An offline-online capillary electrophoresis stacking strategy by integrating micro matrix solid phase dispersion with field-amplified sample stacking and micelle to cyclodextrin stacking has been developed for the simultaneous determination of dehydrocostus lactone, linderane, norisoboldine in complex matrices. The optimized parameters were set at 65 mM sodium dihydrogen phosphate, 35 % methanol, 180 s for sample injection and 210 s for cyclodextrin injection, 20 mM sodium dodecyl sulfate of sample matrix for online stacking; 1:1 sample to MCM-48, 180 s grinding time, and 1000 μL of 20 mM sodium dodecyl sulfate elution for offline procedure. Under the optimum conditions, the method showed good linearity with correlation coefficients (R2 ≥ 0.9927), low limits of detection within the range of 25-50 ng mL-1, satisfactory repeatability and reproducibility below 3.98 %, and acceptable recoveries between 94 % and 97 %. The developed method was successfully applied to two real samples, the root of L. aggregata and rat feces. SIGNIFICANCE Sodium dodecyl sulfate is firstly used as an eluent in micro matrix solid phase dispersion and plays a dual role throughout the analytical procedure, including extraction solvent in sample preparation and micelle pseudophase during online stacking. It brings great procedure convenience to the method. The sensitivity of this method can improve up to 1283-folds compared with the normal mode. Moreover, the overall strategy indicates satisfied green potential evaluated by greenness assessment tools.
Collapse
Affiliation(s)
- Yaxin Qin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Wei Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Jian Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Li Ping
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Biao Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
4
|
Jin HF, Shi Y, Shen QX, Cao J, Ye LH. On-line concentration and separation of multiple derivatized monosaccharides from edible fruit with cyclodextrin-encapsulated sweeping by micellar electrokinetic chromatography. J Chromatogr A 2024; 1714:464563. [PMID: 38101248 DOI: 10.1016/j.chroma.2023.464563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
An on-line enrichment and separation of multiple derivatized monosaccharides with cyclodextrin-encapsulated sweeping (CDES) by micellar electrokinetic chromatography (MEKC) was presented. Five monosaccharides (L-(-)-Mannose, D-(+)-Glucose, D-(-)-Ribose, D-(+)-Xylose, and L-(+)-Rhamnose) were derivatized with 1-phenyl-3-methyl-5-pyrazolone, subsequently concentrated and separated by MEKC. The optimized conditions were as follows: 50 mM phosphoric acid (PA), 100 mM sodium dodecyl sulfate (SDS), and 30 % (v/v) methanol in background solution; 140 s injection of sample solution containing 50 mM CD and 100 mM PA, followed by 90 s injection of 40 mM SDS solution. Under the optimized conditions, the correlation coefficients ≥ 0.9953, and the limits of detection ranged from 4.2 to 7.4 ng/mL. Relative standard deviation values ranged from 0.24-4.23 %, and sensitivity enrichment factors were in the range of 53-82 compared with typical injection (50 mbar, 3 s). The CDES-MEKC method was successfully applied to Jujube with good recoveries of 84.22-104.33 %. The method provides new ideas for the on-line enrichment and detection of trace monosaccharides and even other target analytes in foods with complex matrices.
Collapse
Affiliation(s)
- Huang-Fei Jin
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Ying Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Qian-Xue Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Li-Hong Ye
- Department of Traditional Chinese Medicine, Hangzhou Red Cross Hospital, Hangzhou 310003, PR China.
| |
Collapse
|
5
|
Jin HF, Shi Y, Jiao YH, Fei TH, Cao J, Ye LH. Two-step pressure injection-assisted online enrichment of herbicides from foods with affinity micelle sweeping by micellar electrokinetic chromatography. J Chromatogr A 2023; 1706:464258. [PMID: 37544236 DOI: 10.1016/j.chroma.2023.464258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/09/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
A novel online two-step pressure injection-assisted stacking preconcentration method, which involves sweeping and affinity micelles in micellar electrokinetic chromatography was developed to simultaneously measure various organic anions. The micellar solution was a mixed solution that contained 0.3 mM didodecyldimethylammonium bromide and 20 mM borax. After the micellar solution was injected for 60 s, the tested analytes prepared in 20 mM borax were introduced into the capillary for 150 s. The key experimental factors that influenced the separation and sensitivity were investigated and optimized, including the concentration and injection time of the micellar solution, the concentration of borax in the sample solution, the concentration of sodium dodecyl sulfate and borax in the background electrolyte (BGE), the content of acetonitrile in the BGE and the injection time of the sample solution. Compared with typical injection methods, this method achieved sensitivity enhancement factors ranging from 85 to 97 under optimized conditions. Good linearity for matrix-matched calibration was established for all analytes with R2 values of 0.9986-0.9996. The intraday (n = 6) and interday (n = 6) precisions of the method were less than 2.85% when expressed as relative standard deviations. When the method was applied to analyze rice and dried ginger samples, analyte recoveries ranged from 85.81% to 106.59%. Through sweeping and affinity micelles, stacking preconcentration method was successfully employed to analyze trace amounts of fenoprop and 2,4-dichlorophenoxyacetic acid in rice and dried ginger samples.
Collapse
Affiliation(s)
- Huang-Fei Jin
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Ying Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yan-Hua Jiao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting-Hong Fei
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Li-Hong Ye
- Department of Traditional Chinese Medicine, Hangzhou Red Cross Hospital, Hangzhou 310003, PR China.
| |
Collapse
|
6
|
Yu RB, Quirino JP. Pseudophase-aided in-line sample concentration for capillary electrophoresis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Yu Y, Shi M, Zhu S, Cao J. The two‐phase amphiphilic preconcentration based on surfactants to enrich phenolic compounds from diluted plant extracts and rat urine by micellar electrokinetic chromatography. Electrophoresis 2022; 43:1735-1745. [DOI: 10.1002/elps.202200044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 06/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ya‐Ling Yu
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou P. R. China
| | - Min‐Zhen Shi
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou P. R. China
| | - Si‐Chen Zhu
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou P. R. China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou P. R. China
| |
Collapse
|
8
|
Yu RB, Quirino JP. Pseudophase-to-solvent microextraction for in-line sample concentration of anionic analytes in capillary zone electrophoresis. J Chromatogr A 2022; 1679:463383. [DOI: 10.1016/j.chroma.2022.463383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|
9
|
Abstract
Multicharged cyclodextrin (CD) supramolecular assemblies, including those based on positively/negatively charged modified mono-6-deoxy-CDs, per-6-deoxy-CDs, and random 2,3,6-deoxy-CDs, as well as parent CDs binding positively/negatively charged guests, have been extensively applied in chemistry, materials science, medicine, biological science, catalysis, and other fields. In this review, we primarily focus on summarizing the recent advances in positively/negatively charged CDs and parent CDs encapsulating positively/negatively charged guests, especially the construction process of supramolecular assemblies and their applications. Compared with uncharged CDs, multicharged CDs display remarkably high antiviral and antibacterial activity as well as efficient protein fibrosis inhibition. Meanwhile, charged CDs can interact with oppositely charged dyes, drugs, polymers, and biomacromolecules to achieve effective encapsulation and aggregation. Consequently, multicharged CD supramolecular assemblies show great advantages in improving drug-delivery efficiency, the luminescence properties of materials, molecular recognition and imaging, and the toughness of supramolecular hydrogels, in addition to enabling the construction of multistimuli-responsive assemblies. These features are anticipated to not only promote the development of CD-based supramolecular chemistry but also contribute to the rapid exploitation of these assemblies in diverse interdisciplinary applications.
Collapse
Affiliation(s)
- Zhixue Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
10
|
Ahmed MA, Quirino JP. Micelle to cyclodextrin stacking in open-tubular liquid chromatography using capillaries coated with surfactant admicelles. Anal Bioanal Chem 2021; 414:1415-1423. [PMID: 34773144 DOI: 10.1007/s00216-021-03773-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
In-line sample concentration by micelle to cyclodextrin stacking (MCDS) in open-tubular liquid chromatography (OT-LC) with UV detection is described. OT-LC of two sets of analytes (small-molecule drugs and neutral alkenylbenzenes) was by the use of a fused-silica capillary that was coated with admicelles of didodecyldimethyl ammonium bromide (DDAB). These admicelles acted as a stationary chromatographic pseudophase. The mobile phase was 25 mM sodium tetraborate in 10% methanol, pH 9.2. MCDS was by long pressure injection of samples prepared in 10 mM hexadecyltrimethyl ammonium bromide (CTAB) in 25 mM sodium tetraborate, pH 9.2 (buffer), followed by injection of 50 mM α-CD in buffer (CD solution). Stacking was by application of voltage at -20 kV prior to pressure-driven OT-LC. The factors that influenced MCDS such as type and concentration of CD, concentration of CTAB in the sample, injection time ratio of the sample and the CD solution and stacking time were studied. Under optimised conditions, sensitivity enhancement factors (SEFs) were between 19 and 23, linear ranges were between 0.5 and 10 µg/mL with r2 > 0.99 and inter-day/intra-day repeatability in retention time and peak area were ≤5.6% for the model small-molecule drugs. Application to real samples was by the determination of potentially toxic alkenylbenzenes (SEFs = 10 to 12) in basil-leaf and whole-clove extracts. The assay results were comparable to those obtained from an in-house high-performance liquid chromatography-UV method.
Collapse
Affiliation(s)
- Mohamed Adel Ahmed
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, TAS, 7001, Australia.
| |
Collapse
|
11
|
Unal DN, Yıldırım S, Kurbanoglu S, Uslu B. Current trends and roles of surfactants for chromatographic and electrochemical sensing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Kravchenko AV, Kartsova LA. Effect of Modifiers on the Electrophoretic Separation and Intercapillary Preconcentration of Biologically Active Compounds. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821090069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Cyclodextrins as mobile phase additives in open-tubular admicellar electrochromatography for achiral and chiral separations. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Kartsova LA, Makeeva DV, Bessonova EA. Current Status of Capillary Electrophoresis. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Zhen XT, Chen Y, Yang J, Dong X, Zheng H, Cao J. On-line concentration of triazine herbicides in microemulsion electrokinetic chromatography by electrokinetic injection assisted micelle to cyclodextrin stacking. J Chromatogr A 2020; 1628:461438. [PMID: 32822978 DOI: 10.1016/j.chroma.2020.461438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/29/2022]
Abstract
A fast, simple, environmentally friendly and sensitive on-line concentration method using microemulsion system as background solution (BGS) was developed for the trace detection of propazine, atrazine, simazine in food samples. The electrokinetic injection assisted micelle to cyclodextrin stacking (MCDS) was designed for the enrichment of target compounds. The factors affected enrichment performance, such as the kind of CDs, the amount of CDs, the concentration of methanol in BGS, the concentration of micelle in sample matrix, the concentration of phosphoric acid in BGS and the sample injection time were optimized. The optimized electrophoretic condition was obtained as following: 50 mM α-CD, 20 mM SDS in sample matrix., 80 mM PA and 20% MeOH (v/v) in BGS, sample solution by electrokinetic injection at -10 kV for 80 s. Under the optimized conditions described above, the linear range was 0.1-20 ug/mL with a good linear relationship with a correlation coefficient (r) ≥ 0.9985. The SEFs for the propazine, atrazine, simazine were found to be 123, 85 and 62 respectively. The proposed MCDS-MEEKC method provided an efficient method for trace analysis of triazine herbicides in honey and dendrobium officinale samples.
Collapse
Affiliation(s)
- Xiao-Ting Zhen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yan Chen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Juan Yang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin Dong
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Hui Zheng
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
16
|
A decoloration/recoloration cycling-associated photo-stimulated fuel cell to assess potential health risks caused by TiO2 nanoparticles and tris(hydroxymethyl)aminomethane. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Open-tubular admicellar electrochromatography of charged analytes. Talanta 2020; 208:120401. [PMID: 31816751 DOI: 10.1016/j.talanta.2019.120401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/23/2022]
Abstract
Fundamental studies on the separation of cationic and anionic analytes in open-tubular admicellar electrochromatography (OT-AMEC) using cetyltrimethylammonium bromide (CTAB) and fused silica capillaries are presented. OT-AMEC was compared with open-tubular admicellar liquid chromatography (OT-AMLC) by running the two methods using the same mobile phases. The mobile phases were buffered at pH ≥ 6 and contained a low concentration (above the critical surface aggregation concentration and below the critical micelle concentration) of CTAB. The stationary pseudophase of CTAB admicelles were formed at the solid surface and liquid interface inside the capillary by simply conditioning the capillary with the mobile phase. Separations were performed in a 30 cm (21.5 cm to UV detector) long and 50 μm inner diameter capillary, using low pressure (50 mbar) in OT-AMLC and high voltage (15 kV at negative polarity) in OT-AMEC. The appropriate equations for the experimental estimation of retention factor (k) values of analytes were discussed. For anionic analytes, k in OT-AMEC were carefully determined by considering the observed interaction between CTAB monomers and tested analytes. The calculated k for each analyte was found similar in OT-AMLC and OT-AMEC, although the mechanism of retention was not entirely different due to the contribution of electrophoresis in OT-AMEC. Studies on the addition of a typical (i.e., acetonitrile) and atypical modifier (i.e., nonyl-β-glucoside) into the mobile phase, and sample focusing with >10x improvement in peak height under isocratic conditions were also conducted.
Collapse
|
18
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019). Electrophoresis 2019; 41:10-35. [DOI: 10.1002/elps.201900269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
19
|
Chu C, Liu C, Jiang L, Lian L, Li J, Li H, Lv H, Yan J. On‐line synergistic stacking in capillary zone electrophoresis featuring field‐amplified sample stacking and micelle to cyclodextrin stacking in the determination of two alkaloids in complicated matrix samples. J Sep Sci 2019; 42:3009-3015. [DOI: 10.1002/jssc.201900482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Chu Chu
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou P. R. China
| | - Caijing Liu
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou P. R. China
| | - Luyi Jiang
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou P. R. China
| | - Linmin Lian
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou P. R. China
| | - Jing Li
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou P. R. China
| | - Hanbing Li
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou P. R. China
| | - Huawei Lv
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou P. R. China
| | - Jizhong Yan
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou P. R. China
| |
Collapse
|
20
|
Ghiasvand A, Feng Z, Quirino JP. Enrichment and Separation of Cationic, Neutral, and Chiral Analytes by Micelle to Cyclodextrin Stacking–Micellar Electrokinetic Chromatography. Anal Chem 2018; 91:1752-1757. [DOI: 10.1021/acs.analchem.8b03542] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Breadmore MC, Grochocki W, Kalsoom U, Alves MN, Phung SC, Rokh MT, Cabot JM, Ghiasvand A, Li F, Shallan AI, Keyon ASA, Alhusban AA, See HH, Wuethrich A, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016-2018). Electrophoresis 2018; 40:17-39. [PMID: 30362581 DOI: 10.1002/elps.201800384] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
One of the most cited limitations of capillary and microchip electrophoresis is the poor sensitivity. This review continues to update this series of biannual reviews, first published in Electrophoresis in 2007, on developments in the field of online/in-line concentration methods in capillaries and microchips, covering the period July 2016-June 2018. It includes developments in the field of stacking, covering all methods from field-amplified sample stacking and large-volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to online or in-line extraction methods that have been used for electrophoresis.
Collapse
Affiliation(s)
- Michael C Breadmore
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Wojciech Grochocki
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gdansk, Poland
| | - Umme Kalsoom
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, College of Science and Technology, University of Tasmania, Hobart, Australia
| | - Mónica N Alves
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Sui Ching Phung
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Joan M Cabot
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, College of Science and Technology, University of Tasmania, Hobart, Australia
| | - Alireza Ghiasvand
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,Department of Chemistry, Lorestan University, Khoramabad, Iran
| | - Feng Li
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Aliaa I Shallan
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, Australia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Aemi S Abdul Keyon
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Ala A Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Hong Heng See
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Mohamed Dawod
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
22
|
Šlampová A, Malá Z, Gebauer P. Recent progress of sample stacking in capillary electrophoresis (2016-2018). Electrophoresis 2018; 40:40-54. [PMID: 30073675 DOI: 10.1002/elps.201800261] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
Electrophoretic sample stacking comprises a group of capillary electrophoretic techniques where trace analytes from the sample are concentrated into a short zone (stack). This paper is a continuation of our previous reviews on the topic and brings a survey of more than 120 papers published approximately since the second quarter of 2016 till the first quarter of 2018. It is organized according to the particular stacking principles and includes chapters on concentration adjustment (Kohlrausch) stacking, on stacking techniques based on pH changes, on stacking in electrokinetic chromatography and on other stacking techniques. Where available, explicit information is given about the procedure, electrolyte(s) used, detector employed and sensitivity reached. Not reviewed are papers on transient isotachophoresis which are covered by another review in this issue.
Collapse
Affiliation(s)
- Andrea Šlampová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Zdena Malá
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petr Gebauer
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|