1
|
Fan KK, Zhou YM, Wei Y, Han RM, Wang P, Skibsted LH, Zhang JP. Peroxyl radical induced membrane instability of giant unilamellar vesicles and anti-lipooxidation protection. Biophys Chem 2022; 285:106807. [DOI: 10.1016/j.bpc.2022.106807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/20/2022] [Indexed: 11/02/2022]
|
2
|
Rezende LG, Tasso TT, Candido PHS, Baptista MS. Assessing Photosensitized Membrane Damage: Available Tools and Comprehensive Mechanisms. Photochem Photobiol 2021; 98:572-590. [PMID: 34931324 DOI: 10.1111/php.13582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Lipids are important targets of the photosensitized oxidation reactions, forming important signaling molecules, disorganizing and permeabilizing membranes, and consequently inducing a variety of biological responses. Although the initial steps of the photosensitized oxidative damage in lipids are known to occur by both Type I and Type II mechanisms, the progression of the peroxidation reaction, which leads to important end-point biological responses, is poorly known. There are many experimental tools used to study the products of lipid oxidation, but neither the methods nor their resulting observations were critically compared. In this article, we will review the tools most frequently used and the key concepts raised by them in order to rationalize a comprehensive model for the initiation and the progression steps of the photoinduced lipid oxidation.
Collapse
Affiliation(s)
- Laura G Rezende
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago T Tasso
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro H S Candido
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| | - Mauricio S Baptista
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Zhou YM, Zhang Y, Gao RY, Liu W, Wei Y, Han RM, Wang P, Zhang JP, Skibsted LH. Primary reaction intermediates of Type-I photosensitized lipid oxidation as revealed by time-resolved optical spectroscopies. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Wei Y, Zhou YM, Li YQ, Gao RY, Fu LM, Wang P, Zhang JP, Skibsted LH. Spatial effects of photosensitization on morphology of giant unilamellar vesicles. Biophys Chem 2021; 275:106624. [PMID: 34051444 DOI: 10.1016/j.bpc.2021.106624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
Singlet oxygen (1O2) formed through photosensitization may initiate oxidative destruction of biomembranes, however, the influence from the spatial organization of photosensitizers (PS) relative to membranes remains unclear. To clarify this issue, we loaded riboflavin 5'-(dihydrogen phosphate) monosodium (FMN-Na) as a hydrophilic PS into the lumen of halloysite nanotubes (HNTs), and attached the nanoassemblies (FMN-Na@HNTs), via Pickering effects, to the outer surfaces of giant unilamellar vesicles (GUVs) of phospholipids. We also prepared GUVs dopped with lumiflavin (LF) as a lipophilic PS having a 1O2 quantum yield comparable to FMN-Na. FMN-Na capsulated in HNT was characterized by a longer triplet excited state lifetime (12.1 μs) compared to FMN-Na free in solution (7.5 μs), and FMN-Na in both forms efficiently generated 1O2 upon illumination. The spatio-effects of PS on the photosensitized morphological changes of membranes were studied using conventional optical microscopy by monitoring GUV morphological changes. Upon light exposure (400-440 nm), the GUVs attached with FMN-Na@HNT merely experienced membrane deformation starting from the original spherical shape, ascribed to Type II photosensitization with 1O2 as oxidant. In contrast, photooxidation of LF dopped GUVs mainly led to membrane coarsening and budding assigned to Type I photosensitization. The spatial effects of PS on photosensitized morphological changes were related to the different lipid oxidation products generated through Type I and Type II photosensitized lipid oxidation.
Collapse
Affiliation(s)
- Yuan Wei
- Department of Chemistry, Renmin University of China, No.59 Zhongguancun Street, 100872 Beijing, China.
| | - Yi-Ming Zhou
- Department of Chemistry, Renmin University of China, No.59 Zhongguancun Street, 100872 Beijing, China.
| | - Yu-Qian Li
- Department of Chemistry, Renmin University of China, No.59 Zhongguancun Street, 100872 Beijing, China.
| | - Rong-Yao Gao
- Department of Chemistry, Renmin University of China, No.59 Zhongguancun Street, 100872 Beijing, China.
| | - Li-Min Fu
- Department of Chemistry, Renmin University of China, No.59 Zhongguancun Street, 100872 Beijing, China.
| | - Peng Wang
- Department of Chemistry, Renmin University of China, No.59 Zhongguancun Street, 100872 Beijing, China.
| | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China, No.59 Zhongguancun Street, 100872 Beijing, China.
| | - Leif H Skibsted
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark.
| |
Collapse
|
5
|
|
6
|
Chen C, Sun-Waterhouse D, Zhao J, Zhao M, Waterhouse GI, Sun W. Soybean protein isolate hydrolysates-liposomes interactions under oxidation: Mechanistic insights into system stability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Chen C, Sun‐Waterhouse D, Zhao M, Sun W. Beyond antioxidant actions: Insights into the antioxidant activities of tyr‐containing dipeptides in aqueous solution systems and liposomal systems. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Chong Chen
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
| | - Dongxiao Sun‐Waterhouse
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- School of Chemical Sciences The University of Auckland Auckland 1010 New Zealand
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Mouming Zhao
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Weizheng Sun
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| |
Collapse
|
8
|
Jiang YL, Chen BL, Yan XK, Xu Y, Zhao CC, Chen ZL, Wang P, Zhang JP, Skibsted LH. Conjugation Length Dependence of Free Radical Scavenging Efficiency of Retinal and Retinylisoflavonoid Homologues. ACS OMEGA 2020; 5:13770-13776. [PMID: 32566842 PMCID: PMC7301560 DOI: 10.1021/acsomega.0c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Retinal (C20) and the C25 and C30 homologues were compared as radical scavengers together with their C22, C27, and C32 homologues linked with daidzein through a B'3 (isoflavonoid) to oxo-carbon (aldehyde) covalent bond. Oxidation potential in acetonitrile determined by cyclic voltammetry and ionization potential calculated by density functional theory for the aldehydes and dyads (conjugates), of which the two longer are new, decreased linearly with the wavenumber for absorption maximum. The logarithm of the second-order rate constant for scavenging of the ABTS•+ increased linearly with decreasing oxidation potential suggesting that longer conjugation in the antioxidant increases the rate of electron transfer. A similar linear free energy relationship was found for the rate of scavenging DPPH•, including daidzein, which may indicate involvement of hydrogen atom transfer from an isoflavonoid phenol. Prediction of radical scavenging efficiency from visible absorption spectra was demonstrated with the perspective of rational design of bifunctional amphiphilic antioxidants.
Collapse
Affiliation(s)
- Yang-Lin Jiang
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Bai-Ling Chen
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiao-Kun Yan
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yi Xu
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Chen-Chen Zhao
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zi-Li Chen
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Peng Wang
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Jian-Ping Zhang
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leif H. Skibsted
- Department
of Food Science, University of Copenhagen, Rolighedsvej 30, Frederiksberg C, Frederiksberg 1958, Denmark
| |
Collapse
|
9
|
Zhou YM, Liu XC, Li YQ, Wang P, Han RM, Zhang JP, Skibsted LH. Synergy between plant phenols and carotenoids in stabilizing lipid-bilayer membranes of giant unilamellar vesicles against oxidative destruction. SOFT MATTER 2020; 16:1792-1800. [PMID: 31970380 DOI: 10.1039/c9sm01415b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have investigated the synergism between plant phenols and carotenoids in protecting the phosphatidylcholine (PC) membranes of giant unilamellar vesicles (GUVs) from oxidative destruction, for which chlorophyll-a (Chl-a) was used as a lipophilic photosensitizer. The effect was examined for seven different combinations of β-carotene (β-CAR) and plant phenols. The light-induced change in GUV morphology was monitored via conventional optical microscopy, and quantified by a dimensionless image-entropy parameter, ΔE. The ΔE-t time evolution profiles exhibiting successive lag phase, budding phase and ending phase could be accounted for by a Boltzmann model function. The length of the lag phase (LP in s) for the combination of syringic acid and β-CAR was more than seven fold longer than for β-CAR alone, and those for other different combinations followed the order: salicylic acid < vanillic acid < syringic acid > rutin > caffeic acid > quercetin > catechin, indicating that moderately reducing phenols appeared to be the most efficient membrane co-stabilizers. The same order held for the residual contents of β-CAR in membranes after light-induced oxidative degradation as determined by resonance Raman spectroscopy. The dependence of LP on the reducing power of phenols coincided with the Marcus theory plot for the rate of electron transfer from phenols to the radical cation β-CAR˙+ as a primary oxidative product, suggesting that the plant phenol regeneration of β-CAR plays an important role in stabilizing the GUV membranes, as further supported by the involvement of CAR˙+ and the distinct shortening of its lifetime as shown by transient absorption spectroscopy.
Collapse
Affiliation(s)
- Yi-Ming Zhou
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhao JS, Wang HY, Yu M, Hao MY, Yuan S, Qin Y, Fu LM, Zhang JP, Ai XC. Charge carrier recombination dynamics in a bi-cationic perovskite solar cell. Phys Chem Chem Phys 2019; 21:5409-5415. [PMID: 30785439 DOI: 10.1039/c8cp07461e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The compositional engineering is of great importance to tune the electrical and optical properties of perovskite and improve the photovoltaic performance of perovskite solar cells. The exploration of the corresponding photoelectric conversion processes, especially the carrier recombination dynamics, will contribute to the optimization of the devices. In this work, perovskite with mixed methylammonium (MA) and formamidinium (FA) as organic cations, MA0.4FA0.6PbI3, is fabricated to study the influence of the bi-cation on the charge carrier recombination dynamics. X-ray diffraction analysis indicates the existence of the MAPbI3-FAPbI3 phase segregation in the bi-cationic perovskite crystal. The time-resolved photoluminescence dynamics presents a relatively fast carrier recombination process ascribed to the charge transfer from MAPbI3 to FAPbI3 in the bi-cationic perovskite film. The carrier recombination dynamics investigated by transient photovoltage measurements reveals a biphasic trap-assisted carrier recombination mechanism in the bi-cationic device, which involves carrier recombination in the MAPbI3 phase and FAPbI3 phase, respectively. The ultimate presentation of the carrier recombination process is closely related to the charge transfer between the two perovskite phases.
Collapse
Affiliation(s)
- Jia-Shang Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li LY, Zhou YM, Gao RY, Liu XC, Du HH, Zhang JL, Ai XC, Zhang JP, Fu LM, Skibsted LH. Naturally occurring nanotube with surface modification as biocompatible, target-specific nanocarrier for cancer phototherapy. Biomaterials 2019; 190-191:86-96. [DOI: 10.1016/j.biomaterials.2018.10.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/23/2023]
|