1
|
Pritam P, Manjre S, Shukla MR, Srivastava M, Prasannan CB, Jaiswal D, Davis R, Dasgupta S, Wangikar PP. Intracellular metabolomic profiling of Picochlorum sp. under diurnal conditions mimicking outdoor light, temperature, and seasonal variations. Metabolomics 2024; 20:107. [PMID: 39306586 DOI: 10.1007/s11306-024-02170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION This study focuses on metabolic profiling of a robust marine green algal strain Picochlorum sp. MCC39 that exhibits resilient growth under diverse outdoor open pond conditions. Given its potential for producing high-value chemicals through metabolic engineering, understanding its metabolic dynamics is crucial for pathway modification. OBJECTIVES This study primarily aimed to investigate the metabolic response of Picochlorum sp. to environmental changes. Unlike heterotrophs, algae are subject to diurnal light and temperature, which affect their growth rates and metabolism. Using an environmental photobioreactor (ePBR), we explored how the algal strain adapts to fluctuations in light intensities and temperature within a simulated pond environment. METHODS We performed a reverse phase ion pairing-LC/MS-MS based metabolome profiling of the MCC39 strain cultivated in simulated pond conditions in ePBR. The experimental setup included diurnal and bi-seasonal variations in light intensities and temperature. RESULTS The metabolome profile revealed significant differences in 85 metabolites, including amino acids, carboxylic acids, sugar phosphates, purines, pyrimidines, and dipeptides, which exhibited up to 25-fold change in relative concentration with diurnal variations. Seasonal variations also influenced the production of storage molecules, revealing a discernible pattern. The accumulation pattern of metabolites involved in cellular wall formation and energy generation indicated a well-coordinated initiation of photosynthesis and the Calvin cycle with the onset of light. CONCLUSION The results contribute to a deeper understanding of the adaptability and metabolic response of Picochlorum sp., laying the groundwork for future advancements in algal strain modification.
Collapse
Affiliation(s)
- Prem Pritam
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Suvarna Manjre
- Synthetic Biology Research and Development Group, Reliance Technology Group R&D Center, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Navi Mumbai, Maharashtra, 400701, India
| | - Manish R Shukla
- Synthetic Biology Research and Development Group, Reliance Technology Group R&D Center, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Navi Mumbai, Maharashtra, 400701, India
| | - Meghna Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Charulata B Prasannan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Rose Davis
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Santanu Dasgupta
- Synthetic Biology Research and Development Group, Reliance Technology Group R&D Center, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Navi Mumbai, Maharashtra, 400701, India.
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
2
|
Ghafari N, Sleno L. Challenges and recent advances in quantitative mass spectrometry-based metabolomics. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2400007. [PMID: 38948317 PMCID: PMC11210748 DOI: 10.1002/ansa.202400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
The field of metabolomics has gained tremendous interest in recent years. Whether the goal is to discover biomarkers related to certain pathologies or to better understand the impact of a drug or contaminant, numerous studies have demonstrated how crucial it is to understand variations in metabolism. Detailed knowledge of metabolic variabilities can lead to more effective treatments, as well as faster or less invasive diagnostics. Exploratory approaches are often employed in metabolomics, using relative quantitation to look at perturbations between groups of samples. Most metabolomics studies have been based on metabolite profiling using relative quantitation, with very few studies using an approach for absolute quantitation. Using accurate quantitation facilitates the comparison between different studies, as well as enabling longitudinal studies. In this review, we discuss the most widely used techniques for quantitative metabolomics using mass spectrometry (MS). Various aspects will be addressed, such as the use of external and/or internal standards, derivatization techniques, in vivo isotopic labelling, or quantitative MS imaging. The principles, as well as the associated limitations and challenges, will be described for each approach.
Collapse
Affiliation(s)
- Nathan Ghafari
- Chemistry Department/CERMO‐FCUniversity of Quebec in Montreal (UQAM)MontrealCanada
| | - Lekha Sleno
- Chemistry Department/CERMO‐FCUniversity of Quebec in Montreal (UQAM)MontrealCanada
| |
Collapse
|
3
|
Groves RA, Chan CCY, Wildman SD, Gregson DB, Rydzak T, Lewis IA. Rapid LC-MS assay for targeted metabolite quantification by serial injection into isocratic gradients. Anal Bioanal Chem 2023; 415:269-276. [PMID: 36443449 PMCID: PMC9823034 DOI: 10.1007/s00216-022-04384-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
Abstract
Liquid chromatography mass spectrometry (LC-MS) has emerged as a mainstream strategy for metabolomics analyses. One advantage of LC-MS is that it can serve both as a biomarker discovery tool and as a platform for clinical diagnostics. Consequently, it offers an exciting opportunity to potentially transition research studies into real-world clinical tools. One important distinction between research versus diagnostics-based applications of LC-MS is throughput. Clinical LC-MS must enable quantitative analyses of target molecules in hundreds or thousands of samples each day. Currently, the throughput of these clinical applications is limited by the chromatographic gradient lengths, which-when analyzing complex metabolomics samples-are difficult to conduct in under ~ 3 min per sample without introducing serious quantitative analysis problems. To address this shortcoming, we developed sequential quantification using isotope dilution (SQUID), an analytical strategy that combines serial sample injections into a continuous isocratic mobile phase to maximize throughput. SQUID uses internal isotope-labelled standards to correct for changes in LC-MS response factors over time. We show that SQUID can detect microbial polyamines in human urine specimens (lower limit of quantification; LLOQ = 106 nM) with less than 0.019 normalized root mean square error. Moreover, we show that samples can be analyzed in as little as 57 s. We propose SQUID as a new, high-throughput LC-MS tool for quantifying small sets of target biomarkers across large cohorts.
Collapse
Affiliation(s)
- Ryan A Groves
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Carly C Y Chan
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Spencer D Wildman
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Daniel B Gregson
- Alberta Precision Laboratories, Calgary, AB, T2L 2K8, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Thomas Rydzak
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
4
|
Metabolic Responses of "Big Six" Escherichia coli in Wheat Flour to Thermal Treatment Revealed by Nuclear Magnetic Resonance Spectroscopy. Appl Environ Microbiol 2022; 88:e0009822. [PMID: 35285244 DOI: 10.1128/aem.00098-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Escherichia coli outbreaks linked to wheat flour consumption have kept emerging in recent years, which necessitated an antimicrobial step being incorporated into the flour production process. The objectives of this in vivo study were to holistically evaluate the sanitizing efficacy of thermal treatment at 60 and 70°C against the "big six" E. coli strains (O26:H11, O45:H2, O103:H11, O111, O121:H19, and O145) in wheat flour and to assess the strain-specific metabolic responses using nuclear magnetic resonance (NMR) spectroscopy. The 70°C treatment temperature indiscriminatingly inactivated all strains by over 4.3-log CFU/g within 20 min, suggesting the high sanitization effectiveness of this treatment temperature, whereas the treatment at 60°C inactivated the strains to various degrees during the 1-h process. The most resistant strains at 60°C, O26 and O45, were characterized by amino acid and sugar depletion, and their high resistance was attributed to the dual effects of activated heat shock protein (HSP) synthesis and promoted glycolysis. O121 also demonstrated these metabolic changes, yet its thermal resistance was largely impaired by the weakened membrane structure and diminished osmotic protection due to phosphorylcholine exhaustion. In contrast, O111, O145, and O103 presented a substantial elevation of metabolites after stress at 60°C; their moderate thermal resistance was mainly explained by the accumulation of amino acids as osmolytes. Overall, the study enhanced our understanding of the metabolic responses of big six E. coli to heat stress and provided a model for conducting NMR-based metabolomic studies in powdered food matrices. IMPORTANCE "Big six" Escherichia coli strains have caused several outbreaks linked to wheat flour consumption in the last decade, revealing the vital importance of adopting an antimicrobial treatment during the flour production process. Therefore, the present study was carried out to evaluate the efficacy of a typical sanitizing approach, thermal treatment, against the big six strains in wheat flour along with the underlying antimicrobial mechanisms. Findings showed that thermal treatment at 60 and 70°C could markedly mitigate the loads of all strains in wheat flour. Moreover, activated heat shock protein synthesis combined with expedited glycolysis and enhanced osmotic protection were identified as two major metabolic alteration patterns in the E. coli strains to cope with the heat stress. With the responses of big six in wheat flour to thermal treatment elucidated, scientific basis for incorporating a thermal inactivation step in wheat flour production was provided.
Collapse
|
5
|
Heffernan JK, Mahamkali V, Valgepea K, Marcellin E, Nielsen LK. Analytical tools for unravelling the metabolism of gas-fermenting Clostridia. Curr Opin Biotechnol 2022; 75:102700. [PMID: 35240422 DOI: 10.1016/j.copbio.2022.102700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 12/23/2022]
Abstract
Acetogens harness the Wood-Ljungdahl Pathway, a unique metabolic pathway for C1 capture close to the thermodynamic limit. Gas fermentation using acetogens is already used for CO-to-ethanol conversion at industrial-scale and has the potential to valorise a range of C1 and waste substrates to short-chain and medium-chain carboxylic acids and alcohols. Advances in analytical quantification and metabolic modelling have helped guide industrial gas fermentation designs. Further advances in the measurements of difficult to measure metabolites are required to improve kinetic modelling and understand the regulation of acetogen metabolism. This will help guide future synthetic biology designs needed to realise the full potential of gas fermentation in stimulating a circular bioeconomy.
Collapse
Affiliation(s)
- James K Heffernan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vishnu Mahamkali
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kaspar Valgepea
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD 4072, Australia; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|
6
|
Pavan M, Reinmets K, Garg S, Mueller AP, Marcellin E, Köpke M, Valgepea K. Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy. Metab Eng 2022; 71:117-141. [DOI: 10.1016/j.ymben.2022.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
|
7
|
Soma Y, Takahashi M, Fujiwara Y, Tomiyasu N, Goto M, Hanai T, Izumi Y, Bamba T. Quantitative metabolomics for dynamic metabolic engineering using stable isotope labeled internal standards mixture (SILIS). J Biosci Bioeng 2021; 133:46-55. [PMID: 34620543 DOI: 10.1016/j.jbiosc.2021.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
The production of chemicals and fuels from renewable resources using engineered microbes is an attractive alternative for current fossil-dependent industries. Metabolic engineering has contributed to pathway engineering for the production of chemicals and fuels by various microorganisms. Recently, dynamic metabolic engineering harnessing synthetic biological tools has become a next-generation strategy in this field. The dynamic regulation of metabolic flux during fermentation optimizes metabolic states according to each fermentation stage such as cell growth phase and compound production phase. However, it is necessary to repeat the evaluation and redesign of the dynamic regulation system to achieve the practical use of engineered microbes. In this study, we performed quantitative metabolome analysis to investigate the effects of dynamic metabolic flux regulation on engineered Escherichia coli for γ-amino butyrate (GABA) fermentation. We prepared a stable isotope-labeled internal standard mixture (SILIS) for the stable isotope dilution method (SIDM), a mass spectrometry-based quantitative metabolome analysis method. We found multiple candidate bottlenecks for GABA production. Some metabolic reactions in the GABA production pathway should be engineered for further improvement in the direct GABA fermentation with dynamic metabolic engineering strategy.
Collapse
Affiliation(s)
- Yuki Soma
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuri Fujiwara
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Noriyuki Tomiyasu
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Maiko Goto
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Taizo Hanai
- Laboratory for Synthetic Biology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, W5-729, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
8
|
Wellham PAD, Hafeez A, Gregori A, Brock M, Kim DH, Chandler D, de Moor CH. Culture Degeneration Reduces Sex-Related Gene Expression, Alters Metabolite Production and Reduces Insect Pathogenic Response in Cordyceps militaris. Microorganisms 2021; 9:microorganisms9081559. [PMID: 34442638 PMCID: PMC8400478 DOI: 10.3390/microorganisms9081559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
Cordyceps militaris is an entomopathogenic ascomycete, known primarily for infecting lepidopteran larval (caterpillars) and pupal hosts. Cordycepin, a secondary metabolite produced by this fungus has anti-inflammatory properties and other pharmacological activities. However, little is known about the biological role of this adenosine derivate and its stabilising compound pentostatin in the context of insect infection the life cycle of C. militaris. During repeated subcultivation under laboratory conditions a degeneration of C. militaris marked by decreasing levels of cordycepin production can occur. Here, using degenerated and parental control strains of an isolate of C. militaris, we found that lower cordycepin production coincides with the decline in the production of various other metabolites as well as the reduced expression of genes related to sexual development. Additionally, infection of Galleria mellonella (greater wax moth) caterpillars indicated that cordycepin inhibits the immune response in host haemocytes. Accordingly, the pathogenic response to the degenerated strain was reduced. These data indicate that there are simultaneous changes in sexual reproduction, secondary metabolite production, insect immunity and infection by C. militaris. This study may have implications for biological control of insect crop pests by fungi.
Collapse
Affiliation(s)
- Peter A. D. Wellham
- Gene Regulation and RNA Biology Laboratory, Division of Molecular Therapeutics and Formulation, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK; (P.A.D.W.); (A.H.)
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK;
- Fungal Genetics and Biology Group, School of Life Sciences, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Abdul Hafeez
- Gene Regulation and RNA Biology Laboratory, Division of Molecular Therapeutics and Formulation, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK; (P.A.D.W.); (A.H.)
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Andrej Gregori
- Mycomedica d.o.o., Podkoren 72, 4280 Kranjska Gora, Slovenia;
| | - Matthias Brock
- Fungal Genetics and Biology Group, School of Life Sciences, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK;
| | - David Chandler
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Warwick CV35 9EF, UK;
| | - Cornelia H. de Moor
- Gene Regulation and RNA Biology Laboratory, Division of Molecular Therapeutics and Formulation, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK; (P.A.D.W.); (A.H.)
- Correspondence:
| |
Collapse
|
9
|
Vaud S, Pearcy N, Hanževački M, Van Hagen AMW, Abdelrazig S, Safo L, Ehsaan M, Jonczyk M, Millat T, Craig S, Spence E, Fothergill J, Bommareddy RR, Colin PY, Twycross J, Dalby PA, Minton NP, Jäger CM, Kim DH, Yu J, Maness PC, Lynch S, Eckert CA, Conradie A, Bryan SJ. Engineering improved ethylene production: Leveraging systems biology and adaptive laboratory evolution. Metab Eng 2021; 67:308-320. [PMID: 34245888 DOI: 10.1016/j.ymben.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/26/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Ethylene is a small hydrocarbon gas widely used in the chemical industry. Annual worldwide production currently exceeds 150 million tons, producing considerable amounts of CO2 contributing to climate change. The need for a sustainable alternative is therefore imperative. Ethylene is natively produced by several different microorganisms, including Pseudomonas syringae pv. phaseolicola via a process catalyzed by the ethylene-forming enzyme (EFE), subsequent heterologous expression of EFE has led to ethylene production in non-native bacterial hosts including Escherichia coli and cyanobacteria. However, solubility of EFE and substrate availability remain rate-limiting steps in biological ethylene production. We employed a combination of genome-scale metabolic modelling, continuous fermentation, and protein evolution to enable the accelerated development of a high efficiency ethylene producing E. coli strain, yielding a 49-fold increase in production, the most significant improvement reported to date. Furthermore, we have clearly demonstrated that this increased yield resulted from metabolic adaptations that were uniquely linked to EFE (wild type versus mutant). Our findings provide a novel solution to deregulate metabolic bottlenecks in key pathways, which can be readily applied to address other engineering challenges.
Collapse
Affiliation(s)
- Sophie Vaud
- BBSRC/EPSRC Synthetic Biology Research Centre, The Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Nicole Pearcy
- BBSRC/EPSRC Synthetic Biology Research Centre, The Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Marko Hanževački
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexander M W Van Hagen
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Salah Abdelrazig
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Laudina Safo
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Muhammad Ehsaan
- BBSRC/EPSRC Synthetic Biology Research Centre, The Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Magdalene Jonczyk
- BBSRC/EPSRC Synthetic Biology Research Centre, The Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Thomas Millat
- BBSRC/EPSRC Synthetic Biology Research Centre, The Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Sean Craig
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Edward Spence
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - James Fothergill
- BBSRC/EPSRC Synthetic Biology Research Centre, The Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Rajesh Reddy Bommareddy
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Pierre-Yves Colin
- Department of Biochemical Engineering, Bernard Katz Building, University College London, WC1E 6BT, UK
| | - Jamie Twycross
- BBSRC/EPSRC Synthetic Biology Research Centre, The Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK; School of Computer Science, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Paul A Dalby
- Department of Biochemical Engineering, Bernard Katz Building, University College London, WC1E 6BT, UK
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, The Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Christof M Jäger
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Jianping Yu
- Biosciences Center, National Renewable Energy Laboratory (NREL), Golden, CO, USA
| | - Pin-Ching Maness
- Biosciences Center, National Renewable Energy Laboratory (NREL), Golden, CO, USA
| | - Sean Lynch
- Biosciences Center, National Renewable Energy Laboratory (NREL), Golden, CO, USA; Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, USA; Somalogic, Inc., Boulder, CO, USA
| | - Carrie A Eckert
- Biosciences Center, National Renewable Energy Laboratory (NREL), Golden, CO, USA; Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, USA
| | - Alex Conradie
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Samantha J Bryan
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
10
|
Safo L, Abdelrazig S, Grosse-Honebrink A, Millat T, Henstra AM, Norman R, Thomas NR, Winzer K, Minton NP, Kim DH, Barrett DA. Quantitative Bioreactor Monitoring of Intracellular Bacterial Metabolites in Clostridium autoethanogenum Using Liquid Chromatography-Isotope Dilution Mass Spectrometry. ACS OMEGA 2021; 6:13518-13526. [PMID: 34095647 PMCID: PMC8173575 DOI: 10.1021/acsomega.0c05588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/03/2021] [Indexed: 05/05/2023]
Abstract
We report a liquid chromatography-isotope dilution mass spectrometry method for the simultaneous quantification of 131 intracellular bacterial metabolites of Clostridium autoethanogenum. A comprehensive mixture of uniformly 13C-labeled internal standards (U-13C IS) was biosynthesized from the closely related bacterium Clostridium pasteurianum using 4% 13C-glucose as a carbon source. The U-13C IS mixture combined with 12C authentic standards was used to validate the linearity, precision, accuracy, repeatability, limits of detection, and quantification for each metabolite. A robust-fitting algorithm was employed to reduce the weight of the outliers on the quantification data. The metabolite calibration curves were linear with R 2 ≥ 0.99, limits of detection were ≤1.0 μM, limits of quantification were ≤10 μM, and precision/accuracy was within RSDs of 15% for all metabolites. The method was subsequently applied for the daily monitoring of the intracellular metabolites of C. autoethanogenum during a CO gas fermentation over 40 days as part of a study to optimize biofuel production. The concentrations of the metabolites were estimated at steady states of different pH levels using the robust-fitting mathematical approach, and we demonstrate improved accuracy of results compared to conventional regression. Metabolic pathway analysis showed that reactions of the incomplete (branched) tricarboxylic acid "cycle" were the most affected pathways associated with the pH shift in the bioreactor fermentation of C. autoethanogenum and the concomitant changes in ethanol production.
Collapse
Affiliation(s)
- Laudina Safo
- Centre
for Analytical Bioscience, Advanced Materials and Healthcare Technologies
Division, School of Pharmacy, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - Salah Abdelrazig
- Centre
for Analytical Bioscience, Advanced Materials and Healthcare Technologies
Division, School of Pharmacy, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | | | - Thomas Millat
- Clostridia
Research Group, BBSRC/EPSCR Synthetic Biology Research Centre (SBRC),
Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Anne M. Henstra
- Clostridia
Research Group, BBSRC/EPSCR Synthetic Biology Research Centre (SBRC),
Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Rupert Norman
- Clostridia
Research Group, BBSRC/EPSCR Synthetic Biology Research Centre (SBRC),
Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Neil R. Thomas
- Biodiscovery
Institute, School of Chemistry, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - Klaus Winzer
- Clostridia
Research Group, BBSRC/EPSCR Synthetic Biology Research Centre (SBRC),
Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Nigel P. Minton
- Clostridia
Research Group, BBSRC/EPSCR Synthetic Biology Research Centre (SBRC),
Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Dong-Hyun Kim
- Centre
for Analytical Bioscience, Advanced Materials and Healthcare Technologies
Division, School of Pharmacy, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - David A. Barrett
- Centre
for Analytical Bioscience, Advanced Materials and Healthcare Technologies
Division, School of Pharmacy, University
of Nottingham, Nottingham NG7 2RD, U.K.
- . Phone: +44(0)115 9515062
| |
Collapse
|
11
|
Integrated Metabolomics and Transcriptomics Using an Optimised Dual Extraction Process to Study Human Brain Cancer Cells and Tissues. Metabolites 2021; 11:metabo11040240. [PMID: 33919944 PMCID: PMC8070957 DOI: 10.3390/metabo11040240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
The integration of untargeted metabolomics and transcriptomics from the same population of cells or tissue enhances the confidence in the identified metabolic pathways and understanding of the enzyme–metabolite relationship. Here, we optimised a simultaneous extraction method of metabolites/lipids and RNA from ependymoma cells (BXD-1425). Relative to established RNA (mirVana kit) or metabolite (sequential solvent addition and shaking) single extraction methods, four dual-extraction techniques were evaluated and compared (methanol:water:chloroform ratios): cryomill/mirVana (1:1:2); cryomill-wash/Econospin (5:1:2); rotation/phenol-chloroform (9:10:1); Sequential/mirVana (1:1:3). All methods extracted the same metabolites, yet rotation/phenol-chloroform did not extract lipids. Cryomill/mirVana and sequential/mirVana recovered the highest amounts of RNA, at 70 and 68% of that recovered with mirVana kit alone. sequential/mirVana, involving RNA extraction from the interphase of our established sequential solvent addition and shaking metabolomics-lipidomics extraction method, was the most efficient approach overall. Sequential/mirVana was applied to study a) the biological effect caused by acute serum starvation in BXD-1425 cells and b) primary ependymoma tumour tissue. We found (a) 64 differentially abundant metabolites and 28 differentially expressed metabolic genes, discovering four gene-metabolite interactions, and (b) all metabolites and 62% lipids were above the limit of detection, and RNA yield was sufficient for transcriptomics, in just 10 mg of tissue.
Collapse
|
12
|
Hermann M, Teleki A, Weitz S, Niess A, Freund A, Bengelsdorf FR, Dürre P, Takors R. Identifying and Engineering Bottlenecks of Autotrophic Isobutanol Formation in Recombinant C. ljungdahlii by Systemic Analysis. Front Bioeng Biotechnol 2021; 9:647853. [PMID: 33748092 PMCID: PMC7968104 DOI: 10.3389/fbioe.2021.647853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridium ljungdahlii (C. ljungdahlii, CLJU) is natively endowed producing acetic acid, 2,3-butandiol, and ethanol consuming gas mixtures of CO2, CO, and H2 (syngas). Here, we present the syngas-based isobutanol formation using C. ljungdahlii harboring the recombinant amplification of the "Ehrlich" pathway that converts intracellular KIV to isobutanol. Autotrophic isobutanol production was studied analyzing two different strains in 3-L gassed and stirred bioreactors. Physiological characterization was thoroughly applied together with metabolic profiling and flux balance analysis. Thereof, KIV and pyruvate supply were identified as key "bottlenecking" precursors limiting preliminary isobutanol formation in CLJU[KAIA] to 0.02 g L-1. Additional blocking of valine synthesis in CLJU[KAIA]:ilvE increased isobutanol production by factor 6.5 finally reaching 0.13 g L-1. Future metabolic engineering should focus on debottlenecking NADPH availability, whereas NADH supply is already equilibrated in the current generation of strains.
Collapse
Affiliation(s)
- Maria Hermann
- Institute of Biochemical Engineering, Faculty of Energy-, Process-, and Bio-Engineering, University of Stuttgart, Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, Faculty of Energy-, Process-, and Bio-Engineering, University of Stuttgart, Stuttgart, Germany
| | - Sandra Weitz
- Institute of Microbiology and Biotechnology, Faculty of Natural Sciences, University of Ulm, Ulm, Germany
| | - Alexander Niess
- Institute of Biochemical Engineering, Faculty of Energy-, Process-, and Bio-Engineering, University of Stuttgart, Stuttgart, Germany
| | - Andreas Freund
- Institute of Biochemical Engineering, Faculty of Energy-, Process-, and Bio-Engineering, University of Stuttgart, Stuttgart, Germany
| | - Frank Robert Bengelsdorf
- Institute of Microbiology and Biotechnology, Faculty of Natural Sciences, University of Ulm, Ulm, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, Faculty of Natural Sciences, University of Ulm, Ulm, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, Faculty of Energy-, Process-, and Bio-Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
13
|
Hermann M, Teleki A, Weitz S, Niess A, Freund A, Bengelsdorf FR, Takors R. Electron availability in CO 2 , CO and H 2 mixtures constrains flux distribution, energy management and product formation in Clostridium ljungdahlii. Microb Biotechnol 2020; 13:1831-1846. [PMID: 32691533 PMCID: PMC7533319 DOI: 10.1111/1751-7915.13625] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 01/25/2023] Open
Abstract
Acetogens such as Clostridium ljungdahlii can play a crucial role reducing the human CO2 footprint by converting industrial emissions containing CO2 , CO and H2 into valuable products such as organic acids or alcohols. The quantitative understanding of cellular metabolism is a prerequisite to exploit the bacterial endowments and to fine-tune the cells by applying metabolic engineering tools. Studying the three gas mixtures CO2 + H2 , CO and CO + CO2 + H2 (syngas) by continuously gassed batch cultivation experiments and applying flux balance analysis, we identified CO as the preferred carbon and electron source for growth and producing alcohols. However, the total yield of moles of carbon (mol-C) per electrons consumed was almost identical in all setups which underlines electron availability as the main factor influencing product formation. The Wood-Ljungdahl pathway (WLP) showed high flexibility by serving as the key NAD+ provider for CO2 + H2, whereas this function was strongly compensated by the transhydrogenase-like Nfn complex when CO was metabolized. Availability of reduced ferredoxin (Fdred ) can be considered as a key determinant of metabolic control. Oxidation of CO via carbon monoxide dehydrogenase (CODH) is the main route of Fdred formation when CO is used as substrate, whereas Fdred is mainly regenerated via the methyl branch of WLP and the Nfn complex utilizing CO2 + H2 . Consequently, doubled growth rates, highest ATP formation rates and highest amounts of reduced products (ethanol, 2,3-butanediol) were observed when CO was the sole carbon and electron source.
Collapse
Affiliation(s)
- Maria Hermann
- Institute of Biochemical EngineeringUniversity of StuttgartAllmandring 31Stuttgart70569Germany
| | - Attila Teleki
- Institute of Biochemical EngineeringUniversity of StuttgartAllmandring 31Stuttgart70569Germany
| | - Sandra Weitz
- Institute of Microbiology and BiotechnologyUlm UniversityAlbert‐Einstein‐Allee 11Ulm89069Germany
| | - Alexander Niess
- Institute of Biochemical EngineeringUniversity of StuttgartAllmandring 31Stuttgart70569Germany
| | - Andreas Freund
- Institute of Biochemical EngineeringUniversity of StuttgartAllmandring 31Stuttgart70569Germany
| | - Frank R. Bengelsdorf
- Institute of Microbiology and BiotechnologyUlm UniversityAlbert‐Einstein‐Allee 11Ulm89069Germany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartAllmandring 31Stuttgart70569Germany
| |
Collapse
|
14
|
Abdelrazig S, Safo L, Rance GA, Fay MW, Theodosiou E, Topham PD, Kim DH, Fernández-Castané A. Metabolic characterisation of Magnetospirillum gryphiswaldense MSR-1 using LC-MS-based metabolite profiling. RSC Adv 2020; 10:32548-32560. [PMID: 35516490 PMCID: PMC9056635 DOI: 10.1039/d0ra05326k] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/23/2020] [Indexed: 12/21/2022] Open
Abstract
Magnetosomes are nano-sized magnetic nanoparticles with exquisite properties that can be used in a wide range of healthcare and biotechnological applications. They are biosynthesised by magnetotactic bacteria (MTB), such as Magnetospirillum gryphiswaldense MSR-1 (Mgryph). However, magnetosome bioprocessing yields low quantities compared to chemical synthesis of magnetic nanoparticles. Therefore, an understanding of the intracellular metabolites and metabolic networks related to Mgryph growth and magnetosome formation are vital to unlock the potential of this organism to develop improved bioprocesses. In this work, we investigated the metabolism of Mgryph using untargeted metabolomics. Liquid chromatography-mass spectrometry (LC-MS) was performed to profile spent medium samples of Mgryph cells grown under O2-limited (n = 6) and O2-rich conditions (n = 6) corresponding to magnetosome- and non-magnetosome producing cells, respectively. Multivariate, univariate and pathway enrichment analyses were conducted to identify significantly altered metabolites and pathways. Rigorous metabolite identification was carried out using authentic standards, the Mgryph-specific metabolite database and MS/MS mzCloud database. PCA and OPLS-DA showed clear separation and clustering of sample groups with cross-validation values of R2X = 0.76, R2Y = 0.99 and Q2 = 0.98 in OPLS-DA. As a result, 50 metabolites linked to 45 metabolic pathways were found to be significantly altered in the tested conditions, including: glycine, serine and threonine; butanoate; alanine, aspartate and glutamate metabolism; aminoacyl-tRNA biosynthesis and; pyruvate and citric acid cycle (TCA) metabolisms. Our findings demonstrate the potential of LC-MS to characterise key metabolites in Mgryph and will contribute to further understanding the metabolic mechanisms that affect Mgryph growth and magnetosome formation. Metabolic pathways in Magnetospirillum gryphiswaldense MSR-1 are significantly altered under microaerobic (O2-limited) growth conditions enabling magnetosome formation.![]()
Collapse
Affiliation(s)
- Salah Abdelrazig
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham Nottingham NG7 2RD UK +44 (0)115 74 84697
| | - Laudina Safo
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham Nottingham NG7 2RD UK +44 (0)115 74 84697
| | - Graham A Rance
- Nanoscale and Microscale Research Centre, University of Nottingham Nottingham NG7 2RD UK
| | - Michael W Fay
- Nanoscale and Microscale Research Centre, University of Nottingham Nottingham NG7 2RD UK
| | - Eirini Theodosiou
- Aston Institute of Materials Research, Aston University Birmingham B4 7ET UK +44 (0)121 204 4870
| | - Paul D Topham
- Aston Institute of Materials Research, Aston University Birmingham B4 7ET UK +44 (0)121 204 4870
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham Nottingham NG7 2RD UK +44 (0)115 74 84697
| | - Alfred Fernández-Castané
- Aston Institute of Materials Research, Aston University Birmingham B4 7ET UK +44 (0)121 204 4870.,Energy and Bioproducts Research Institute, Aston University Birmingham B4 7ET UK
| |
Collapse
|
15
|
Xiao P, Zhang F, Wang X, Song D, Li H. Analysis of B-type natriuretic peptide impurities using label-free data-independent acquisition mass spectrometry technology. ACTA ACUST UNITED AC 2020; 59:217-226. [DOI: 10.1515/cclm-2020-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
Abstract
Abstract
Objectives
Synthetic B-type natriuretic peptide (BNP) is employed in most clinical testing platforms as a raw material of calibrator. Characterization of impurities with structures similar (BNPstrimp compounds) to that of BNP is a reasonable way to decrease clinical measurement errors and improve drug safety.
Methods
A novel quantitative method targeted towards BNPstrimp compounds was developed. First, the peptide samples were separated and identified using ultra-performance liquid chromatography, coupled with high-resolution mass spectrometry (MS). To evaluate biological activity further, BNPstrimp immunoaffinity was investigated using western blot (WB) assays. Second, a quantitative label-free data-independent acquisition (DIA) MS approach was developed, and the internal standard peptide (ISP) was hydrolyzed. Absolute quantification was performed using an isotope dilution MS (ID-MS) approach. Third, method precision was investigated using the C-peptide reference material.
Results
Seventeen BNPstrimp compounds were identified in synthetic BNP, and 10 of them were successfully sequenced. The immunoassay results indicated that deaminated, oxidized, and isomerized BNPstrimp compounds exhibited weaker immunoaffinity than intact BNP1-32. The mass fraction of the synthetic solid ISP1-16, quantified by ID-MS, was 853.5 (±17.8) mg/g. Validation results indicated that the developed method was effective and accurate for the quantitation of the well-separated BNP impurities.
Conclusions
The developed approach was easy to perform, and it was suitable for the parallel quantification of low-abundance BNPstrimp compounds when they performed a good separation in liquid chromatography. The quantitative results were comparable and traceable. This approach is a promising tool for BNP product quality and safety assessment.
Collapse
Affiliation(s)
- Peng Xiao
- Division of Chemical Metrology and Analytical Science , National Institute of Metrology , Beijing , PR China
| | - Fan Zhang
- Hebei Key Laboratory of Active Components and Functions in Natural Products , Hebei Normal University of Science and Technology , Qinhuangdao , PR China
| | - Xinxue Wang
- Chemical Engineering Institute , Beijing University of Chemical Technology , Beijing , PR China
| | - Dewei Song
- Division of Chemical Metrology and Analytical Science , National Institute of Metrology , Beijing , PR China
| | - Hongmei Li
- Division of Chemical Metrology and Analytical Science , National Institute of Metrology , Beijing , PR China
| |
Collapse
|
16
|
Absolute Quantification of the Central Carbon Metabolome in Eight Commonly Applied Prokaryotic and Eukaryotic Model Systems. Metabolites 2020; 10:metabo10020074. [PMID: 32093075 PMCID: PMC7073941 DOI: 10.3390/metabo10020074] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Absolute quantification of intracellular metabolite pools is a prerequisite for modeling and in-depth biological interpretation of metabolomics data. It is the final step of an elaborate metabolomics workflow, with challenges associated with all steps—from sampling to quantifying the physicochemically diverse metabolite pool. Chromatographic separation combined with mass spectrometric (MS) detection is the superior platform for high coverage, selective, and sensitive detection of metabolites. Herein, we apply our quantitative MS-metabolomics workflow to measure and present the central carbon metabolome of a panel of commonly applied biological model systems. The workflow includes three chromatographic methods combined with isotope dilution tandem mass spectrometry to allow for absolute quantification of 68 metabolites of glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, and the amino acid and (deoxy) nucleoside pools. The biological model systems; Bacillus subtilis, Saccharomyces cerevisiae, two microalgal species, and four human cell lines were all cultured in commonly applied culture media and sampled in exponential growth phase. Both literature and databases are scarce with comprehensive metabolite datasets, and existing entries range over several orders of magnitude. The workflow and metabolite panel presented herein can be employed to expand the list of reference metabolomes, as encouraged by the metabolomics community, in a continued effort to develop and refine high-quality quantitative metabolomics workflows.
Collapse
|
17
|
Koendjbiharie JG, Hon S, Pabst M, Hooftman R, Stevenson DM, Cui J, Amador-Noguez D, Lynd LR, Olson DG, van Kranenburg R. The pentose phosphate pathway of cellulolytic clostridia relies on 6-phosphofructokinase instead of transaldolase. J Biol Chem 2020; 295:1867-1878. [PMID: 31871051 PMCID: PMC7029132 DOI: 10.1074/jbc.ra119.011239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/16/2019] [Indexed: 01/24/2023] Open
Abstract
The genomes of most cellulolytic clostridia do not contain genes annotated as transaldolase. Therefore, for assimilating pentose sugars or for generating C5 precursors (such as ribose) during growth on other (non-C5) substrates, they must possess a pathway that connects pentose metabolism with the rest of metabolism. Here we provide evidence that for this connection cellulolytic clostridia rely on the sedoheptulose 1,7-bisphosphate (SBP) pathway, using pyrophosphate-dependent phosphofructokinase (PPi-PFK) instead of transaldolase. In this reversible pathway, PFK converts sedoheptulose 7-phosphate (S7P) to SBP, after which fructose-bisphosphate aldolase cleaves SBP into dihydroxyacetone phosphate and erythrose 4-phosphate. We show that PPi-PFKs of Clostridium thermosuccinogenes and Clostridium thermocellum indeed can convert S7P to SBP, and have similar affinities for S7P and the canonical substrate fructose 6-phosphate (F6P). By contrast, (ATP-dependent) PfkA of Escherichia coli, which does rely on transaldolase, had a very poor affinity for S7P. This indicates that the PPi-PFK of cellulolytic clostridia has evolved the use of S7P. We further show that C. thermosuccinogenes contains a significant SBP pool, an unusual metabolite that is elevated during growth on xylose, demonstrating its relevance for pentose assimilation. Last, we demonstrate that a second PFK of C. thermosuccinogenes that operates with ATP and GTP exhibits unusual kinetics toward F6P, as it appears to have an extremely high degree of cooperative binding, resulting in a virtual on/off switch for substrate concentrations near its K½ value. In summary, our results confirm the existence of an SBP pathway for pentose assimilation in cellulolytic clostridia.
Collapse
Affiliation(s)
| | - Shuen Hon
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755; Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, Tennessee 37830
| | - Martin Pabst
- Cell Systems Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Robert Hooftman
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jingxuan Cui
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, Tennessee 37830; Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, 03755
| | - Daniel Amador-Noguez
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, Tennessee 37830; Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755; Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, Tennessee 37830; Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, 03755
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755; Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, Tennessee 37830
| | - Richard van Kranenburg
- Corbion, 4206 AC Gorinchem, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
18
|
Jaiswal D, Sengupta A, Sengupta S, Madhu S, Pakrasi HB, Wangikar PP. A Novel Cyanobacterium Synechococcus elongatus PCC 11802 has Distinct Genomic and Metabolomic Characteristics Compared to its Neighbor PCC 11801. Sci Rep 2020; 10:191. [PMID: 31932622 PMCID: PMC6957532 DOI: 10.1038/s41598-019-57051-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/20/2019] [Indexed: 11/09/2022] Open
Abstract
Cyanobacteria, a group of photosynthetic prokaryotes, are attractive hosts for biotechnological applications. It is envisaged that future biorefineries will deploy engineered cyanobacteria for the conversion of carbon dioxide to useful chemicals via light-driven, endergonic reactions. Fast-growing, genetically amenable, and stress-tolerant cyanobacteria are desirable as chassis for such applications. The recently reported strains such as Synechococcus elongatus UTEX 2973 and PCC 11801 hold promise, but additional strains may be needed for the ongoing efforts of metabolic engineering. Here, we report a novel, fast-growing, and naturally transformable cyanobacterium, S. elongatus PCC 11802, that shares 97% genome identity with its closest neighbor S. elongatus PCC 11801. The new isolate has a doubling time of 2.8 h at 1% CO2, 1000 µmole photons.m-2.s-1 and grows faster under high CO2 and temperature compared to PCC 11801 thus making it an attractive host for outdoor cultivations and eventual applications in the biorefinery. Furthermore, S. elongatus PCC 11802 shows higher levels of key intermediate metabolites suggesting that this strain might be better suited for achieving high metabolic flux in engineered pathways. Importantly, metabolite profiles suggest that the key enzymes of the Calvin cycle are not repressed under elevated CO2 in the new isolate, unlike its closest neighbor.
Collapse
Affiliation(s)
- Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Annesha Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Shinjinee Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Swati Madhu
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
- DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
- Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
19
|
Ledovskaya MS, Voronin VV, Rodygin KS, Ananikov VP. Efficient labeling of organic molecules using 13C elemental carbon: universal access to 13C2-labeled synthetic building blocks, polymers and pharmaceuticals. Org Chem Front 2020. [DOI: 10.1039/c9qo01357a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synthetic methodology enabled by 13C-elemental carbon is reported. Calcium carbide Ca13C2 was applied to introduce a universal 13C2 unit in the synthesis of labeled alkynes, O,S,N-vinyl derivatives, labeled polymers and 13C2-pyridazine drug core.
Collapse
Affiliation(s)
| | | | - Konstantin S. Rodygin
- Institute of Chemistry
- Saint Petersburg State University
- Peterhof
- Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
| | - Valentine P. Ananikov
- Institute of Chemistry
- Saint Petersburg State University
- Peterhof
- Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
| |
Collapse
|
20
|
Norman RO, Millat T, Schatschneider S, Henstra AM, Breitkopf R, Pander B, Annan FJ, Piatek P, Hartman HB, Poolman MG, Fell DA, Winzer K, Minton NP, Hodgman C. Genome‐scale model of
C. autoethanogenum
reveals optimal bioprocess conditions for high‐value chemical production from carbon monoxide. ENGINEERING BIOLOGY 2019. [DOI: 10.1049/enb.2018.5003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Rupert O.J. Norman
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
- School of BiosciencesUniversity of NottinghamSutton Bonington Campus, Sutton BoningtonLeicestershireLE12 5RDUK
| | - Thomas Millat
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Sarah Schatschneider
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
- Evonik Nutrition and Care GmbHKantstr. 233798Halle‐KinsbeckGermany
| | - Anne M. Henstra
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Ronja Breitkopf
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Bart Pander
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Florence J. Annan
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Pawel Piatek
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Hassan B. Hartman
- Department of Biology and Medical SciencesOxford Brookes UniversityOxfordOX3 0BPUK
- Public Health England61 Colindale AvenueLondonNW9 5EQUK
| | - Mark G. Poolman
- Department of Biology and Medical SciencesOxford Brookes UniversityOxfordOX3 0BPUK
| | - David A. Fell
- Department of Biology and Medical SciencesOxford Brookes UniversityOxfordOX3 0BPUK
| | - Klaus Winzer
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Nigel P. Minton
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Charlie Hodgman
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
- School of BiosciencesUniversity of NottinghamSutton Bonington Campus, Sutton BoningtonLeicestershireLE12 5RDUK
| |
Collapse
|
21
|
Wang G, Chu J, Zhuang Y, van Gulik W, Noorman H. A dynamic model-based preparation of uniformly-13C-labeled internal standards facilitates quantitative metabolomics analysis of Penicillium chrysogenum. J Biotechnol 2019; 299:21-31. [DOI: 10.1016/j.jbiotec.2019.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 01/03/2023]
|
22
|
Rende U, Niittylä T, Moritz T. Two-step derivatization for determination of sugar phosphates in plants by combined reversed phase chromatography/tandem mass spectrometry. PLANT METHODS 2019; 15:127. [PMID: 31719834 PMCID: PMC6836659 DOI: 10.1186/s13007-019-0514-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/29/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND Sugar phosphates are important intermediates of central carbon metabolism in biological systems, with roles in glycolysis, the pentose-phosphate pathway, tricarboxylic acid (TCA) cycle, and many other biosynthesis pathways. Understanding central carbon metabolism requires a simple, robust and comprehensive analytical method. However, sugar phosphates are notoriously difficult to analyze by traditional reversed phase liquid chromatography. RESULTS Here, we show a two-step derivatization of sugar phosphates by methoxylamine and propionic acid anhydride after chloroform/methanol (3:7) extraction from Populus leaf and developing wood that improves separation, identification and quantification of sugar phosphates by ultra high performance liquid chromatography-electrospray ionization-mass spectrometry (UHPLC-ESI-MS). Standard curves of authentic sugar phosphates were generated for concentrations from pg to ng/μl with a correlation coefficient R 2 > 0.99. The method showed high sensitivity and repeatability with relative standard deviation (RSD) < 20% based on repeated extraction, derivatization and detection. The analytical accuracy for Populus leaf extracts, determined by a two-level spiking approach of selected metabolites, was 79-107%. CONCLUSION The results show the reliability of combined reversed phase liquid chromatography-tandem mass spectrometry for sugar phosphate analysis and demonstrate the presence of two unknown sugar phosphates in Populus extracts.
Collapse
Affiliation(s)
- Umut Rende
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Totte Niittylä
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
- The NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|