1
|
Wu X, Deng Y, Xu Y, Kang H, Hu JJ, Yoon J, Liang G. Activatable Fluorescence and Bio/Chemiluminescence Probes for Aminopeptidases: From Design to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409893. [PMID: 39235570 DOI: 10.1002/adma.202409893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Aminopeptidases are exopeptidases that catalyze the cleavage of amino acid residues from the N-terminal fragment of protein or peptide substrates. Owing to their function, they play important roles in protein maturation, signal transduction, cell-cycle control, and various disease mechanisms, notably in cancer pathology. To gain better insights into their function, molecular imaging assisted by fluorescence and bio/chemiluminescence probes has become an indispensable method to their superiorities, including excellent sensitivity, selectivity, and real-time and noninvasive imaging. Numerous efforts are made to develop activatable probes that can effectively enhance efficiency and accuracy as well as minimize the side effects. This review is classified according to the type of aminopeptidases, summarizing some recent works on the design, work mechanism, and sensing, imaging, and theranostic performance of their activatable probe. Finally, the current challenges are outlined in developing activatable probes for aminopeptidases and provide possible solutions for future advancements.
Collapse
Affiliation(s)
- Xiaofeng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Deng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ying Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
2
|
Wang Y, Niu H, Wang K, Yang L, Wang G, James TD, Fan J, Zhang H. Fluorescence-plane polarization for the real-time monitoring of transferase migration in living cells. Chem Sci 2024; 15:d4sc03387f. [PMID: 39309085 PMCID: PMC11409853 DOI: 10.1039/d4sc03387f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Transferases are enzymes that exhibit multisite migration characteristics. Significantly, enzyme activity undergoes changes during this migration process, which inevitably impacts the physiological function of living organisms and can even lead to related malignant diseases. However, research in this field has been severely hindered by the lack of tools for the simultaneous and differential monitoring of site-specific transferase activity. Herein, we propose a novel strategy that integrates a fluorescence signal response with high sensitivity and an optical rotation signal response with superior spatial resolution. To validate the feasibility of this strategy, transferase γ-glutamyltransferase (GGT) was used as a model system to develop dual-mode chiral probes ACx-GGTB (AC17-GGTB and AC15-GGTB) using chiral amino acids as specific bifunctional recognition groups. The probes undergo structural changes under GGT, resulting in the release of bifunctional recognition groups (chiral amino acids) and simultaneously generate fluorescence signals and optical rotation signals. This dual-mode output exhibits high sensitivity and facilitates differentiation of sites. Furthermore, it enables simultaneous and differential detection of GGT activity at different sites during migration. We anticipate that probes developed based on this strategy will facilitate imaging-based monitoring of the activity for other transferases, thus providing an imaging platform suitable for the real-time tracking of transferase activity changes during migration.
Collapse
Affiliation(s)
- Yafu Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| | - Huiyu Niu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| | - Kui Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| | - Liu Yang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| | - Ge Wang
- Xinxiang Medical University Xinxiang 453000 P. R. China
| | - Tony D James
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian Liaoning 116024 P. R. China
| | - Hua Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| |
Collapse
|
3
|
Liu M, Zeng J, Zhang W, Lei J, Li S, Zhou J, Cheng D, He L. Fabrication of a Near-Infrared-Emissive Probe for Detecting Dipeptidyl Peptidase 4 in the Liver of Diabetic Mice and Clinical Serum. Anal Chem 2024; 96:11890-11896. [PMID: 38987697 DOI: 10.1021/acs.analchem.4c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Dipeptidyl peptidase 4 (DPP4) plays a key role in glucose metabolism, which has been a close target for diabetes pathology and treatment. It is significant for the evaluation of cellular DPP4 activity in various biological systems. Fluorescence imaging technology is currently a popular method for detecting enzymes in living cells due to its advantages of high selectivity, high sensitivity, high spatiotemporal resolution, and real-time visualization. Herein, a near-infrared (NIR)-emissive probe NEDP with a large Stokes shift (153 nm) was developed for the assay of DPP4 activity. Upon addition of DPP4, NEDP can emit a significant turn-on NIR fluorescence signal (673 nm) with high sensitivity and specificity. Moreover, NEDP can successfully be used for imaging of intracellular DPP4, confirming the regulation of DPP4 expression in hyperglucose and its treatment in living cells. Most importantly, NEDP can not only monitor the changes of DPP4 in vivo but also show that DPP4 in diabetes is mainly up-regulated in the liver, and the level of DPP4 is positively correlated with the pathological damage of the liver. In addition, NEDP can identify the serum of diabetic patients from healthy people through the fluorescence response to DPP4. These results demonstrated that the designed probe NEDP provides a prospective visual tool to explore the relationship between DPP4 and diabetes and would be applied for detecting serum of diabetes in the clinic.
Collapse
Affiliation(s)
- Minhui Liu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421002, PR China
- MOE Key Lab of Rare Pediatric Diseases, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421002, PR China
| | - Jiayu Zeng
- Department of Ultrasound Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421002, PR China
- MOE Key Lab of Rare Pediatric Diseases, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421002, PR China
| | - Wanting Zhang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421002, PR China
| | - Jia Lei
- Department of Gastroenterology, Clinical Research Institute, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, PR China
| | - Songjiao Li
- MOE Key Lab of Rare Pediatric Diseases, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421002, PR China
| | - Jia Zhou
- Department of Ultrasound Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421002, PR China
| | - Dan Cheng
- MOE Key Lab of Rare Pediatric Diseases, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421002, PR China
- Department of Gastroenterology, Clinical Research Institute, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, PR China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Longwei He
- Department of Ultrasound Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421002, PR China
- MOE Key Lab of Rare Pediatric Diseases, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421002, PR China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| |
Collapse
|
4
|
Li J, Ma M, Li J, Xu L, Song D, Ma P, Fei Q. Visualizing Dipeptidyl Peptidase-IV with an Advanced Non-π-Conjugated Fluorescent Probe for Early Thyroid Disease Diagnosis. Anal Chem 2023; 95:17577-17585. [PMID: 38050673 DOI: 10.1021/acs.analchem.3c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Early detection and effective treatment of thyroid cancer are vital due to the aggressiveness and high mortality rate of the cancer. Nevertheless, the exploration of dipeptidyl peptidase-IV (DPP-IV) as a biomarker for thyroid diseases has not been widely conducted. In this study, we developed a novel non-π-conjugated near-infrared fluorescent probe, MB-DPP4, specifically designed to visualize and detect endogenous DPP-IV. Traditional DPP-IV-specific fluorescent probes rely primarily on the intramolecular charge transfer mechanism. For this reason, these probes are often hampered by high background levels that can inhibit their ability to achieve a fluorescence turn-on effect. MB-DPP4 successfully surmounts several drawbacks of traditional DPP-IV probes, boasting unique features such as exceptional selectivity, ultrahigh sensitivity (0.29 ng/mL), innovative structure, low background, and long-wavelength fluorescence. MB-DPP4 is an "off-on" chemosensor that exhibits strong fluorescence at 715 nm and releases a methylene blue (MB) fluorophore upon interacting with DPP-IV, resulting in a visible color change from colorless to blue. Given these remarkable attributes, MB-DPP4 shows great promise as a versatile tool for advancing research on biological processes and for evaluating the physiological roles of DPP-IV in living systems. Finally, we conducted a comprehensive investigation of DPP-IV expression in human serum, urine, thyroid cells, and mouse thyroid tumor models. Our findings could potentially establish a foundation for the early diagnosis and treatment of thyroid diseases.
Collapse
Affiliation(s)
- Jiaxin Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Lanlan Xu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Qiang Fei
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
5
|
Valverde-Pozo J, Paredes JM, Widmann TJ, Griñan-Lison C, Ceccarelli G, Gioiello A, Garcia-Rubiño ME, Marchal JA, Alvarez-Pez JM, Talavera EM. Ratiometric Two-Photon Near-Infrared Probe to Detect DPP IV in Human Plasma, Living Cells, Human Tissues, and Whole Organisms Using Zebrafish. ACS Sens 2023; 8:1064-1075. [PMID: 36847549 PMCID: PMC10043939 DOI: 10.1021/acssensors.2c02025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
DPP IV, otherwise known as CD26 lymphocyte T surface antigen, is a transmembrane glycoprotein also found in circulation in the blood. It plays an important role in several processes like glucose metabolism and T-cell stimulation. Moreover, it is overexpressed in renal, colon, prostate, and thyroid human carcinoma tissues. It can also serve as a diagnostic in patients with lysosomal storage diseases. The biological and clinical importance of having readouts for the activity of this enzyme, in physiological and disease conditions, has led us to design a near-infrared (NIR) fluorimetric probe that also has the characteristics of being ratiometric and excitable by two simultaneous NIR photons. The probe consists of assembling an enzyme recognition group (Gly-Pro) (Mentlein, 1999; Klemann et al., 2016) on the two-photon (TP) fluorophore (derivative of dicyanomethylene-4H-pyran, DCM-NH2) disturbing its NIR characteristic internal charge transfer (ICT) emission spectrum. When the dipeptide group is released by the DPP IV-specific enzymatic action, the donor-acceptor DCM-NH2 is restored, forming a system that shows high ratiometric fluorescence output. With this new probe, we have been able to detect, quickly and efficiently, the enzymatic activity of DPP IV in living cells, human tissues, and whole organisms, using zebrafish. In addition, due to the possibility of being excited by two photons, we can avoid the autofluorescence and subsequent photobleaching that the raw plasma has when it is excited by visible light, achieving detection of the activity of DPP IV in that medium without interference.
Collapse
Affiliation(s)
- Javier Valverde-Pozo
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Jose M Paredes
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Thomas J Widmann
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
| | - Carmen Griñan-Lison
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Giada Ceccarelli
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Antimo Gioiello
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - M Eugenia Garcia-Rubiño
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Juan A Marchal
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Jose M Alvarez-Pez
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Eva M Talavera
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| |
Collapse
|
6
|
Ferreira JCC, Sousa RPCL, Preto A, Sousa MJ, Gonçalves MST. Novel Benzo[ a]phenoxazinium Chlorides Functionalized with Sulfonamide Groups as NIR Fluorescent Probes for Vacuole, Endoplasmic Reticulum, and Plasma Membrane Staining. Int J Mol Sci 2023; 24:3006. [PMID: 36769330 PMCID: PMC9918004 DOI: 10.3390/ijms24033006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The demand for new fluorophores for different biological target imaging is increasing. Benzo[a]phenoxazine derivatives are fluorochromophores that show promising optical properties for bioimaging, namely fluorescent emission at the NIR of the visible region, where biological samples have minimal fluorescence emission. In this study, six new benzo[a]phenoxazinium chlorides possessing sulfonamide groups at 5-amino-positions were synthesized and their optical and biological properties were tested. Compared with previous probes evaluated using fluorescence microscopy, using different S. cerevisiae strains, these probes, with sulfonamide groups, stained the vacuole membrane and/or the perinuclear membrane of the endoplasmic reticulum with great specificity, with some fluorochromophores capable of even staining the plasma membrane. Thus, the addition of a sulfonamide group to the benzo[a]phenoxazinium core increases their specificity and attributes for the fluorescent labeling of cell applications and fractions, highlighting them as quite valid alternatives to commercially available dyes.
Collapse
Affiliation(s)
- João C. C. Ferreira
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Rui P. C. L. Sousa
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - A. Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - M. Sameiro T. Gonçalves
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
An enzyme activated fluorescent probe for LTA 4H activity sensing and its application in cancer screening. Talanta 2023; 253:123887. [PMID: 36088846 DOI: 10.1016/j.talanta.2022.123887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/31/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Early diagnosis of cancer is an efficient strategy to prevent tumor progression and improve the survival rate of patients. However, to discovery of reliable tumor-specific biomarkers remains a great challenge. Leukotriene A4 hydrolase (LTA4H) is a bifunctional zinc metalloenzyme with epoxide hydrolase activity and aminopeptidase activity, which plays important roles in allergic and inflammatory reactions and showed strong relevance with carcinoma progression. We thus sought to investigate the possibility of application LTA4H activity detection in cancer diagnosis. To achieve this, we herein develop an enzyme activated fluorescent probe for LTA4H activity sensing by incorporating the specific recognition unit of LTA4H with a red-emitting fluorophore. The acquired probe (named as ADMAB) showed high sensitivity and specificity toward LTA4H in vitro. By further application of ADMAB in living cells, significantly elevated LTA4H activity in cancer cell lines was observed when compared with normal cell lines and in vivo tracing A549 tumor in nude mice was also realized by ADMAB. Meanwhile, the wound-healing assay further revealed the importance of LTA4H in tumor metastasis. Moreover, the LTA4H activity in human serum sample was successfully detected by ADMAB and significantly elevated LTA4H activity in patients diagnosed with cancer was firstly found, which demonstrated ADMAB to be a useful tool for cancer diagnosis and LTA4H related biological study.
Collapse
|
8
|
Shangguan L, Wang J, Qian X, Wu Y, Liu Y. Mitochondria-Targeted Ratiometric Chemdosimeter to Detect Hypochlorite Acid for Monitoring the Drug-Damaged Liver and Kidney. Anal Chem 2022; 94:11881-11888. [PMID: 35973089 DOI: 10.1021/acs.analchem.2c02431] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liver and kidney injury caused by drug toxicity is a serious threat to human health. Acetaminophenol (APAP), as a common antipyretic and analgesic drug, inevitably causes injury. When it is overused, hypochlorous acid (HClO) is excessively generated due to metabolic abnormalities, resulting in the accumulation of HClO in the mitochondria of liver and kidney tissues and causing damage. In this study, we designed a series of HClO responsive ratiometric chemdosimeter NRH-X (NRH-O, NRH-S, and NRH-C) to evaluate liver and kidney injury, and found that NRH-O has a specific sensitive response to HClO. NRH-O can not only monitor the variations of endogenous HClO content of living cells by fluorescence ratio changes in the mitochondria but also detect the upregulation of HClO induced by APAP. In addition, NRH-O can also be used for anatomic diagnosis of liver and kidney injury by fluorescence ratio imaging of HClO in the tissues of inflammatory mice.
Collapse
Affiliation(s)
- Lina Shangguan
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jing Wang
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoli Qian
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yongquan Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
9
|
Wang J, Zhang L, Qin W, Liu Y. Near-infrared probe for early diagnosis of diabetic complications-nephropathy and in vivo visualization fluorescence imaging research. Anal Chim Acta 2022; 1221:340147. [DOI: 10.1016/j.aca.2022.340147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
|
10
|
High-throughput optical assays for sensing serine hydrolases in living systems and their applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Optical substrates for drug-metabolizing enzymes: Recent advances and future perspectives. Acta Pharm Sin B 2022; 12:1068-1099. [PMID: 35530147 PMCID: PMC9069481 DOI: 10.1016/j.apsb.2022.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Drug-metabolizing enzymes (DMEs), a diverse group of enzymes responsible for the metabolic elimination of drugs and other xenobiotics, have been recognized as the critical determinants to drug safety and efficacy. Deciphering and understanding the key roles of individual DMEs in drug metabolism and toxicity, as well as characterizing the interactions of central DMEs with xenobiotics require reliable, practical and highly specific tools for sensing the activities of these enzymes in biological systems. In the last few decades, the scientists have developed a variety of optical substrates for sensing human DMEs, parts of them have been successfully used for studying target enzyme(s) in tissue preparations and living systems. Herein, molecular design principals and recent advances in the development and applications of optical substrates for human DMEs have been reviewed systematically. Furthermore, the challenges and future perspectives in this field are also highlighted. The presented information offers a group of practical approaches and imaging tools for sensing DMEs activities in complex biological systems, which strongly facilitates high-throughput screening the modulators of target DMEs and studies on drug/herb‒drug interactions, as well as promotes the fundamental researches for exploring the relevance of DMEs to human diseases and drug treatment outcomes.
Collapse
|
12
|
Rodriguez-Rios M, Megia-Fernandez A, Norman DJ, Bradley M. Peptide probes for proteases - innovations and applications for monitoring proteolytic activity. Chem Soc Rev 2022; 51:2081-2120. [PMID: 35188510 DOI: 10.1039/d1cs00798j] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteases are excellent biomarkers for a variety of diseases, offer multiple opportunities for diagnostic applications and are valuable targets for therapy. From a chemistry-based perspective this review discusses and critiques the most recent advances in the field of substrate-based probes for the detection and analysis of proteolytic activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Maria Rodriguez-Rios
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Alicia Megia-Fernandez
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Daniel J Norman
- Technical University of Munich, Trogerstrasse, 30, 81675, Munich, Germany
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| |
Collapse
|
13
|
Wang DD, Qian XK, Li HX, Jia GH, Jin Q, Luan X, Zhu YD, Wang YN, Huang J, Zou LW, Ge GB, Yang L. Sensing and imaging of exosomal CD26 secreted from cancer cells and 3D colorectal tumor model using a novel near-infrared fluorogenic probe. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112472. [PMID: 34702509 DOI: 10.1016/j.msec.2021.112472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023]
Abstract
Cancer-derived exosomes or their specific components hold great promise for early diagnosis and precise staging of cancers. This work aimed to construct a novel enzyme-activatable fluorescent substrate for real-time detection and in situ imaging of a key exosomal surface protein CD26 in various biological systems, as well as to reveal the relevance of exosomal CD26 to the tumorigenesis. For these purposes, a group of Gly-Pro amides deriving from several near-infrared fluorophores were designed on the basis of the unique prolyl-cleaving dipeptidease activity of CD26, while molecular docking simulations were applied to assess the possibility of the designed amides as CD26 specific substrates. Following virtual screening and experimental validation, it was observed that GP-ACM displayed the best combination of high sensitivity and excellent specificity to CD26. The sensing and imaging ability of GP-ACM towards CD26 were examined in a range of biological systems, such as living cells, in situ tissues, and the exosomes secreted from cancer cells. Under physiological conditions, GP-ACM can be readily hydrolyzed by CD26 to release the fluorescent product ACM. The fluorescent product emits strong near-infrared fluorescence signals around 660 nm, which can be easily captured by the devices equipped with a fluorescence detector. GP-ACM prolyl-cleaving reaction shows excellent specificity and rapid response towards CD26, while its fluorescent product ACM displays good chemical stability and outstanding photostability. With the help of GP-ACM, CD26 in living cells, tissues and the tumor-secreted exosomes can be real-time monitored and in-situ imaged, while further investigations reveal that the exosomal CD26 activities are abnormally elevated with the progression of colon tumor. Collectively, the present study offers a practical optical assay for real-time monitoring CD26 activities in multiple complex biological systems including the exosomes secreted by tumor cells. The simplicity and effectiveness of this assay hold great potential for facilitating fundamental researches and clinical diagnosis of exosomal CD26 associated diseases.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xing-Kai Qian
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Hong-Xin Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Gui-Hua Jia
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; School of Pharmaceutical Sciences, Jilin University, China
| | - Qiang Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ya-Di Zhu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yi-Nan Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jian Huang
- Shanghai Institute of Food and Drug Control, Shanghai, China
| | - Li-Wei Zou
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Ling Yang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
14
|
Qian XK, Zhang J, Li XD, Song PF, Zou LW. Research Progress on Dipeptidyl Peptidase Family: Structure, Function and Xenobiotic Metabolism. Curr Med Chem 2021; 29:2167-2188. [PMID: 34525910 DOI: 10.2174/0929867328666210915103431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/22/2022]
Abstract
Prolyl-specific peptidases or proteases, including Dipeptidyl Peptidase 2, 4, 6, 8, 9, 10, Fibroblast Activation Protein, prolyl endopeptidase and prolyl carboxypeptidase, belong to the dipeptidyl peptidase family. In human physiology and anatomy, they have homology amino acid sequences, similarities in structure, but play distinct functions and roles. Some of them also play important roles in the metabolism of drugs containing endogenous peptides, xenobiotics containing peptides, and exogenous peptides. The major functions of these peptidases in both the metabolism of human health and bioactive peptides are of significant importance in the development of effective inhibitors to control the metabolism of endogenous bioactive peptides. The structural characteristics, distribution of tissue, endogenous substrates, and biological functions were summarized in this review. Furthermore, the xenobiotics metabolism of the dipeptidyl peptidase family is illustrated. All the evidence and information summarized in this review would be very useful for researchers to extend the understanding of the proteins of these families and offer advice and assistance in physiology and pathology studies.
Collapse
Affiliation(s)
- Xing-Kai Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Jing Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Xiao-Dong Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Pei-Fang Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| |
Collapse
|
15
|
Wang J, Zhang L, Qu Y, Yang Y, Cao T, Cao Y, Iqbal A, Qin W, Liu Y. Long-Wavelength Ratiometric Fluorescent Probe for the Early Diagnosis of Diabetes. Anal Chem 2021; 93:11461-11469. [PMID: 34369744 DOI: 10.1021/acs.analchem.1c01491] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Diabetes is a metabolic disease caused by high blood sugar. Patients are often suffering from high blood pressure and arteriosclerosis, which may even evolve into liver disease, kidney disease, and other diabetic complications. Dipeptide peptidase IV (DPP-IV) plays an important role in regulating blood sugar levels and is one of the targets for the diagnosis and treatment of diabetes. Here, a long-wavelength ratiometric fluorescent probe DCDHFNH2-dpp4 for detecting DPP-IV was designed and synthesized. DCDHFNH2-dpp4 was used to detect DPP-IV in healthy, tumor-bearing, and diabetic mice, and only diabetic mice showed strong fluorescence signals. In organ imaging, it is found that DPP-IV is relatively enriched in the liver of diabetic mice. In addition, probe DCDHFNH2-dpp4 also exhibited a significant ratiometric fluorescence signal in the serum of diabetic mice. Therefore, the fluorescent probe DCDHFNH2-dpp4 has shown outstanding potential in the early diagnosis of diabetes, and DCDHFNH2-dpp4 is hopeful to be applied to actual clinical medicine.
Collapse
Affiliation(s)
- Jiemin Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Yi Qu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuexia Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ting Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuping Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Anam Iqbal
- Department of Chemistry, University of Baluchistan, 87300 Quetta, Pakistan
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| |
Collapse
|
16
|
Chen D, Nie G, Dang Y, Liang W, Li W, Zhong C. Rational design of near-infrared fluorophores with a phenolic D–A type structure and construction of a fluorescent probe for cysteine imaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj02459k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The structural modulation of phenolic D–A type fluorophores and a NIR fluorescent probe for cysteine imaging in vitro and in vivo.
Collapse
Affiliation(s)
- Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Gang Nie
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Yecheng Dang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenjie Liang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wanqing Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Cheng Zhong
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
17
|
Sousa RPCL, Ferreira JCC, Sousa MJ, Gonçalves MST. N-(5-Amino-9 H-benzo[ a]phenoxazin-9-ylidene)propan-1-aminium chlorides as antifungal agents and NIR fluorescent probes. NEW J CHEM 2021. [DOI: 10.1039/d1nj00879j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
New benzo[a]phenoxazinium chlorides (λemi ≤ 683 nm, ΦF ≤ 0.24, at pH = 7.4), best MIC 6.25 μM in Saccharomyces cerevisiae, stain vacuolar/perinuclear membranes of cells.
Collapse
Affiliation(s)
- Rui P. C. L. Sousa
- Centre of Chemistry
- Department of Chemistry
- University of Minho
- 4710-057 Braga
- Portugal
| | - João C. C. Ferreira
- Centre of Chemistry
- Department of Chemistry
- University of Minho
- 4710-057 Braga
- Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology
- Department of Biology
- University of Minho
- 4710-057 Braga
- Portugal
| | | |
Collapse
|
18
|
Ahmed N, Zareen W, Zhang D, Yang X, Ye Y. A DCM-based NIR sensor for selective and sensitive detection of Zn 2+ in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118758. [PMID: 32810778 DOI: 10.1016/j.saa.2020.118758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Zinc ion is the 2nd abundant transition metal element in human's body. It is responsible for many physiological and biological functioning in the body, such as growth of people, immunity, endocrine, etc. The deficiency of zinc could result in an increasing risk for growth retardation, neurological disorder and infectious disease. Thus, developing a nondestructive method for detecting Zn2+ in living systems is important. Here we reported a 2-(2-methyl-4H-ylidene)- malononitrile (DCM)-based NIR probe DF-Zn for selective and sensitive detection of Zn2+. The probe DF-Zn is cell-permeable and stable at broad pH range. DF-Zn showed a fast response to Zn2+, big stock's shift, and "nude-eye" recognition for Zn2+. Moreover, the selective binding of probe DF-Zn to Zn2+ was reversible. With the addition of EDTA in buffer solution, reversible response of probe to Zn2+ could be observed in MCF-7 cells imaging.
Collapse
Affiliation(s)
- Nadeem Ahmed
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wajeeha Zareen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Di Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Xiaopeng Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Guo X, Mu S, Li J, Zhang Y, Liu X, Zhang H, Gao H. Fabrication of a water-soluble near-infrared fluorescent probe for selective detection and imaging of dipeptidyl peptidase IV in biological systems. J Mater Chem B 2020; 8:767-775. [PMID: 31897456 DOI: 10.1039/c9tb02301a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV) is a transmembrane glycoprotein known to regulate T cell activation, which is related to various pathological processes and has become a potential target to treat type 2 diabetes mellitus. Therefore, it is significant for the evaluation of endogenous DPP-IV activity in various biological systems. Herein, a water-soluble near-infrared (NIR) fluorescent probe HCA-D based on cyanine dyes as the fluorophore and glycyl-prolyl peptide as the specific recognition sequence was developed for the assay of dipeptidyl peptidase IV (DPP-IV) activity. Upon addition of DPP-IV, HCA-D can emit a significant turn-on NIR fluorescence signal under physiological conditions and exhibit high selectivity toward DPP-IV. This feature was available for quantifying DPP-IV in the range from 0.62 to 10 ng mL-1 with a detection limit of 0.19 ng mL-1. Furthermore, the present probe was successfully employed for monitoring DPP-IV in serum samples from diabetic and healthy people, and imaging of DPP-IV in living cells and tumor mice models. These results demonstrate that the designed probe provides a promising tool to explore the relationship between DPP-IV and diabetes mellitus or other diseases. Perhaps, it may become a prospective image-guided tumor resection indicator based on the abnormal expression of DPP-IV activity in the future.
Collapse
Affiliation(s)
- Xiumei Guo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Shuai Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Jian Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Hong Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
20
|
Zhang H, Qiao Z, Wei N, Zhang Y, Wang K. A rapid-response and near-infrared fluorescent probe for imaging of nitroxyl in living cells. Talanta 2020; 206:120196. [DOI: 10.1016/j.talanta.2019.120196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 01/03/2023]
|
21
|
Yi J, Bai R, An Y, Liu TT, Liang JH, Tian XG, Huo XK, Feng L, Ning J, Sun CP, Ma XC, Zhang HL. A natural inhibitor from Alisma orientale against human carboxylesterase 2: Kinetics, circular dichroism spectroscopic analysis, and docking simulation. Int J Biol Macromol 2019; 133:184-189. [DOI: 10.1016/j.ijbiomac.2019.04.099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 01/07/2023]
|
22
|
Watts KE, Blackburn TJ, Pemberton JE. Optical Spectroscopy of Surfaces, Interfaces, and Thin Films: A Status Report. Anal Chem 2019; 91:4235-4265. [PMID: 30790520 DOI: 10.1021/acs.analchem.9b00735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kristen E Watts
- Department of Chemistry and Biochemistry University of Arizona 1306 East University Boulevard , Tucson , Arizona 85721 , United States
| | - Thomas J Blackburn
- Department of Chemistry and Biochemistry University of Arizona 1306 East University Boulevard , Tucson , Arizona 85721 , United States
| | - Jeanne E Pemberton
- Department of Chemistry and Biochemistry University of Arizona 1306 East University Boulevard , Tucson , Arizona 85721 , United States
| |
Collapse
|
23
|
Feng L, Yan Q, Zhang B, Tian X, Wang C, Yu Z, Cui J, Guo D, Ma X, James TD. Ratiometric fluorescent probe for sensing Streptococcus mutans glucosyltransferase, a key factor in the formation of dental caries. Chem Commun (Camb) 2019; 55:3548-3551. [PMID: 30843551 DOI: 10.1039/c9cc00440h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report on a naphthalimide ratiometric fluorescent probe for the real-time sensing and imaging of pathogenic bacterial glucosyltransferases, which are associated with the development of dental caries. Using a high-throughput screening method, we identified that several natural polyphenols from green tea were GTFs inhibitors that could eventually lead to suitable oral treatments to prevent the development of dental caries.
Collapse
Affiliation(s)
- Lei Feng
- College of Pharmacy, Academy of Integrative Medicine, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ning J, Liu T, Dong P, Wang W, Ge G, Wang B, Yu Z, Shi L, Tian X, Huo X, Feng L, Wang C, Sun C, Cui J, James TD, Ma X. Molecular Design Strategy to Construct the Near-Infrared Fluorescent Probe for Selectively Sensing Human Cytochrome P450 2J2. J Am Chem Soc 2019; 141:1126-1134. [PMID: 30525564 DOI: 10.1021/jacs.8b12136] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytochrome P450 2J2 (CYP2J2), a key enzyme responsible for oxidative metabolism of various xenobiotics and endogenous compounds, participates in a diverse array of physiological and pathological processes in humans. Its biological role in tumorigenesis and cancer diagnosis remains poorly understood, owing to the lack of molecular tools suitable for real-time monitoring CYP2J2 in complex biological systems. Using molecular design principles, we were able to modify the distance between the catalytic unit and metabolic recognition moiety, allowing us to develop a CYP2J2 selective fluorescent probe using a near-infrared fluorophore ( E)-2-(2-(6-hydroxy-2, 3-dihydro-1 H-xanthen-4-yl)vinyl)-3,3-dimethyl-1-propyl-3 H-indol-1-ium iodide (HXPI). To improve the reactivity and isoform specificity, a self-immolative linker was introduced to the HXPI derivatives in order to better fit the narrow substrate channel of CYP2J2, the modification effectively shortened the spatial distance between the metabolic moiety ( O-alkyl group) and catalytic center of CYP2J2. After screening a panel of O-alkylated HXPI derivatives, BnXPI displayed the best combination of specificity, sensitivity and applicability for detecting CYP2J2 in vitro and in vivo. Upon O-demethylation by CYP2J2, a self-immolative reaction occurred spontaneously via 1,6-elimination of p-hydroxybenzyl resulting in the release of HXPI. Allowing BnXPI to be successfully used to monitor CYP2J2 activity in real-time for various living systems including cells, tumor tissues, and tumor-bearing animals. In summary, our practical strategy could help the development of a highly specific and broadly applicable tool for monitoring CYP2J2, which offers great promise for exploring the biological functions of CYP2J2 in tumorigenesis.
Collapse
Affiliation(s)
- Jing Ning
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024 , China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024 , China
| | - Peipei Dong
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Sino-Pakistan TCM and Ethnomedicine Research 8 Center, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Bo Wang
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| | - Zhenlong Yu
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| | - Lei Shi
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| | - Xiangge Tian
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| | - Xiaokui Huo
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| | - Lei Feng
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024 , China
| | - Chao Wang
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| | - Chengpeng Sun
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024 , China
| | - Tony D James
- Department of Chemistry , University of Bath , Bath BA2 7AY , United Kingdom
| | - Xiaochi Ma
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy , Dalian Medical University , Dalian 116044 , China
| |
Collapse
|
25
|
Tian Z, Yan Q, Feng L, Deng S, Wang C, Cui J, Wang C, Zhang Z, James TD, Ma X. A far-red fluorescent probe for sensing laccase in fungi and its application in developing an effective biocatalyst for the biosynthesis of antituberculous dicoumarin. Chem Commun (Camb) 2019; 55:3951-3954. [DOI: 10.1039/c9cc01579e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A far-red fluorescent probe for sensing laccase in fungi and its application in developing an effective biocatalyst for the biosynthesis of antituberculous dicoumarin.
Collapse
|
26
|
Romieu A, Dejouy G, Valverde IE. Quest for novel fluorogenic xanthene dyes: Synthesis, spectral properties and stability of 3-imino-3H-xanthen-6-amine (pyronin) and its silicon analog. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Tian X, Li Z, Sun Y, Wang P, Ma H. Near-Infrared Fluorescent Probes for Hypoxia Detection via Joint Regulated Enzymes: Design, Synthesis, and Application in Living Cells and Mice. Anal Chem 2018; 90:13759-13766. [DOI: 10.1021/acs.analchem.8b04249] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinwei Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China
| | - Yue Sun
- Ministry of Education Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
| | - Pan Wang
- Ministry of Education Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
28
|
Yan Z, Wang J, Zhang Y, Zhang S, Qiao J, Zhang X. An iridium complex-based probe for photoluminescence lifetime imaging of human carboxylesterase 2 in living cells. Chem Commun (Camb) 2018; 54:9027-9030. [PMID: 30047956 DOI: 10.1039/c8cc04481c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel photoluminescence lifetime probe (Ir-TB) has been developed for the detection and imaging of hCE2 in living cells. A large lifetime increase by around 300 ns after the enzymatic reaction makes it an ideal tool to distinguish hCE2-hydrolyzed probes from those non-hydrolyzed ones via PLIM for the first time.
Collapse
Affiliation(s)
- Zihe Yan
- Department of Chemistry, Beijing Key laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | - Jinyu Wang
- Department of Chemistry, Beijing Key laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | - Yanxin Zhang
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Sichun Zhang
- Department of Chemistry, Beijing Key laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | - Juan Qiao
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Xinrong Zhang
- Department of Chemistry, Beijing Key laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Liu T, Yan QL, Feng L, Ma XC, Tian XG, Yu ZL, Ning J, Huo XK, Sun CP, Wang C, Cui JN. Isolation of γ-Glutamyl-Transferase Rich-Bacteria from Mouse Gut by a Near-Infrared Fluorescent Probe with Large Stokes Shift. Anal Chem 2018; 90:9921-9928. [DOI: 10.1021/acs.analchem.8b02118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Qiu-Long Yan
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
- Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Xiao-Chi Ma
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Xiang-Ge Tian
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Zhen-Long Yu
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Jing Ning
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Xiao-Kui Huo
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Cheng-Peng Sun
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Chao Wang
- College of Pharmacy, Academy of Integrative Medicine, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Jing-Nan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
30
|
Pak YL, Park SJ, Xu Q, Kim HM, Yoon J. Ratiometric Two-Photon Fluorescent Probe for Detecting and Imaging Hypochlorite. Anal Chem 2018; 90:9510-9514. [DOI: 10.1021/acs.analchem.8b02195] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yen Leng Pak
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Sang Jun Park
- Department of Energy Systems Research, Ajou University, Suwon, Gyeonggi-do 443-749, Korea
| | - Qingling Xu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hwan Myung Kim
- Department of Energy Systems Research, Ajou University, Suwon, Gyeonggi-do 443-749, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
31
|
Xing J, Gong Q, Zhang R, Sun S, Zou R, Wu A. A novel non-enzymatic hydrolytic probe for dipeptidyl peptidase IV specific recognition and imaging. Chem Commun (Camb) 2018; 54:8773-8776. [DOI: 10.1039/c8cc05048a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel non-enzymatic hydrolytic probe for DPP IV is obtained.
Collapse
Affiliation(s)
- Jie Xing
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Qiuyu Gong
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Renshuai Zhang
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Shan Sun
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Ruifen Zou
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| | - Aiguo Wu
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- China
| |
Collapse
|
32
|
Zhang W, Huo F, Yin C. Recent advances of dicyano-based materials in biology and medicine. J Mater Chem B 2018; 6:6919-6929. [DOI: 10.1039/c8tb02205d] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We highlight the development of dicyano-based fluorescent materials in biology and medicine.
Collapse
Affiliation(s)
- Weijie Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Key Laboratory of Materials for Energy
- Conversion and Storage of Shanxi Province
- Institute of Molecular Science
- Shanxi University
| | - Fangjun Huo
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Key Laboratory of Materials for Energy
- Conversion and Storage of Shanxi Province
- Institute of Molecular Science
- Shanxi University
| |
Collapse
|
33
|
Liu HW, Chen L, Xu C, Li Z, Zhang H, Zhang XB, Tan W. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev 2018; 47:7140-7180. [DOI: 10.1039/c7cs00862g] [Citation(s) in RCA: 515] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of recent advances in small-molecule enzymatic fluorescent probes for cancer imaging, including design strategies and cancer imaging applications.
Collapse
Affiliation(s)
- Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Lanlan Chen
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Chengyan Xu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Zhe Li
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Haiyang Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| |
Collapse
|
34
|
Zhong K, Deng L, Zhao J, Yan X, Sun T, Li J, Tang L. A novel near-infrared fluorescent probe for highly selective recognition of hydrogen sulfide and imaging in living cells. RSC Adv 2018; 8:23924-23929. [PMID: 35540263 PMCID: PMC9081853 DOI: 10.1039/c8ra03457e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/24/2018] [Indexed: 01/06/2023] Open
Abstract
A novel near-infrared fluorescent probe (L) based on a 1,4-diethyl-1,2,3,4-tetrahydro-7H-pyrano[2,3-g]quinoxalin-7-one scaffold has been synthesized and characterized. Probe L displays highly selective and sensitive recognition to H2S over various anions and biological thiols with a large Stokes shift (125 nm) in THF/H2O (6/4, v/v, Tris–HCl 10 mM, pH = 7.4). This probe exhibits turn-on fluorescence for H2S through HS− induced thiolysis of dinitrophenyl ether. Confocal laser scanning micrographs of MCF-7 cells incubated with L confirm that L is cell-permeable and can successfully detect H2S in living cells. A novel “off–on” fluorescent probe (L) for H2S detection with NIR emission and imaging H2S in living cells.![]()
Collapse
Affiliation(s)
- Keli Zhong
- College of Chemistry and Chemical Engineering
- Bohai University
- Jinzhou
- China
- College of Food Science and Technology
| | - Longlong Deng
- College of Chemistry and Chemical Engineering
- Bohai University
- Jinzhou
- China
| | - Jie Zhao
- College of Chemistry and Chemical Engineering
- Bohai University
- Jinzhou
- China
| | - Xiaomei Yan
- College of Laboratory Medicine
- Dalian Medical University
- Dalian
- China
| | - Tong Sun
- College of Food Science and Technology
- Bohai University
- National & Local Joint Engineering Research Center of Storage
- Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products
- The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities
| | - Jianrong Li
- College of Food Science and Technology
- Bohai University
- National & Local Joint Engineering Research Center of Storage
- Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products
- The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities
| | - Lijun Tang
- College of Chemistry and Chemical Engineering
- Bohai University
- Jinzhou
- China
| |
Collapse
|