1
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
2
|
Xu L, Chen Y, Ye J, Fan M, Weng G, Shen Y, Lin Z, Lin D, Xu Y, Feng S. Optical Nanobiosensor Based on Surface-Enhanced Raman Spectroscopy and Catalytic Hairpin Assembly for Early-Stage Lung Cancer Detection via Blood Circular RNA. ACS Sens 2024; 9:2020-2030. [PMID: 38602529 DOI: 10.1021/acssensors.3c02810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Lung cancer has become the leading cause of cancer-related deaths globally. However, early detection of lung cancer remains challenging, resulting in poor outcomes for the patients. Herein, we developed an optical biosensor integrating surface-enhanced Raman spectroscopy (SERS) with a catalyzed hairpin assembly (CHA) to detect circular RNA (circRNA) associated with tumor formation and progression (circSATB2). The signals of the Raman reporter were considerably enhanced by generating abundant SERS "hot spots" with a core-shell nanoprobe and 2D SERS substrate with calibration capabilities. This approach enabled the sensitive (limit of detection: 0.766 fM) and reliable quantitative detection of the target circRNA. Further, we used the developed biosensor to detect the circRNA in human serum samples, revealing that patients with lung cancer had higher circRNA concentrations than healthy subjects. Moreover, we characterized the unique circRNA concentration profiles of the early stages (IA and IB) and subtypes (IA1, IA2, and IA3) of lung cancer. These results demonstrate the potential of the proposed optical sensing nanoplatform as a liquid biopsy and prognostic tool for the early screening of lung cancer.
Collapse
Affiliation(s)
- Luyun Xu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Yuanmei Chen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China
| | - Jianqing Ye
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Min Fan
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Guibin Weng
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China
| | - Yongshi Shen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China
| | - Zhizhong Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Yuanji Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| |
Collapse
|
3
|
Zheng S, Xiao J, Zhang J, Sun Q, Liu D, Liu Y, Gao X. Python-assisted detection and photothermal inactivation of Salmonella typhimurium and Staphylococcus aureus on a background-free SERS chip. Biosens Bioelectron 2024; 247:115913. [PMID: 38091898 DOI: 10.1016/j.bios.2023.115913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
In this study, a background-free surface-enhanced Raman scattering (SERS) chip with a sandwich configuration was fabricated to enable reliable detection and photothermal inactivation of multiple bacteria. The SERS chip consists of a graphene-coated, phenylboronic-modified plasmonic gold substrate (pAu/G/PBA), and two aptamer-functionalized core (gold)-shell (Prussian blue/Poly-L-lysine and 4-mercaptobenzonitrile/polydopamine) SERS tags (Au@PB@PLL@Apt and Au@MB@PDA@Apt). The detection signals rely on the characteristic and nonoverlapping Raman bands of the SERS tags within the Raman-silent region (1800-2800 cm-1), where no background signals from the sample matrix are observed, leading to improved detection sensitivity and accuracy. Considering the relatively large size of bacteria (e.g., micron level), a rapid Raman mapping technique was chosen over conventional point-scan methods to achieve more reliable quantitative analysis of bacteria. This technique involves collecting and analyzing intensity signals of SERS tags from all the scattering points with an average ensemble effect, which is facilitated by the use of Python. As a proof-of-concept, model bacterium of Salmonella typhimurium and Staphylococcus aureus were successfully detected using the SERS chip with a dynamic range of 10-107 CFU/mL. Additionally, the SERS chip demonstrated successful detection of these bacteria in whole blood samples. Moreover, the photothermal effect of pAu/G led to efficient bacteria elimination, achieving approximately 100% eradication. This study integrated a background-free SERS chip with a Python-assisted rapid Raman mapping technique, resulting in a reliable, rapid and accurate method for detecting and eliminating multiple bacteria, which may provide a promising alternative for multiple screening of bacteria in real samples.
Collapse
Affiliation(s)
- Shuo Zheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jinru Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jing Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qixiu Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Dingbin Liu
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
4
|
Shi Y, Fang J. Directly Self-Assembly of Aligned Ag NWs Films at the Air-Water Interface for the Detection of Pathogens in Artificial Breath Aerosols. Anal Chem 2024; 96:2474-2480. [PMID: 38294198 DOI: 10.1021/acs.analchem.3c04475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Exhaled aerosols from humans, containing various pathogens, are crucial for early disease diagnosis. However, the traditional pathogen detection methods, such as polymerase chain reaction, are often slow and cumbersome due to complex sampling and procedures. This study introduces a novel, direct, and label-free detection method for pathogens in respiratory aerosols, utilizing a highly aligned silver nanowire (Ag NW) film combined with a filter membrane (Ag NWs@filter) as a surface-enhanced Raman spectroscopy-active substrate. A large-scale, ordered silver nanowire film was developed through a simplified self-assembly process. This process eliminates the need for an organic phase and complex surface modifications of Ag NWs, which are common in other preparation methods. Subsequently, the fabricated Ag NWs@filter demonstrated its capability to continuously capture and efficiently preconcentrate pathogens from aerosols, achieving a remarkable detection limit of 3 × 103 CFU/mL, demonstrated using Escherichia coli (E. coli) as a model pathogen. Moreover, the classification between E. coli and Pseudomonas aeruginosa achieved an overall accuracy of 96.5% by the principal component analysis with linear discriminant analysis models. The success of this sensing strategy illustrates its potential in detecting and identifying a variety of biomarkers present in respiratory aerosols, marking a significant step forward in the field of pathogen detection.
Collapse
Affiliation(s)
- Yafei Shi
- China Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- School of Electronics Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jixiang Fang
- China Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
5
|
Mehmood N, Akram MW, Majeed MI, Nawaz H, Aslam MA, Naman A, Wasim M, Ghaffar U, Kamran A, Nadeem S, Kanwal N, Imran M. Surface-enhanced Raman spectroscopy for the characterization of bacterial pellets of Staphylococcus aureus infected by bacteriophage. RSC Adv 2024; 14:5425-5434. [PMID: 38348301 PMCID: PMC10859908 DOI: 10.1039/d3ra07575c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Drug-resistant pathogenic bacteria are a major cause of infectious diseases in the world and they have become a major threat through the reduced efficacy of developed antibiotics. This issue can be addressed by using bacteriophages, which can kill lethal bacteria and prevent them from causing infections. Surface-enhanced Raman spectroscopy (SERS) is a promising technique for studying the degradation of infectious bacteria by the interaction of bacteriophages to break the vicious cycle of drug-resistant bacteria and help to develop chemotherapy-independent remedial strategies. The phage (viruses)-sensitive Staphylococcus aureus (S. aureus) bacteria are exposed to bacteriophages (Siphoviridae family) in the time frame from 0 min (control) to 50 minutes with intervals of 5 minutes and characterized by SERS using silver nanoparticles as SERS substrate. This allows us to explore the effects of the bacteriophages against lethal bacteria (S. aureus) at different time intervals. The differentiating SERS bands are observed at 575 (C-C skeletal mode), 620 (phenylalanine), 649 (tyrosine, guanine (ring breathing)), 657 (guanine (COO deformation)), 728-735 (adenine, glycosidic ring mode), 796 (tyrosine (C-N stretching)), 957 (C-N stretching (amide lipopolysaccharides)), 1096 (PO2 (nucleic acid)), 1113 (phenylalanine), 1249 (CH2 of amide III, N-H bending and C-O stretching (amide III)), 1273 (CH2, N-H, C-N, amide III), 1331 (C-N stretching mode of adenine), 1373 (in nucleic acids (ring breathing modes of the DNA/RNA bases)) and 1454 cm-1 (CH2 deformation of saturated lipids), indicating the degradation of bacteria and replication of bacteriophages. Multivariate data analysis was performed by employing principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to study the biochemical differences in the S. aureus bacteria infected by the bacteriophage. The SERS spectral data sets were successfully differentiated by PLS-DA with 94.47% sensitivity, 98.61% specificity, 94.44% precision, 98.88% accuracy and 81.06% area under the curve (AUC), which shows that at 50 min interval S. aureus bacteria is degraded by the replicating bacteriophages.
Collapse
Affiliation(s)
- Nasir Mehmood
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Waseem Akram
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, Faculty of Veterinary, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Abdul Naman
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Wasim
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Usman Ghaffar
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Ali Kamran
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Sana Nadeem
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Naeema Kanwal
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University P.O. Box 9004 Abha (61413) Saudi Arabia
| |
Collapse
|
6
|
Zeng P, Guan Q, Zhang Q, Yu L, Yan X, Hong Y, Duan L, Wang C. SERS detection of foodborne pathogens in beverage with Au nanostars. Mikrochim Acta 2023; 191:28. [PMID: 38093122 DOI: 10.1007/s00604-023-06105-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
The aim of this study is to develop a simple but rapid method for the determination of foodborne pathogens in complex matrices (beverages) by surface enhanced Raman spectroscopy (SERS) combined with Au nanostar solid-phase substrates. The star-shaped singlet Au nanostructure was formed on the surface of a stainless steel sheet by chemical replacement reaction. Rhodamine 6G verified the sensitivity and reproducibility of this substrate, and the relative standard deviations of the SERS intensity at 1312 cm-1, 1364 cm-1, and 1510 cm-1 displacements were 3.40%, 5.64%, and 3.48%, respectively. By detecting four pathogens in beverage samples on Au nanostar substrates, the utility of the SERS assay was demonstrated, while the combination of principal component analysis (PCA) and hierarchical cluster analysis (HCA) further enabled the isolation and identification of pathogens. The results of spiked beverages were validated in conventional culture identification and Vitek 2 Compact biochemical identification system experiments. Thus, this research demonstrated that Au nanostar substrates can be effectively utilized for the recognition of pathogenic bacteria and have immense promise to advance the progress of quick detection of foodborne pathogens and food safety.
Collapse
Affiliation(s)
- Pei Zeng
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Qi Guan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Qianqian Zhang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Lili Yu
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Xianzai Yan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Yanping Hong
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Luying Duan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Chunrong Wang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
7
|
Cao H, Shi H, Tang J, Xu Y, Ling Y, Lu X, Yang Y, Zhang X, Wang H. Ultrasensitive discrimination of volatile organic compounds using a microfluidic silicon SERS artificial intelligence chip. iScience 2023; 26:107821. [PMID: 37731613 PMCID: PMC10507157 DOI: 10.1016/j.isci.2023.107821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
Current gaseous sensors hardly discriminate trace volatile organic compounds at the ppt level. Herein, we present an integrated platform for simultaneously enabling rapid preconcentration, reliable surface-enhanced Raman scattering, (SERS) detection and automatic identification of trace aldehydes at the ppt level. For rapid preconcentration, we demonstrate that the nozzle-like microfluidic concentrator allows the enrichment of rare gaseous analytes by five-fold in only 0.01 ms. The enriched gas is subsequently captured and detected by an integrated silicon-based SERS chip, which is made of zeolitic imidazolate framework-8 coated silver nanoparticles grown in situ on a silicon wafer. After SERS measurement, a fully connected deep neural network is built to extract faint features in the spectral dataset and discriminate volatile organic compound classes. We demonstrate that six kinds of gaseous aldehydes at 100 ppt could be detected and classified with an identification accuracy of ∼80.9% by using this platform.
Collapse
Affiliation(s)
- Haiting Cao
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Huayi Shi
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie Tang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanan Xu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yufan Ling
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Xing Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xiaojie Zhang
- Department of Experimental Center, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
8
|
Liu C, Zhang J, Zheng Q, Zhao L, Kong PF, Yang H, Liu X. Surface-Enhanced Raman Scattering Enantioselective Detection of Gastric Cancer-Related d-Amino Acids in Saliva Based on Enzyme-Mediated Cascade Reaction. Anal Chem 2023; 95:13029-13035. [PMID: 37611167 DOI: 10.1021/acs.analchem.3c01030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The unusual d-amino acids (d-AAs), as the counter enantiomer of usual l-amino acids (l-AAs), have evoked increasing attention because of their potential relevance with diseases. Accordingly, it is essential to establish sensitive and selective detection methods for d-AAs without the interferences from l-AAs. The surface-enhanced Raman scattering (SERS) technique is efficacious for the detection of molecules but routinely ineffective in enantiomeric differentiation. d-Proline (d-Pro) and d-alanine (d-Ala) are regarded as biomarkers of gastric cancer. Herein, Raman-active boronate modified SERS chips are constructed to develop a d-amino acid oxidase (DAAO)-mediated cascade reaction-based SERS enantioselective assay for d-Pro and d-Ala. The principle is that DAAO selectively catalyzes the deamination of d-Pro and d-Ala, and the produced H2O2 oxidizes boronate to present a new SERS peak at 883 cm-1 for quantitative analysis in a ratiometric way. A linear range from 20 to 400 μmol/L and a limit of detection down to 14.8 μmol/L are reached. In addition, interferences from l-AAs and many other possible species coexisting in biofluids with the detection of d-Pro and d-Ala are ignorable. Enzyme-mediated cascade reaction-based SERS chips are further utilized for saliva sample analysis, and the total levels of d-Pro and d-Ala in salivary samples from gastric cancer patients are much higher than those of healthy persons. This work provides a solution for SERS enantioselective analysis and noninvasive screening chiral biomolecules for disease diagnosis.
Collapse
Affiliation(s)
- Chang Liu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jian Zhang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Qiangting Zheng
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Lijun Zhao
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Peng-Fei Kong
- Department of Gastric Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xinling Liu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
9
|
Lu D, Cai R, Liao Y, You R, Lu Y. Two-dimensional glass/p-ATP/Ag NPs as multifunctional SERS substrates for label-free quantification of uric acid in sweat. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122631. [PMID: 37037174 DOI: 10.1016/j.saa.2023.122631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Abnormal uric acid (UA) content in body fluids can fully reflect the status of metabolism and immunity in the body. We have developed a simple, efficient and label-free surface enhanced Raman scattering (SERS) method for UA detection. Briefly, p-aminothiophenol (p-ATP) was used as the internal standard molecule and linking molecule to prepare a glass/p-ATP/Ag NPs SERS substrate. The Raman characteristic peak of p-ATP at 1076 cm-1 can be used as an internal standard molecule to correct the signal fluctuation of UA detection. The results show that the SERS method owns a linear response with a ranging from 5 × 10-6 to 10-3 M of UA characteristic peak of both 693 cm-1 and 493 cm-1 with a determination coefficient (R2) of 0.9878 and 0.9649, respectively. Additionally, the SERS sensor has been further used for the analysis of UA in sweat and good recoveries were obtained for the sensing of sweat. We believe that the developed SERS substrate has potential for applications in healthcare monitoring.
Collapse
Affiliation(s)
- Dechan Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, China; College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Rongyuan Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, China; Shaanxi Science and Technology Exchange Center, Shaanxi 710054, China
| | - Yuqin Liao
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, China.
| |
Collapse
|
10
|
Lin X, Zhao M, Peng T, Zhang P, Shen R, Jia Y. Detection and discrimination of pathogenic bacteria with nanomaterials-based optical biosensors: A review. Food Chem 2023; 426:136578. [PMID: 37336102 DOI: 10.1016/j.foodchem.2023.136578] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/16/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Pathogenic bacteria can pose a great threat to food safety and human health. It is therefore imperative to develop a rapid, portable, and sensitive determination and discrimination method for pathogenic bacteria. Over the past few years, various nanomaterials (NMs) have been employed as desirable nanoprobes because they possess extraordinary properties that can be used for optical signal enabled detection and identification of bacteria. By means of modification, NMs can, depending on different mechanisms, sense targets directly or indirectly, which then provides an essential support for the detection and differentiation of pathogenic bacteria. In this review, recent application of NMs-based optical biosensors for food safety bacterial detection and discrimination is performed, mainly in but not limited to noble metal NMs, fluorescent NMs, and point-of-care testing (POCT). This review also focuses on future trends in bacterial detection and discrimination, and machine learning in performing intelligent rapid detection and multiple accurate identification of bacteria.
Collapse
Affiliation(s)
- Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China.
| | - Minyang Zhao
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Tao Peng
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Pan Zhang
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
| | - Ren Shen
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
| | - Yanwei Jia
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China; State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
| |
Collapse
|
11
|
Jin L, Yang J, You G, Ge C, Cao Y, Shen S, Wang D, Hui Q. A characteristic bacterial SERS marker for direct identification of Salmonella in real samples assisted by a high-performance SERS chip and a selective culture medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122941. [PMID: 37302194 DOI: 10.1016/j.saa.2023.122941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/13/2023]
Abstract
Salmonella should be absent in pharmaceutical preparations and foods according to the regulations. However, up to now, rapid and convenient identification of Salmonella is still full of challenge. Herein, we reported a label-free surface-enhanced Raman scattering (SERS) method for direct identification of Salmonella spiked in drug samples based on a characteristic bacterial SERS marker assisted by a high-performance SERS chip and a selective culture medium. The SERS chip being fabricated through in situ growth of bimetallic Au-Ag nanocomposites on silicon wafer within 2 h, featured a high SERS activity (EF > 107), good uniformity and batch-to-batch consistency (RSD < 10 %), and satisfactory chemical stability. The directly-visualized SERS marker at 1222 cm-1 originated from bacterial metabolite hypoxanthine was robust and exclusive for discrimination of Salmonella with other bacterial species. Moreover, the method was successfully used for direct discrimination of Salmonella in mixed pathogens by using a selective culture medium, and could identify Salmonella contaminant at ∼1 CFU spiked level in a real sample (Wenxin granule, a botanical drug) after 12 h of enrichment. The combined results showed that developed SERS method is practical and reliable, and could be a promising alternative for rapid identification of Salmonella contamination in pharmaceutical and foods industries.
Collapse
Affiliation(s)
- Lei Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China.
| | - Jinmei Yang
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325001, China
| | - Guohui You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaojie Ge
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanrong Cao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Siyuan Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Danyan Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qi Hui
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
12
|
Zhao W, Yang S, Zhang D, Zhou T, Huang J, Gao M, Jiang Y, Liu Y, Yang J. Ultrasensitive dual-enhanced sandwich strategy for simultaneous detection of Escherichia coli and Staphylococcus aureus based on optimized aptamers-functionalized magnetic capture probes and graphene oxide-Au nanostars SERS tags. J Colloid Interface Sci 2023; 634:651-663. [PMID: 36549213 DOI: 10.1016/j.jcis.2022.12.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
In this work, a novel surface-enhanced Raman scattering (SERS) sandwich strategy biosensing platform has been established for simultaneously detecting Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Fe3O4@SiO2-Au nanocomposites (NCs) with varying amounts of Au nanocrystals were prepared, and the effect of interparticle gaps on SERS activity was studied by finite-difference time-domain (FDTD) method. The optimal magnetic SERS-active substrates (FS-A5) were functionalized with the specific aptamers to act as capture probes. Meanwhile, graphene oxide-Au nanostars (GO-Au NSs) decorated with Raman reporters and aptamers were used as SERS tags. The loading density of Au NSs on GO was tuned to change the number of SERS active sites. In this proposal, E. coli and S. aureus were first captured by capture probes and then bound with SERS tags to form a sandwich-like structure, which caused enhanced electromagnetic field because of the dual enhancement strategy. Under optimal conditions, SERS platform could detect E. coli and S. aureus simultaneously, and the detection limit was as low as 10 cfu/mL. Our sandwich assay-based dual-enhanced SERS platform provides a new idea for simultaneously detecting multiple pathogens with high selectivity and sensitivity, and thus will have more hopeful prospects in the field of food safety.
Collapse
Affiliation(s)
- Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Yang
- College of Science, Changchun University, Changchun 130022, China
| | - Daxin Zhang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yuhong Jiang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China.
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China.
| |
Collapse
|
13
|
Liu L, Ma W, Wang X, Li S. Recent Progress of Surface-Enhanced Raman Spectroscopy for Bacteria Detection. BIOSENSORS 2023; 13:350. [PMID: 36979564 PMCID: PMC10046079 DOI: 10.3390/bios13030350] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
There are various pathogenic bacteria in the surrounding living environment, which not only pose a great threat to human health but also bring huge losses to economic development. Conventional methods for bacteria detection are usually time-consuming, complicated and labor-intensive, and cannot meet the growing demands for on-site and rapid analyses. Sensitive, rapid and effective methods for pathogenic bacteria detection are necessary for environmental monitoring, food safety and infectious bacteria diagnosis. Recently, benefiting from its advantages of rapidity and high sensitivity, surface-enhanced Raman spectroscopy (SERS) has attracted significant attention in the field of bacteria detection and identification as well as drug susceptibility testing. Here, we comprehensively reviewed the latest advances in SERS technology in the field of bacteria analysis. Firstly, the mechanism of SERS detection and the fabrication of the SERS substrate were briefly introduced. Secondly, the label-free SERS applied for the identification of bacteria species was summarized in detail. Thirdly, various SERS tags for the high-sensitivity detection of bacteria were also discussed. Moreover, we emphasized the application prospects of microfluidic SERS chips in antimicrobial susceptibility testing (AST). In the end, we gave an outlook on the future development and trends of SERS in point-of-care diagnoses of bacterial infections.
Collapse
Affiliation(s)
- Lulu Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenrui Ma
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiang Wang
- Department of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
14
|
Wei Q, Dong Q, Pu H. Multiplex Surface-Enhanced Raman Scattering: An Emerging Tool for Multicomponent Detection of Food Contaminants. BIOSENSORS 2023; 13:296. [PMID: 36832062 PMCID: PMC9954132 DOI: 10.3390/bios13020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
For survival and quality of human life, the search for better ways to ensure food safety is constant. However, food contaminants still threaten human health throughout the food chain. In particular, food systems are often polluted with multiple contaminants simultaneously, which can cause synergistic effects and greatly increase food toxicity. Therefore, the establishment of multiple food contaminant detection methods is significant in food safety control. The surface-enhanced Raman scattering (SERS) technique has emerged as a potent candidate for the detection of multicomponents simultaneously. The current review focuses on the SERS-based strategies in multicomponent detection, including the combination of chromatography methods, chemometrics, and microfluidic engineering with the SERS technique. Furthermore, recent applications of SERS in the detection of multiple foodborne bacteria, pesticides, veterinary drugs, food adulterants, mycotoxins and polycyclic aromatic hydrocarbons are summarized. Finally, challenges and future prospects for the SERS-based detection of multiple food contaminants are discussed to provide research orientation for further.
Collapse
Affiliation(s)
- Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Qirong Dong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
15
|
Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: considering their potential for the point-of-care. Mikrochim Acta 2023; 190:91. [PMID: 36790481 PMCID: PMC9930094 DOI: 10.1007/s00604-023-05666-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
Silver nanoparticles (AgNPs) have long been overshadowed by gold NPs' success in sensor and point-of-care (POC) applications. However, their unique physical, (electro)chemical, and optical properties make them excellently suited for such use, as long as their inherent higher instability toward oxidation is controlled. Recent advances in this field provide novel strategies that demonstrate that the AgNPs' inherent capabilities improve sensor performance and enable the specific detection of analytes at low concentrations. We provide an overview of these advances by focusing on the nanosized Ag (in the range of 1-100 nm) properties with emphasis on optical and electrochemical biosensors. Furthermore, we critically assess their potential for point-of-care sensors discussing advantages as well as limitations for each detection technique. We can conclude that, indeed, strategies using AgNP are ready for sensitive POC applications; however, research focusing on the simplification of assay procedures is direly needed for AgNPs to make the successful jump into actual applications.
Collapse
|
16
|
Cao H, Xie J, Cheng J, Xu Y, Lu X, Tang J, Zhang X, Wang H. CRISPR Cas12a-Powered Silicon Surface-Enhanced Raman Spectroscopy Ratiometric Chip for Sensitive and Reliable Quantification. Anal Chem 2023; 95:2303-2311. [PMID: 36655772 DOI: 10.1021/acs.analchem.2c03990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sensitive and reliable clustered regularly interspaced short palindromic repeats (CRISPR) quantification without preamplification of the sample remains a challenge. Herein, we report a CRISPR Cas12a-powered silicon surface-enhanced Raman spectroscopy (SERS) ratiometric chip for sensitive and reliable quantification. As a proof-of-concept application, we select the platelet-derived growth factor-BB (PDGF-BB) as the target. We first develop a microfluidic synthetic strategy to prepare homogeneous silicon SERS substrates, in which uniform silver nanoparticles (AgNPs) are in situ grown on a silicon wafer (AgNPs@Si) by microfluidic galvanic deposition reactions. Next, one 5'-SH-3'-ROX-labeled single-stranded DNA (ssDNA) is modified on AgNPs via Ag-S bonds. In our design, such ssDNA has two fragments: one fragment hybridizes to its complementary DNA (5'-Cy3-labeled ssDNA) to form double-stranded DNA (dsDNA) and the other fragment labeled with 6'-carboxy-X-rhodmine (ROX) extends out as a substrate for Cas12a. The cleavage of the ROX-tagged fragment by Cas12a is controlled by the presence or not of PDGF-BB. Meanwhile, Cy3 molecules serving as internal standard molecules still stay at the end of the rigid dsDNA, and their signals remain constant. Thereby, the ratio of ROX signal intensity to Cy3 intensity can be employed for the reliable quantification of PDGF-BB concentration. The developed chip features an ultrahigh sensitivity (e.g., the limit of detection is as low as 3.2 pM, approximately 50 times more sensitive than the fluorescence counterpart) and good reproducibility (e.g., the relative standard deviation is less than 5%) in the detection of PDGF-BB.
Collapse
Affiliation(s)
- Haiting Cao
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingxuan Xie
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiayi Cheng
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanan Xu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xing Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie Tang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaojie Zhang
- Department of Experimental Center, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
17
|
Hatfield KO, Putnam ST, Rodríguez-López J. Inducing SERS activity at graphitic carbon using graphene-covered Ag nanoparticle substrates: Spectroelectrochemical analysis of a redox-active adsorbed anthraquinone. J Chem Phys 2023; 158:014701. [PMID: 36610978 DOI: 10.1063/5.0130876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Graphitic carbon electrodes are central to many electrochemical energy storage and conversion technologies. Probing the behavior of molecular species at the electrochemical interfaces they form is paramount to understanding redox reaction mechanisms. Combining surface-enhanced Raman scattering (SERS) with electrochemical methods offers a powerful way to explore such mechanisms, but carbon itself is not a SERS activating substrate. Here, we report on a hybrid substrate consisting of single- or few-layer graphene sheets deposited over immobilized silver nanoparticles, which allows for simultaneous SERS and electrochemical investigation. To demonstrate the viability of our substrate, we adsorbed anthraquinone-2,6-disulfonate to graphene and studied its redox response simultaneously using SERS and cyclic voltammetry in acidic solutions. We identified spectral changes consistent with the reversible redox of the quinone/hydroquinone pair. The SERS intensities on bare silver and hybrid substrates were of the same order of magnitude, while no discernible signals were observed over bare graphene, confirming the SERS effect on adsorbed molecules. This work provides new prospects for exploring and understanding electrochemical processes in situ at graphitic carbon electrodes.
Collapse
Affiliation(s)
- Kendrich O Hatfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Seth T Putnam
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
18
|
Yuan K, Jurado-Sánchez B, Escarpa A. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: a review. J Nanobiotechnology 2022; 20:537. [PMID: 36544151 PMCID: PMC9771791 DOI: 10.1186/s12951-022-01711-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) is a very promising tool for the direct detection of biomarkers for the diagnosis of i.e., cancer and pathogens. Yet, current SERS strategies are hampered by non-specific interactions with co-existing substances in the biological matrices and the difficulties of obtaining molecular fingerprint information from the complex vibrational spectrum. Raman signal enhancement is necessary, along with convenient surface modification and machine-based learning to address the former issues. This review aims to describe recent advances and prospects in SERS-based approaches for cancer and pathogens diagnosis. First, direct SERS strategies for key biomarker sensing, including the use of substrates such as plasmonic, semiconductor structures, and 3D order nanostructures for signal enhancement will be discussed. Secondly, we will illustrate recent advances for indirect diagnosis using active nanomaterials, Raman reporters, and specific capture elements as SERS tags. Thirdly, critical challenges for translating the potential of the SERS sensing techniques into clinical applications via machine learning and portable instrumentation will be described. The unique nature and integrated sensing capabilities of SERS provide great promise for early cancer diagnosis or fast pathogens detection, reducing sanitary costs but most importantly allowing disease prevention and decreasing mortality rates.
Collapse
Affiliation(s)
- Kaisong Yuan
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| |
Collapse
|
19
|
Sultangaziyev A, Ilyas A, Dyussupova A, Bukasov R. Trends in Application of SERS Substrates beyond Ag and Au, and Their Role in Bioanalysis. BIOSENSORS 2022; 12:bios12110967. [PMID: 36354477 PMCID: PMC9688019 DOI: 10.3390/bios12110967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 05/31/2023]
Abstract
This article compares the applications of traditional gold and silver-based SERS substrates and less conventional (Pd/Pt, Cu, Al, Si-based) SERS substrates, focusing on sensing, biosensing, and clinical analysis. In recent decades plethora of new biosensing and clinical SERS applications have fueled the search for more cost-effective, scalable, and stable substrates since traditional gold and silver-based substrates are quite expensive, prone to corrosion, contamination and non-specific binding, particularly by S-containing compounds. Following that, we briefly described our experimental experience with Si and Al-based SERS substrates and systematically analyzed the literature on SERS on substrate materials such as Pd/Pt, Cu, Al, and Si. We tabulated and discussed figures of merit such as enhancement factor (EF) and limit of detection (LOD) from analytical applications of these substrates. The results of the comparison showed that Pd/Pt substrates are not practical due to their high cost; Cu-based substrates are less stable and produce lower signal enhancement. Si and Al-based substrates showed promising results, particularly in combination with gold and silver nanostructures since they could produce comparable EFs and LODs as conventional substrates. In addition, their stability and relatively low cost make them viable alternatives for gold and silver-based substrates. Finally, this review highlighted and compared the clinical performance of non-traditional SERS substrates and traditional gold and silver SERS substrates. We discovered that if we take the average sensitivity, specificity, and accuracy of clinical SERS assays reported in the literature, those parameters, particularly accuracy (93-94%), are similar for SERS bioassays on AgNP@Al, Si-based, Au-based, and Ag-based substrates. We hope that this review will encourage research into SERS biosensing on aluminum, silicon, and some other substrates. These Al and Si based substrates may respond efficiently to the major challenges to the SERS practical application. For instance, they may be not only less expensive, e.g., Al foil, but also in some cases more selective and sometimes more reproducible, when compared to gold-only or silver-only based SERS substrates. Overall, it may result in a greater diversity of applicable SERS substrates, allowing for better optimization and selection of the SERS substrate for a specific sensing/biosensing or clinical application.
Collapse
|
20
|
Wang D, Bao L, Li H, Guo X, Liu W, Wang X, Hou X, He B. Polydopamine stabilizes silver nanoparticles as a SERS substrate for efficient detection of myocardial infarction. NANOSCALE 2022; 14:6212-6219. [PMID: 35403650 DOI: 10.1039/d2nr00091a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rapid and accurate detection of myocardial infarction (MI) can boost the patient's chance of survival. Surface enhanced Raman scattering (SERS) is an outstanding diagnostic technique because of its strong light stability, high resolution, and qualitative and quantitative analysis based on the characteristic fingerprint. However, its reliability, stability and specificity remain to be improved, especially in the quantitative analysis of serum samples. In this study, we developed in situ silver nanoparticles (Ag NPs) on the surface of polydopamine (PDA) as a SERS substrate and found that PDA could act as a reducing agent to support the nucleation and growth of Ag NPs and control the distance and aggregation of Ag NPs to stabilize the Raman signal. In a standard phosphate buffered saline (PBS) environment, PDA@Ag could reach a low detection limit of 0.01 ng mL-1 cardiac troponin I (cTn I) with a good linear relationship. At the same time, the PDA@Ag substrate also possessed excellent stability, specificity and biocompatibility for cTn I detection. In addition, we verified the application potentiality of PDA@Ag in real serum samples and found that the performance of SERS was almost the same as that in PBS. This excellent detection performance of PDA@Ag could be attributed to both the enhanced electromagnetic field and the increased Raman cross-section, dominated by the gap distance between Ag NPs, reaction force between the antigen and the antibody and excellent biocompatibility and reducibility of PDA. In conclusion, this work may provide a new perspective for the in situ synthesis and growth of a uniform SERS substrate on the carrier to achieve the stability and specificity of SERS-based biological detection of MI.
Collapse
Affiliation(s)
- Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, 200093, China
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Liping Bao
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, 200093, China
| | - Huijun Li
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, 200093, China
| | - Xiaoyu Guo
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Weizhuo Liu
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Xianying Wang
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, 200093, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xumin Hou
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Bin He
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
21
|
Zhu C, Liu D, Yan M, Xu G, Zhai H, Luo J, Wang G, Jiang D, Yuan Y. Three-dimensional surface-enhanced Raman scattering substrates constructed by integrating template-assisted electrodeposition and post-growth of silver nanoparticles. J Colloid Interface Sci 2022; 608:2111-2119. [PMID: 34752981 DOI: 10.1016/j.jcis.2021.10.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/23/2021] [Indexed: 11/27/2022]
Abstract
Three-dimensional (3D) plasmonic nano-arrays can provide high surface-enhanced Raman scattering (SERS) sensitivity, good spectral uniformity and excellent reproducibility. However, it is still a challenge to develop a simple and efficient method for fabrication of 3D plasmonic nano-arrays with high SERS performance. Here we report a facile approach to construct ordered arrays of silver (Ag) nanoparticles-assembled spherical micro-cavities using polystyrene (PS) sphere template-assisted electrodeposition and post-growth. The electrodeposited small Ag nanoparticles grow into bigger stable nanoparticles during the post-growth process, which could significantly improve the SERS sensitivity. The Ag nanoparticles-assembled 3D micro-cavity array provides much more hotspots in the excitation laser beam-covered volume than the two-dimensional counterpart. The relative standard deviation (RSD) of 612 cm-1 peak of rhodamine 6G (R6G) was calculated to be 8%, and the RSD of the characteristic peak taken from substrates of different batches was less than 10%. The detectable lower concentration as low as 1 fM was achieved for an aqueous solution of R6G. Such SERS substrate also showed high sensitivity to thiram (fungicide) and paraquat (herbicide) in water with limits of detection of 0.067 nM and 2.5 nM respectively. Furthermore, it also demonstrated that SERS detection of pesticide residues on fruits can be realized, showing a potential application in rapid monitoring food safety.
Collapse
Affiliation(s)
- Chuhong Zhu
- College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China; School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| | - Dan Liu
- College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China; School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Manqing Yan
- College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Gengsheng Xu
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Haichao Zhai
- College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China; School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Juan Luo
- College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Guowei Wang
- College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Daochuan Jiang
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yupeng Yuan
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
22
|
Advances in nanomaterial-based microfluidic platforms for on-site detection of foodborne bacteria. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Lu X, Wang H, He Y. Controllable Synthesis of
Silicon‐Based
Nanohybrids for Reliable
Surface‐Enhanced
Raman Scattering Sensing. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xing Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
24
|
From lab to field: Surface-enhanced Raman scattering-based sensing strategies for on-site analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Han Q, Pang J, Li Y, Sun B, Ibarlucea B, Liu X, Gemming T, Cheng Q, Zhang S, Liu H, Wang J, Zhou W, Cuniberti G, Rümmeli MH. Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sens 2021; 6:3841-3881. [PMID: 34696585 DOI: 10.1021/acssensors.1c01172] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The early diagnosis of diseases plays a vital role in healthcare and the extension of human life. Graphene-based biosensors have boosted the early diagnosis of diseases by detecting and monitoring related biomarkers, providing a better understanding of various physiological and pathological processes. They have generated tremendous interest, made significant advances, and offered promising application prospects. In this paper, we discuss the background of graphene and biosensors, including the properties and functionalization of graphene and biosensors. Second, the significant technologies adopted by biosensors are discussed, such as field-effect transistors and electrochemical and optical methods. Subsequently, we highlight biosensors for detecting various biomarkers, including ions, small molecules, macromolecules, viruses, bacteria, and living human cells. Finally, the opportunities and challenges of graphene-based biosensors and related broad research interests are discussed.
Collapse
Affiliation(s)
- Qingfang Han
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Yufen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Baojun Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Bergoi Ibarlucea
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden 01062, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden 01062, Germany
| | - Xiaoyan Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Thomas Gemming
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden D-01171, Germany
| | - Qilin Cheng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Shu Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, China
| | - Jingang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Gianaurelio Cuniberti
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden 01062, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden 01062, Germany
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany
| | - Mark H. Rümmeli
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden D-01171, Germany
- College of Energy, Soochow, Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland
- Institute of Environmental Technology (CEET), VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
| |
Collapse
|
26
|
Liu H, Zhong W, Zhang X, Lin D, Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021; 9:7878-7908. [PMID: 34611689 DOI: 10.1039/d1tb01316e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases caused by bacteria, viruses, and fungi and their global spread pose a great threat to human health. The 2019 World Health Organization report predicted that infection-related mortality will be similar to cancer mortality by 2050. Particularly, the global cumulative numbers of the recent outbreak of coronavirus disease (COVID-19) have reached 110.7 million cases and over 2.4 million deaths as of February 23, 2021. Moreover, the crisis of these infectious diseases exposes the many problems of traditional diagnosis, treatment, and prevention, such as time-consuming and unselective detection methods, the emergence of drug-resistant bacteria, serious side effects, and poor drug delivery. There is an urgent need for rapid and sensitive diagnosis as well as high efficacy and low toxicity treatments. The emergence of nanomedicine has provided a promising strategy to greatly enhance detection methods and drug treatment efficacy. Owing to their unique optical, magnetic, and electrical properties, nanoparticles (NPs) have great potential for the fast and selective detection of bacteria, viruses, and fungi. NPs exhibit remarkable antibacterial activity by releasing reactive oxygen species and metal ions, exerting photothermal effects, and causing destruction of the cell membrane. Nano-based delivery systems can further improve drug permeability, reduce the side effects of drugs, and prolong systemic circulation time and drug half-life. Moreover, effective drugs against COVID-19 are still lacking. Recently, nanomedicine has shown great potential to accelerate the development of safe and novel anti-COVID-19 drugs. This article reviews the fundamental mechanisms and the latest developments in the treatment and diagnosis of bacteria, viruses, and fungi and discusses the challenges and perspectives in the application of nanomedicine.
Collapse
Affiliation(s)
- Hengyu Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China. .,School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
27
|
Vaitiekūnaitė D, Snitka V. Differentiation of Closely Related Oak-Associated Gram-Negative Bacteria by Label-Free Surface Enhanced Raman Spectroscopy (SERS). Microorganisms 2021; 9:1969. [PMID: 34576865 PMCID: PMC8466144 DOI: 10.3390/microorganisms9091969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
Due to the harmful effects of chemical fertilizers and pesticides, the need for an eco-friendly solution to improve soil fertility has become a necessity, thus microbial biofertilizer research is on the rise. Plant endophytic bacteria inhabiting internal tissues represent a novel niche for research into new biofertilizer strains. However, the number of species and strains that need to be differentiated and identified to facilitate faster screening in future plant-bacteria interaction studies, is enormous. Surface enhanced Raman spectroscopy (SERS) may provide a platform for bacterial discrimination and identification, which, compared with the traditional methods, is relatively rapid, uncomplicated and ensures high specificity. In this study, we attempted to differentiate 18 bacterial isolates from two oaks via morphological, physiological, biochemical tests and SERS spectra analysis. Previous 16S rRNA gene fragment sequencing showed that three isolates belong to Paenibacillus, 3-to Pantoea and 12-to Pseudomonas genera. Additional tests were not able to further sort these bacteria into strain-specific groups. However, the obtained label-free SERS bacterial spectra along with the high-accuracy principal component (PCA) and discriminant function analyses (DFA) demonstrated the possibility to differentiate these bacteria into variant strains. Furthermore, we collected information about the biochemical characteristics of selected isolates. The results of this study suggest a promising application of SERS in combination with PCA/DFA as a rapid, non-expensive and sensitive method for the detection and identification of plant-associated bacteria.
Collapse
Affiliation(s)
- Dorotėja Vaitiekūnaitė
- Laboratory of Forest Plant Biotechnology, Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania
| | - Valentinas Snitka
- Research Center for Microsystems and Nanotechnology, Kaunas University of Technology, Studentu Str. 65, 51369 Kaunas, Lithuania;
| |
Collapse
|
28
|
Trends in the bacterial recognition patterns used in surface enhanced Raman spectroscopy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Tahir MA, Dina NE, Cheng H, Valev VK, Zhang L. Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis. NANOSCALE 2021; 13:11593-11634. [PMID: 34231627 DOI: 10.1039/d1nr00708d] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In recent years, bioanalytical surface-enhanced Raman spectroscopy (SERS) has blossomed into a fast-growing research area. Owing to its high sensitivity and outstanding multiplexing ability, SERS is an effective analytical technique that has excellent potential in bioanalysis and diagnosis, as demonstrated by its increasing applications in vivo. SERS allows the rapid detection of molecular species based on direct and indirect strategies. Because it benefits from the tunable surface properties of nanostructures, it finds a broad range of applications with clinical relevance, such as biological sensing, drug delivery and live cell imaging assays. Of particular interest are early-stage-cancer detection and the fast detection of pathogens. Here, we present a comprehensive survey of SERS-based assays, from basic considerations to bioanalytical applications. Our main focus is on SERS-based pathogen detection methods as point-of-care solutions for early bacterial infection detection and chronic disease diagnosis. Additionally, various promising in vivo applications of SERS are surveyed. Furthermore, we provide a brief outlook of recent endeavours and we discuss future prospects and limitations for SERS, as a reliable approach for rapid and sensitive bioanalysis and diagnosis.
Collapse
Affiliation(s)
- Muhammad Ali Tahir
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, Peoples' Republic of China.
| | | | | | | | | |
Collapse
|
30
|
Zhang C, Chen S, Jiang Z, Shi Z, Wang J, Du L. Highly Sensitive and Reproducible SERS Substrates Based on Ordered Micropyramid Array and Silver Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29222-29229. [PMID: 34115481 DOI: 10.1021/acsami.1c08712] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The construction of a highly sensitive and reproducible surface-enhanced Raman scattering (SERS) substrate is the key factor that restricts its practical application. In this paper, a three-dimensional (3D) SERS substrate based on ordered micropyramid array and silver nanoparticles (MPA/AgNPs 3D-SERS) was constructed using the roll-to-plate embossing technology and a hydrothermal method, which provided an efficient and low-cost preparation process for the SERS substrate. Using rhodamine 6G (R6G) as a probe molecule, the performance of an MPA/AgNP 3D-SERS substrate was studied in detail, whose minimum detection limit was 10-12 M and the enhancement factor was calculated as 8.8 × 109, indicating its high sensitivity. In addition, the minimum relative standard deviation (RSD) for the MPA/AgNP 3D-SERS substrate was calculated as 4.99%, and SERS performance basically had no loss after 12 days of placement, which indicated that the prepared SERS substrate had excellent stability and repeatability. At last, the thiram detection application of the MPA/AgNP 3D-SERS substrate was also investigated. The results showed that the minimum detection limit was 1 × 10-7 M, and quantitative analysis of pesticide residues could be realized. This research could provide useful guidance for the efficient and low-cost fabrication of highly sensitive and reproducible SERS substrates.
Collapse
Affiliation(s)
- Chengpeng Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Shuai Chen
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Zhaoliang Jiang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Zhenyu Shi
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Jilai Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, China
| |
Collapse
|
31
|
Li S, Zhu Z, Cai X, Song M, Wang S, Hao Q, Chen L, Chen Z. Versatile
Graphene‐Isolated AuAg‐Nanocrystal
for Multiphase Analysis and Multimodal Cellular Raman Imaging
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha Hunan 410082 China
| | - Zhaotian Zhu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha Hunan 410082 China
| | - Xinqi Cai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha Hunan 410082 China
| | - Minghui Song
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha Hunan 410082 China
| | - Shen Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha Hunan 410082 China
| | - Qing Hao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha Hunan 410082 China
| | - Long Chen
- Faculty of Science and Technology, University of Macau Taipa 999078 Macau China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha Hunan 410082 China
| |
Collapse
|
32
|
Yang Y, Wu T, Xu LP, Zhang X. Portable detection of Staphylococcus aureus using personal glucose meter based on hybridization chain reaction strategy. Talanta 2021; 226:122132. [PMID: 33676686 DOI: 10.1016/j.talanta.2021.122132] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 01/03/2023]
Abstract
Staphylococcus aureus is one of the most important food-borne bacterial pathogens and causes numerous illnesses. In this work, we report a sensitive and highly selective magnetic-aptamer biosensor based on a personal glucose meter (PGM) platform for the detection of Staphylococcus aureus. The aptamer for Staphylococcus aureus was immobilized on the magnetic bead by hybridization with the capture probe P. In the presence of Staphylococcus aureus, the aptamer was dissociated from the magnetic bead. Then the capture probe was exposed and could be hybridized with a biotinylated probe to trigger the DNA hybridization chain reaction (HCR), thus achieving the signal amplification. The concentration of streptavidin-labeled invertase can be read by PGM, thus can lead to the portable quantitative detection of Staphylococcus aureus. After optimization of various conditions, 5 μM probe P, the MB-P reaction time for 36 h, the competition time for 60 min, 0.5 μM H1 & H2, 0.5 M sucrose and the sucrose invertase catalytic reaction time for 50 min was chosen to achieve the better sensor performance. Under the optimal conditions, the fabricated sensor offers high sensitivity with the limit of detection about 2 CFU/mL. This sensitive PGM based sensor could successfully evaluate the Staphylococcus aureus concentration in real food samples, and the results are consistent with those obtained by using plate counting methods. Moreover, the PGM sensor can greatly reduce the required time compared to the plate counting methods. The fabricated sensor supplies an ideal solution for rapid portable detection of bacterial pathogens and holds its potential use in the quality control for agriculture and food enterprises, entry-exit inspection and quality testing for food.
Collapse
Affiliation(s)
- Yuemeng Yang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Tingting Wu
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Li-Ping Xu
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
33
|
Zhang XW, Liu MX, He MQ, Chen S, Yu YL, Wang JH. Integral Multielement Signals by DNA-Programmed UCNP-AuNP Nanosatellite Assemblies for Ultrasensitive ICP-MS Detection of Exosomal Proteins and Cancer Identification. Anal Chem 2021; 93:6437-6445. [PMID: 33844518 DOI: 10.1021/acs.analchem.1c00152] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exosomes are expected to be used as cancer biomarkers because they carry a variety of cancer-related proteins inherited from parental cells. However, it is still challenging to develop a sensitive, robust, and high-throughput technique for simultaneous detection of exosomal proteins. Herein, three aptamers specific to cancer-associated proteins (CD63, EpCAM, and HER2) are selected to connect gold nanoparticles (AuNPs) as core with three different elements (Y, Eu, and Tb) doped up-conversion nanoparticles (UCNPs) as satellites, thereby forming three nanosatellite assemblies. The presence of exosomes causes specific aptamers to recognize surface proteins and release the corresponding UCNPs, which can be simultaneously detected by inductively coupled plasma-mass spectrometry (ICP-MS). It is worth noting that rare earth elements are scarcely present in living systems, which minimize the background for ICP-MS detection and exclude potential interferences from the coexisting species. Using this method, we are able to simultaneously detect three exosomal proteins within 40 min, and the limit of detection for exosome is 4.7 × 103 particles/mL. The exosomes from seven different cell lines (L-02, HepG2, GES-1, MGC803, AGS, HeLa, and MCF-7) can be distinguished with 100% accuracy by linear discriminant analysis. In addition, this analytical strategy is successfully used to detect exosomes in clinical samples to distinguish stomach cancer patients from healthy individuals. These results suggest that this sensitive and high-throughput analytical strategy based on ICP-MS has the potential to play an important role in the detection of multiple exosomal proteins and the identification of early cancer.
Collapse
Affiliation(s)
- Xue-Wei Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Meng-Xian Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Meng-Qi He
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Shuai Chen
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| |
Collapse
|
34
|
Yin P, Li G, Zhang B, Farjana H, Zhao L, Qin H, Hu B, Ou J, Tian J. Facile PEG-based isolation and classification of cancer extracellular vesicles and particles with label-free surface-enhanced Raman scattering and pattern recognition algorithm. Analyst 2021; 146:1949-1955. [PMID: 33496293 DOI: 10.1039/d0an02257h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles and particles (EVPs), which contain the same surface proteins as their mother cells, are promising biomarkers for cancer liquid biopsy. However, most of the isolation methods of EVPs are time-consuming and complicated, and hence, sensitive detection and classification methods are required for EVPs. Here, we report a facile polyethylene glycol (PEG)-based method for isolating and classifying EVPs with label-free surface-enhanced Raman scattering (SERS) and pattern recognition algorithm. There are only three steps in the PEG-based isolation method, and it does not require ultracentrifugation, which makes it a low-cost and easy-to-use method. Three types of common male cancer cell lines, namely leukemia (THP-1), prostate cancer (DU-145), and colorectal cancer (COLO-205), and one healthy male blood sample, were utilized to isolate EVPs. To collect the SERS spectra of EVPs, a novel planar nanomaterial, namely amino molybdenum oxide (AMO) nanoflakes, was applied, with the enhancement factor being obtained as 3.2 × 102. Based on the principal component analysis and support vector machine (PCA-SVM) algorithm, cancer and normal EVPs were classified with 97.4% accuracy. However, among the cancer EVPs, the accuracy, precision, and sensitivity were found to be 90.0%, 90.9%, and 83.3% for THP-1; 86.7%, 80.0%, and 92.3% for DU-145; 96.7%, 83.3%, and 100% for COLO-205, respectively. Thus, this work will improve the isolation, detection, and classification of EVPs and promote the development of cancer liquid biopsies.
Collapse
Affiliation(s)
- Pengju Yin
- School of Life Science and Technology, Xidian University, Xi'an 710126, Shaanxi, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhou X, Hu Z, Yang D, Xie S, Jiang Z, Niessner R, Haisch C, Zhou H, Sun P. Bacteria Detection: From Powerful SERS to Its Advanced Compatible Techniques. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001739. [PMID: 33304748 PMCID: PMC7710000 DOI: 10.1002/advs.202001739] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/24/2020] [Indexed: 05/13/2023]
Abstract
The rapid, highly sensitive, and accurate detection of bacteria is the focus of various fields, especially food safety and public health. Surface-enhanced Raman spectroscopy (SERS), with the advantages of being fast, sensitive, and nondestructive, can be used to directly obtain molecular fingerprint information, as well as for the on-line qualitative analysis of multicomponent samples. It has therefore become an effective technique for bacterial detection. Within this progress report, advances in the detection of bacteria using SERS and other compatible techniques are discussed in order to summarize its development in recent years. First, the enhancement principle and mechanism of SERS technology are briefly overviewed. The second part is devoted to a label-free strategy for the detection of bacterial cells and bacterial metabolites. In this section, important considerations that must be made to improve bacterial SERS signals are discussed. Then, the label-based SERS strategy involves the design strategy of SERS tags, the immunomagnetic separation of SERS tags, and the capture of bacteria from solution and dye-labeled SERS primers. In the third part, several novel SERS compatible technologies and applications in clinical and food safety are introduced. In the final part, the results achieved are summarized and future perspectives are proposed.
Collapse
Affiliation(s)
- Xia Zhou
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
- Department of Oncologythe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510632China
| | - Ziwei Hu
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological TechnologyMedical School of Ningbo UniversityNingboZhejiang315211China
| | - Shouxia Xie
- The Second Clinical Medical College (Shenzhen People's Hospital)Jinan UniversityShenzhenGuangdong518020China
| | - Zhengjin Jiang
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Reinhard Niessner
- Institute of Hydrochemistry and Chair for Analytical ChemistryTechnical University of MunichMarchioninistr. 17MunichD‐81377Germany
| | - Christoph Haisch
- Institute of Hydrochemistry and Chair for Analytical ChemistryTechnical University of MunichMarchioninistr. 17MunichD‐81377Germany
| | - Haibo Zhou
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
- Department of Oncologythe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510632China
- The Second Clinical Medical College (Shenzhen People's Hospital)Jinan UniversityShenzhenGuangdong518020China
| | - Pinghua Sun
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
- Department of Oncologythe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510632China
| |
Collapse
|
36
|
SERS-active Au@Ag core-shell nanorod (Au@AgNR) tags for ultrasensitive bacteria detection and antibiotic-susceptibility testing. Talanta 2020; 220:121397. [DOI: 10.1016/j.talanta.2020.121397] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 01/06/2023]
|
37
|
Liu L, Hou S, Zhao X, Liu C, Li Z, Li C, Xu S, Wang G, Yu J, Zhang C, Man B. Role of Graphene in Constructing Multilayer Plasmonic SERS Substrate with Graphene/AgNPs as Chemical Mechanism-Electromagnetic Mechanism Unit. NANOMATERIALS 2020; 10:nano10122371. [PMID: 33260554 PMCID: PMC7760367 DOI: 10.3390/nano10122371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022]
Abstract
Graphene–metal substrates have received widespread attention due to their superior surface-enhanced Raman scattering (SERS) performance. The strong coupling between graphene and metal particles can greatly improve the SERS performance and thus broaden the application fields. The way in which to make full use of the synergistic effect of the hybrid is still a key issue to improve SERS activity and stability. Here, we used graphene as a chemical mechanism (CM) layer and Ag nanoparticles (AgNPs) as an electromagnetic mechanism (EM) layer, forming a CM–EM unit and constructing a multi-layer hybrid structure as a SERS substrate. The improved SERS performance of the multilayer nanostructure was investigated experimentally and in theory. We demonstrated that the Raman enhancement effect increased as the number of CM–EM units increased, remaining nearly unchanged when the CM–EM unit was more than four. The limit of detection was down to 10−14 M for rhodamine 6G (R6G) and 10−12 M for crystal violet (CV), which confirmed the ultrahigh sensitivity of the multilayer SERS substrate. Furthermore, we investigated the reproducibility and thermal stability of the proposed multilayer SERS substrate. On the basis of these promising results, the development of new materials and novel methods for high performance sensing and biosensing applications will be promoted.
Collapse
Affiliation(s)
- Lu Liu
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Shuting Hou
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Xiaofei Zhao
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Chundong Liu
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Zhen Li
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Chonghui Li
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Guilin Wang
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Jing Yu
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Chao Zhang
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
- Correspondence: (C.Z.); (B.M.)
| | - Baoyuan Man
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
- Correspondence: (C.Z.); (B.M.)
| |
Collapse
|
38
|
Jiang X, Zhang J, Xu L, Wang W, Du J, Qu M, Han X, Yang L, Zhao B. Ultrasensitive SERS detection of antitumor drug methotrexate based on modified Ag substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118589. [PMID: 32563032 DOI: 10.1016/j.saa.2020.118589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Methotrexate (MTX) is a drug with broad-spectrum antitumor activity that is of great importance in therapeutic drug monitoring applications. In this essay, the two-step modified concentrated Ag colloid with the assistance of KF and MgSO4 was used as the SERS active substrate for the ultrasensitive detection of MTX and its commercial formulations (tablets). It can be found that the two-step modification of the samples is a crucial procedure to remove the by-products in the synthesis of Ag colloid and further concentrate the Ag colloid. Under the optimal detection conditions, the minimum detection concentration of MTX is 1 × 10-16 mol/L. And, there is a good linear relationship over a wide concentration range of 1 × 10-16-1 × 10-6 mol/L. The labelled amounts of the two manufacturers of MTX commercial tablets are in the range of 96.4-104.3% with the RSDs between 1.8% and 3.5% by this method, which are in accordance with the methodological requirements. These results prove that the proposed SERS method exhibits a good reproducibility and ultra-high sensitivity for the detection of the antitumor drug MTX.
Collapse
Affiliation(s)
- Xin Jiang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jian Zhang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Lin Xu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Weie Wang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Juan Du
- College of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Minghuan Qu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Xiaoxia Han
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Libin Yang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China.
| |
Collapse
|
39
|
Wang XY, Yang JY, Wang YT, Zhang HC, Chen ML, Yang T, Wang JH. M13 phage-based nanoprobe for SERS detection and inactivation of Staphylococcus aureus. Talanta 2020; 221:121668. [PMID: 33076174 DOI: 10.1016/j.talanta.2020.121668] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022]
Abstract
Rapid and sensitive diagnosis of bacterial infections at early stage is of great significance for food safety monitoring as well as clinical treatment. Herein, we construct a surface-enhanced Raman scattering (SERS) nanoprobe based on M13 phages for the selective detection and inactivation of Staphylococcus aureus (S. aureus). M13 phage with specific S. aureus-binding heptapeptide displayed on the N-terminal of pIII protein is selected from phage display peptide library. The S. aureus-specific SERS probe is thus constructed by in situ growth of gold nanoparticles (AuNPs) on M13 phage surface, followed by modification with 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) as SERS active molecule. Upon the addition of this SERS probe, M13 phage selectively binds with S. aureus to induce anchoring of AuNPs on S. aureus surface, and the SERS probe-labeled S. aureus cells are collected by centrifugation for SERS detection. For the quantification of S. aureus, a linear range of 10-106 cfu mL-1 is achieved in aqueous medium. It is further demonstrated by spiking recovery in soft drinks. Furthermore, this SERS probe exhibits bactericidal capabilities towards S. aureus, which shows promising potential to serve as a multifunctional platform for simultaneous detection and inactivation of S. aureus.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Jian-Yu Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Yi-Ting Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Hui-Chao Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| |
Collapse
|
40
|
Li X, Duan X, Li L, Ye S, Tang B. An accurate and ultrasensitive SERS sensor with Au-Se interface for bioimaging and in situ quantitation. Chem Commun (Camb) 2020; 56:9320-9323. [PMID: 32671357 DOI: 10.1039/d0cc02068k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We propose a stable and highly sensitive Au-Se SERS nanoprobe for bioimaging and in situ quantitation, which aims to break through the limitations of traditional Au-S SERS nanoprobes, such as interference from biothiols and unsatisfactory SERS efficiency.
Collapse
Affiliation(s)
- Xiaoxiao Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | | | | | | | | |
Collapse
|
41
|
Yang Y, Zeng B, Guo J, Li Y, Yang Y, Yuan Q. Two-Dimensional Device with Light-Controlled Capability for Treatment of Cancer-Relevant Infection Diseases. Anal Chem 2020; 92:10162-10168. [PMID: 32578424 DOI: 10.1021/acs.analchem.0c02216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Concurrent infection in cancer treatment is the leading cause of high cancer mortality that requires urgent action. Currently developed diagnostic methods are hindered by the difficulty of rapidly and reliably screening small amounts of pathogens in the blood and then release pathogens for downstream analysis, limiting the advance of cancer concurrent infection diseases diagnosis and targeted treatment. Herein, we present a near-infrared (NIR) light-responsive black phosphorus (BP)-based device that effectively captures and releases pathogen for downstream drug-resistance analysis. The aptamer-modified BP nanostructures exhibit enhanced topographical interactions and binding capabilities with pathogen, enabling highly efficient and selective capture of pathogen in serum. NIR light irradiation induces BP nanostructure to generate a local thermal effect, which regulates the three-dimensional structure of the aptamer and causes efficient release of pathogen from the substrate surface. The released pathogen is resistant to ampicillin as demonstrated by downstream genetic analysis. The design of the functionalized light-controlled device for monitoring pathogen behavior shows great potential for assisting in cancer therapy and promoting personalized healthcare.
Collapse
Affiliation(s)
- Yanbing Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Bo Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yingxue Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yujie Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
42
|
Dong J, Cao Y, Han Q, Wang Y, Qi M, Zhang W, Qiao L, Qi J, Gao W. Plasmon-exciton coupling for nanophotonic sensing on chip. OPTICS EXPRESS 2020; 28:20817-20829. [PMID: 32680134 DOI: 10.1364/oe.387867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
The monolayer graphene-noble metallic nanostructure hybrid system with excellent optical characteristic, which is deserved pay attentions in the study of surface-enhanced Raman scattering spectroscopy. In this work, a hybrid sandwich structure is designed to transfer single-layer graphene to the surface of discs substrate covered by silver film and assembly of the dense Au nanoparticles (AuNPs). Blu-ray disc has a cycle density of approximately 5.7 times that of DVD-R due to the different storage capacities of these optical discs. In the research, enhancement effects have been explored for two different periodic grating structures. Compared to spectra of Si/G structure, Graphene Raman spectra from Blu-grating/AuNPs/G structure and Blu-grating/G/AuNPs enhancement multiples at the 2D peak position possesses different Raman responses of 1.09 and 2.51 times, respectively. The sandwich hybrid structure of Ag grating/graphene/AuNPs obtains a Raman enhancement factor (EF) of 6.2×108 for Rhodamine 6G and surface-enhanced Raman Scattering(SERS) detection limit of 0.1 nM. These findings can be attributed to the electric field enhancement of the hybrid structure and the chemical enhancement of graphene. This study provides a new approach for SERS detection and offers a new technique for designing SERS sensors with grapheme-plasmon hybrid structures.
Collapse
|
43
|
Tanis SN, Ilhan H, Guven B, Tayyarcan EK, Ciftci H, Saglam N, Hakki Boyaci I, Tamer U. A disposable gold-cellulose nanofibril platform for SERS mapping. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3164-3172. [PMID: 32930178 DOI: 10.1039/d0ay00662a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we present a disposable and inexpensive paper-like gold nanoparticle-embedded cellulose nanofibril substrate for the rapid enumeration of Escherichia coli (E. coli) using surface-enhanced Raman scattering (SERS) mapping. A disposable SERS substrate was simply constructed by mixing CNF and gold chloride solution at 120 °C in a water bath. The application of the resulting substrate was carried out by enrichment and SERS detection of E. coli. To this end, the spherical gold nanoparticle-embedded cellulose nanofibril substrate was used as a scavenger for E. coli. After the target bacteria E. coli were separated from the matrix via oriented antibodies, the sandwich assay procedure was carried out using 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB)-coated Au nanorod particles that acted as SERS mapping probes. The distribution density of DTNB was demonstrated visually using SERS mapping, and the assay was completed in one hour. The correlation between the E. coli and SERS mapping signals was found to be linear within the range of 15 cfu mL-1 to 1.5 × 105 cfu mL-1. The limit of detection for the SERS mapping assay was determined to be 2 cfu mL-1. The selectivity of the developed method was examined with Micrococcus luteus (M. luteus), Bacillus subtilis (B. subtilis), and Enterobacter aerogenes (E. aerogenes), which did not produce any significant response. Furthermore, the developed method was evaluated for detecting E. coli in artificially contaminated samples, and the results were compared with those of the plate-counting method.
Collapse
Affiliation(s)
- Saliha Nur Tanis
- Department of Nanotechnology, Faculty of Science, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Hasan Ilhan
- Faculty of Art and Science, Ordu University, Altınordu, 52200, Ordu, Turkey
| | - Burcu Guven
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Emine Kubra Tayyarcan
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Hakan Ciftci
- Department of Chemistry and Chemical Processing Technologies, Kirikkale Vocational High School, Kirikkale University, Yahsihan, 71450, Kirikkale, Turkey
| | - Necdet Saglam
- Department of Nanotechnology, Faculty of Science, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Ismail Hakki Boyaci
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey.
| |
Collapse
|
44
|
Pires NMM, Dong T, Yang Z, da Silva LFBA. Recent methods and biosensors for foodborne pathogen detection in fish: progress and future prospects to sustainable aquaculture systems. Crit Rev Food Sci Nutr 2020; 61:1852-1876. [PMID: 32539431 DOI: 10.1080/10408398.2020.1767032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aquaculture industry has advanced toward sustainable recirculating systems, in where parameters of food quality are strictly monitored. Despite that, as in the case of conventional aquaculture practices, the recirculating systems also suffer threats from Aeromonas spp., Vibrio spp., Streptococcus spp., among other foodborne pathogens infecting farmed fish. The aquaculture pathogens are routinely detected by conventional PCR methods or antibody-based tests, with the detection protocols confined to laboratory use. Emerging assay technologies and biosensors recently reported in the literature open new opportunities to the development of sensitive, specific, and portable analytical devices to use in the field. Techniques of DNA/RNA analysis, immunoassays and other nanomolecular technologies have been facing important advances in response time, sensitivity, and enhanced power of discrimination among and within species. Moreover, the recent developments of electrochemical and optical signal transduction have facilitated the incorporation of the innovative assays to practical miniaturized devices. In this work, it is provided a critical review over foodborne pathogen detection by existing and promising methods and biosensors applied to fish samples and extended to other food matrices. While isothermal DNA/RNA amplification methods can be highlighted among the assay methods for their promising analytical performance and suitability for point-of-care testing, the electrochemical transduction provides a way to achieve cost-effective biosensors amenable to use in the aquaculture field. The adoption of new methods and biosensors would constitute a step forward in securing sustainable aquaculture systems.
Collapse
Affiliation(s)
- Nuno M M Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China.,Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, Kongsberg, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, Ås, Norway
| | - Tao Dong
- Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, Kongsberg, Norway
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| | - Luís F B A da Silva
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| |
Collapse
|
45
|
Feng Y, He L, Wang L, Mo R, Zhou C, Hong P, Li C. Detection of Aflatoxin B 1 Based on a Porous Anodized Aluminum Membrane Combined with Surface-Enhanced Raman Scattering Spectroscopy. NANOMATERIALS 2020; 10:nano10051000. [PMID: 32456270 PMCID: PMC7279531 DOI: 10.3390/nano10051000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022]
Abstract
An Aflatoxin B1 (AFB1) biosensor was fabricated via an Ag nanoparticles assembly on the surface of a porous anodized aluminum (PAA) membrane. First, the Raman reporter 4-Aminothiophenol (4-ATP) and DNA (partially complementary to AFB1 aptamer) were attached to the surface of Ag nanoparticles (AgNPs) by chemical bonding to form a 4-ATP-AgNPs-DNA complex. Similarly, the surface of a PAA membrane was functionalized with an AFB1 aptamer. Then, the PAA surface was functionalized with 4-ATP-AgNPs-DNA through base complementary pairing to form AgNPs-PAA sensor with a strong Raman signal. When AFB1 was added, AgNPs would be detached from the PAA surface because of the specific binding between AFB1 and the aptamer, resulting in a reduction in Raman signals. The detection limit of the proposed biosensor is 0.009 ng/mL in actual walnut and the linear range is 0.01-10 ng/mL. The sensor has good selectivity and repeatability; it can be applied to the rapid qualitative and quantitative detection of AFB1.
Collapse
Affiliation(s)
- Yanting Feng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.F.); (L.W.); (C.Z.); (P.H.)
| | - Lei He
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China;
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ling Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.F.); (L.W.); (C.Z.); (P.H.)
| | - Rijian Mo
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China;
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
- Correspondence: (R.M.); (C.L.)
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.F.); (L.W.); (C.Z.); (P.H.)
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China;
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.F.); (L.W.); (C.Z.); (P.H.)
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China;
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China;
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
- Correspondence: (R.M.); (C.L.)
| |
Collapse
|
46
|
Gao X, Wu H, Hao Z, Ji X, Lin X, Wang S, Liu Y. A multifunctional plasmonic chip for bacteria capture, imaging, detection, and in situ elimination for wound therapy. NANOSCALE 2020; 12:6489-6497. [PMID: 32154542 DOI: 10.1039/d0nr00638f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A multifunctional plasmonic gold chip has been constructed for early diagnosis and highly effective killing of bacteria, which is critical for human health. The chip features high bacterial capture efficiency, plasmon-enhanced fluorescence (PEF) and surface-enhanced Raman scattering (SERS) and can act as a highly sensitive sensor for dual-mode bacteria imaging and detection (down to 102 CFU mL-1) with good reliability and accuracy. The developed assay can distinguish Gram-positive S. aureus bacteria from Gram-negative E. coli bacteria, providing valuable information for therapy. Importantly, the chip presents excellent photothermal antibacterial activity (98%) and can inactivate both Gram-positive and Gram-negative bacteria in situ. Furthermore, the chip was used to effectively promote the wound healing process in bacteria infected mice in vivo, showing great potential for antibacterial applications.
Collapse
Affiliation(s)
- Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Haotian Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhe Hao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiangyi Ji
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaodong Lin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China. and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
47
|
Guo J, Liu Y, Yang Y, Li Y, Wang R, Ju H. A Filter Supported Surface-Enhanced Raman Scattering "Nose" for Point-of-Care Monitoring of Gaseous Metabolites of Bacteria. Anal Chem 2020; 92:5055-5063. [PMID: 32129599 DOI: 10.1021/acs.analchem.9b05400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work designs a convenient method for fabrication of surface-enhanced Raman scattering (SERS) devices by loading gold nanostars (AuNSs) on a flat filter support with vacuum filtration. The dense accumulation of AuNSs results in a strong sensitization to SERS signal and shows sensitive response to gaseous metabolites of bacteria, which produces a SERS "nose" for rapid point-of-care monitoring of these metabolites. The "nose" shows good reproducibility and stability and can be used for SERS quantitation of a gaseous target with Raman signal. The impressive performance of the proposed SERS "nose" for detecting gaseous metabolites of common foodborne bacteria like Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa from inoculated samples demonstrates its much higher sensitivity than that of human sense and application in distinguishing spoiled food at an early stage and real-time tracing of food spoilage degree. The strong point-of-care testing ability of the designed SERS "nose" and the miniaturization of whole equipment extend greatly the analytical application of SERS technology in food safety and public health.
Collapse
Affiliation(s)
- Jingxing Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yumei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Ruiyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
48
|
Zhang CY, Zhao BC, Hao R, Wang Z, Hao YW, Zhao B, Liu YQ. Graphene oxide-highly anisotropic noble metal hybrid systems for intensified surface enhanced Raman scattering and direct capture and sensitive discrimination in PCBs monitoring. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121510. [PMID: 31704120 DOI: 10.1016/j.jhazmat.2019.121510] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO)-anisotropic noble metal hybrid systems were developed as highly sensitive and reproducible surface enhanced Raman scattering (SERS) platform, in which ultrathin GO was embedded between two metallic layers of flower-like Ag nanoparticles (AgNFs) and gold nanostars (AuNSts). Due to multi-dimensional plasmonic coupling effect, the well-designed AgNFs-GO-AuNSts sandwich structures possessed ultrahigh sensitivity with the detection limit of R6G as low as 1.0 × 10-13 M and high enhancement factor of 2.59 × 107. Additionally, the GO interlayer could function as protective shell to suppress the oxidation of bottom silver layer and efficiently position the target analytes within hot spots. These features endow the substrate with high stability and excellent reproducibility (Signal variations < 7%). Particularly, the GO sandwiched substrate can be explored for the direct capture and sensitive detection of polychlorinated biphenyls (PCBs) without any organic modifier as molecule harvester. This minimum detected concentration was estimated as low as 3.4 × 10-6 M. The detection method based on GO mediated sandwich substrate avoids complicated surface modification manipulations and improves the substrate cleanness. Moreover, the resultant sandwich substrates can be used to recognize fingerprint peaks of different PCBs in their complex mixture, revealing great potential applications in SERS-based simultaneous detection of multiple pollutants with low affinity.
Collapse
Affiliation(s)
- Cong-Yun Zhang
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Bai-Chuan Zhao
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Rui Hao
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Zhi Wang
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Yao-Wu Hao
- The Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Bin Zhao
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| | - Ya-Qing Liu
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| |
Collapse
|
49
|
Liu Y, Tian H, Chen X, Liu W, Xia K, Huang J, de la Chapelle ML, Huang G, Zhang Y, Fu W. Indirect surface-enhanced Raman scattering assay of insulin-like growth factor 2 receptor protein by combining the aptamer modified gold substrate and silver nanoprobes. Mikrochim Acta 2020; 187:160. [PMID: 32040773 DOI: 10.1007/s00604-020-4126-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/17/2020] [Indexed: 01/04/2023]
Abstract
An indirect aptamer-based SERS assay for insulin-like growth factor 2 receptor (IGF-IIR) protein was developed. The gold substrate and silver nanoparticles (AgNPs) were employed simultaneously to achieve double enhancement for SERS signals. Firstly, the five commercial SERS substrates including Enspectr, Ocean-Au, Ocean-AG, Ocean-SP and Q-SERS substrates were evaluated using 4-mercaptobenzoic acid (4-MBA). The Q-SERS substrate was selected based on low relative standard deviation (RSD, 8.6%) and high enhancement factor (EF, 8.7*105), using a 785 nm laser. The aptamer for IGF-IIR protein was designed to include two sequences: one grafted on gold substrate to specifically capture the IGF-IIR protein and a second one forming a 3' sticky bridge to capture SERS nanotags. The SERS nanotag was composed by AgNPs (20 nm), 4-MBA and DNA probes that can hybridize with the aptamer. Due to the steric-hindrance effect, when the aptamer doesn't combine with IGF-IIR protein, it only can capture the SERS nanotags. Therefore, there was a negative correlation between the concentration of IGF-IIR protein and the intensity of 4-MBA at 1076 cm-1. The detection limit reached to 141.2 fM and linear range was from 10 pM to 1 μM. The SERS aptasensor also exhibits a high reproducibility with an average RSD of 4.5%. The interference test was conducted with other four proteins to verify the accuracy of measuring. The study provides an approach to quantitative determination of proteins based on specific recognition and nucleic acid hybridization of aptamers, to establish sandwich structure for SERS enhancement. Graphical abstractSchematic representation of surface-enhanced Raman scattering (SERS) assay on insulin-like growth factor 2 receptor (IGF-IIR) protein by combining the aptamer modified gold substrate and 4-mercaptobenzoic acid (4-MBA) and DNA probe modified silver nanoparticles.
Collapse
Affiliation(s)
- Yu Liu
- Department of Laboratory Medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huiyan Tian
- Department of Laboratory Medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xueping Chen
- Department of Laboratory Medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wei Liu
- Department of Laboratory Medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ke Xia
- Department of Laboratory Medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiaoqi Huang
- Department of Laboratory Medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Marc Lamy de la Chapelle
- Institut des Molécules et Matériaux du Mans (IMMM - UMR CNRS 6283), Université du Mans, Avenue Olivier Messiaen, 72085, Le Mans, France
| | - Guorong Huang
- Department of Laboratory Medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Zhang
- Department of Laboratory Medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Department of Laboratory Medicine, Chongqing General Hospital, Chongqing, 400038, China.
| | - Weiling Fu
- Department of Laboratory Medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
50
|
DNA-Driven Nanoparticle Assemblies for Biosensing and Bioimaging. Top Curr Chem (Cham) 2020; 378:18. [PMID: 32009187 DOI: 10.1007/s41061-020-0282-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/18/2020] [Indexed: 02/03/2023]
Abstract
DNA molecules with superior flexibility, affinity and programmability have garnered considerable attention for the controllable assembly of nanoparticles (NPs). By controlling the density, length and sequences of DNA on NPs, the configuration of NP assemblies can be rationally designed. The specific recognition of DNA enables changes to be made to the spatial structures of NP assemblies, resulting in differences in tailorable optical signals. Comprehensive information on the fabrication of DNA-driven NP assemblies would be beneficial for their application in biosensing and bioimaging. This review analyzes the progress of DNA-driven NP assemblies, and discusses the tunable configurations determined by the structural parameters of DNA skeletons. The collective optical properties, such as chirality, fluorescence and surface enhanced Raman resonance (SERS), etc., of DNA-driven NP assemblies are explored, and engineered tailorable optical properties of these spatial structures are achieved. We discuss the development of DNA-directed NP assemblies for the quantification of DNA, toxins, and heavy metal ions, and demonstrate their potential application in the biosensing and bioimaging of tumor markers, RNA, living metal ions and phototherapeutics. We hihghlight possible challenges in the development of DNA-driven NP assemblies, and further direct potential prospects in the practical applications of macroscopical materials and photonic devices.
Collapse
|