1
|
Warokar A, Dahake B, Gangane P, Samrit S. Spectrofluorophotometric Analysis of Phytoconstituents, Biomarkers, Enzyme Kinetics and Trace Metals: A Comprehensive Review. J Fluoresc 2025:10.1007/s10895-025-04241-x. [PMID: 40074974 DOI: 10.1007/s10895-025-04241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Spectrofluorophotometry is a highly sensitive and selective analytical technique widely employed in pharmaceutical, biomedical, and environmental sciences. This review provides a comprehensive application for detecting and quantifying phytoconstituents, biomarkers, enzyme kinetics, and trace metals. This technique offers detection of analyte in the femtomolar (fM) range. Phytochemicals such as flavonoids, alkaloids, and polyphenols were analyzed with high precision and accuracy, and the reported analytical method can be adopted for quality control analysis. Spectrofluorophotometry has been utilized to estimate biomarkers, which plays a critical role in disease diagnostics and therapeutic monitoring. It also facilitates the monitoring of enzyme kinetics, offering insights into metabolic processes and drug development. Additionally, its ability to detect trace metals through chelation and fluorescence quenching mechanisms proves vital for environmental and toxicological analysis. Despite challenges such as fluorescence quenching and environmental susceptibility, advancements in miniaturization, automation, and hybrid analytical techniques continue to enhance their capabilities. This review underscores the transformative impact of spectrofluorophotometry and its expanding role in modern analytical sciences.
Collapse
Affiliation(s)
- Amol Warokar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, MS, 440037, India.
| | | | | | - Swapnil Samrit
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, MS, 440037, India
| |
Collapse
|
2
|
Mao CP, Chen XY, Han J, Jiang T, Yan XX, Hao DL, Jin JH, Yu B, Zhou JL, Wang K, Zhang LT. In vivo imaging of alkaline phosphatase in lipid metabolic diseases with a photoacoustic probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125351. [PMID: 39481164 DOI: 10.1016/j.saa.2024.125351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Lipid metabolic diseases have become an important challenge to global public health. Along with lifestyle changes, the incidence of obesity, diabetes and other metabolic syndromes is on the rise, and the number of patients with fatty liver disease is also increasing. Therefore, it is particularly important to develop effective lipid imaging strategies to monitor and manage fatty liver disease. Herein, based on the essential role of alkaline phosphatase (ALP) in both AS and OB, in vivo imaging of ALP was achieved in two lipid metabolic diseases models with a photoacoustic (PA) probe phosphorylated hemicyanine (P-Hcy). After being triggered by ALP, P-Hcy responded in different modalities including absorbance, fluorescence and, most significantly, PA-reporting. Notably, the PA signal showed the reliable linear correlation to the ALP level within the range of 0-800 U/L. The probe P-Hcy exhibited the advantages including high sensitivity, high selectivity, and steadiness in required biological conditions. The intracellular imaging results ensured that P-Hcy could visualize the ALP level in the foam cells induced from mouse mononuclear macrophages. In the healthy and lipid metabolic diseases models, P-Hcy was able to distinguish well between a lipid metabolic disease model and a healthy mouse model by photoacoustic imaging. By combining the ALP detection with P-Hcy in PA/fluorescence modality and traditional techniques such as blood biochemical testing and immunohistochemically staining, more potential strategy to accurately diagnose lipid metabolic diseases in the pre-clinical trials might be developed in future.
Collapse
Affiliation(s)
- Chun-Pu Mao
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Xu-Yang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- Department of Oncology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
| | - Ting Jiang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China
| | - Xiao-Xin Yan
- Department of Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou Wujin People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213017, China; Department of Oncology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
| | - Dong-Lin Hao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China
| | - Jian-Hua Jin
- Department of Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou Wujin People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China; Department of Oncology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
| | - Biao Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.
| | - Jie-Li Zhou
- UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Kai Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Li-Ting Zhang
- Department of Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou Wujin People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China; Department of Oncology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China.
| |
Collapse
|
3
|
Huang W, Yuan H, Yang H, Shen Y, Guo L, Zhong N, Wu T, Shen Y, Chen G, Huang S, Niu L, Ouyang G. A Hierarchical Metal-Organic Framework Intensifying ROS Catalytic Activity and Bacterial Entrapment for Engineering Self-Antimicrobial Mask. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410703. [PMID: 39686695 PMCID: PMC11809350 DOI: 10.1002/advs.202410703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Leveraging functional materials to develop advanced personal protective equipment is of significant importance for cutting off the propagation of infectious diseases, yet faces ongoing challenges owing to the unsatisfied antimicrobial efficiency. Herein a hierarchically porous cerium metal-organic framework (Ce-MOF) boosting the antimicrobial performance by intensifying catalytic reactive oxygen species (ROS) generation and bacterial entrapment simultaneously is reported. This Ce-MOF presents dendritic surface topography and hierarchical pore channels where the Lewis acid Ce sites are dispersedly anchored. Attributing to this sophisticated nanoarchitecture rendering the catalytic Ce sites highly accessible, it shows a ca. 1800-fold activity enhancement for the catalytic conversion of atmospheric oxygen to highly toxic ROS compared to traditional CeO2. Additionally, the dendritic and negative-charged surface engineered in this Ce-MOF substantially enhances the binding affinity toward positive-charged bacteria, enabling the spatial proximity between the bacteria and the short-lived ROS and therefore maximizing the utilization of highly toxic ROS to inactivate bacteria. It is demonstrated that this Ce-MOF-integrated face mask displays almost 100% antimicrobial efficacy even in insufficient light and dark scenarios. This work provides important insights into the design of antibacterial MOF materials by a pore- and surface-engineering strategy and sheds new light on the development of advanced self-antimicrobial devices.
Collapse
Affiliation(s)
- Wei Huang
- School of Chemical Engineering and TechnologySouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityZhuhai519082P. R. China
| | - Haitao Yuan
- Center for Drug Research and Development Guangdong Provincial Key Laboratory of Advanced Drug Delivery SystemGuangdong Pharmaceutical UniversityGuangzhou510006P. R. China
| | - Huangsheng Yang
- School of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Yujian Shen
- School of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Lihong Guo
- School of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Ningyi Zhong
- School of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Tong Wu
- Department of RadiologyThe Third Affiliated Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510630P. R. China
| | - Yong Shen
- School of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Guosheng Chen
- School of Chemical Engineering and TechnologySouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityZhuhai519082P. R. China
- School of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
- Sun Yat‐sen University School of Chemistry and Guangdong Basic Research Center of Excellence for Functional Molecular EngineeringSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacologythe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Li Niu
- School of Chemical Engineering and TechnologySouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityZhuhai519082P. R. China
| | - Gangfeng Ouyang
- School of Chemical Engineering and TechnologySouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityZhuhai519082P. R. China
- School of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
- Sun Yat‐sen University School of Chemistry and Guangdong Basic Research Center of Excellence for Functional Molecular EngineeringSun Yat‐sen UniversityGuangzhou510006P. R. China
| |
Collapse
|
4
|
Fan R, Zhang X, Wu J, Zhang L, Chen W, Yang Q, Zheng R, Zhang L, Li X, Xu K. Phosphate Ion-Selective Electrode Based on Electrochemically Modified Iron. ACS OMEGA 2024; 9:41217-41224. [PMID: 39398173 PMCID: PMC11465452 DOI: 10.1021/acsomega.4c02230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
The significance of the detection of phosphate ions is immense in the realms of chemistry, biology, medicine, environment, and industry. The detection of phosphate ions is currently mainly reliant on blue molybdenum colorimetry, which is accurate but requires sample pretreatment, intricate operation, and a high price tag. Consequently, it is essential to create a sensor with superior efficiency, precision, straightforward functioning, and instantaneous online detection. This study has designed and created an electrochemical modification based on an iron metal electrode for this purpose. Cyclic voltammetry was used to initially ascertain the potential (-0.57 V) necessary for constant potential electrolysis. Employing a constant potential electrolysis method, the iron oxide and its phosphate were modified onto the surface of the iron electrode to enable reaction with phosphate ions. Scanning electron microscopy and energy dispersive X-ray spectroscopy were used to characterize and analyze the morphology and elemental composition of Fe-PME, elucidating how it responds to phosphate ionation. The two-electrode system was then utilized for the evaluation of the phosphate ion response of Fe-PME at pH 4. Fe-PME's response to phosphate ions is demonstrated by the results, ranging from 10-5 to 0.1 M and with a slope of -52.8 mV dec-1. Fe-PME exhibited satisfactory results when compared to the conventional blue colorimetry of molybdenum.
Collapse
Affiliation(s)
- Ronghua Fan
- School
of Public Health, Shenyang Medical College, Shenyang 110034, People’s Republic of China
| | - Xiwen Zhang
- School
of Basic Medicine, Shenyang Medical College, Shenyang 110034, People’s Republic of China
| | - Jie Wu
- School
of Public Health, Shenyang Medical College, Shenyang 110034, People’s Republic of China
- Liaoning
Medical Functional Food Professional Technology Innovation Center, Shenyang 110034, People’s Republic of China
| | - Luwei Zhang
- Affiliated
242 hospital, Shenyang Medical College, Shenyang 110801, People’s Republic of China
| | - Weiyun Chen
- School
of Public Health, Shenyang Medical College, Shenyang 110034, People’s Republic of China
| | - Qiaozhi Yang
- School
of Public Health, Shenyang Medical College, Shenyang 110034, People’s Republic of China
| | - Rui Zheng
- School
of Public Health, Shenyang Medical College, Shenyang 110034, People’s Republic of China
| | - Lifeng Zhang
- School
of Public Health, Shenyang Medical College, Shenyang 110034, People’s Republic of China
| | - Xin Li
- School
of stomatology, Shenyang Medical College, Shenyang 110034, People’s Republic of China
- Key
Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness
in Liaoning Province, Shenyang 110034, People’s
Republic of China
- Key Laboratory
of Phenomics in Shenyang, Shenyang 110034, People’s
Republic of China
| | - Kebin Xu
- School
of Public Health, Shenyang Medical College, Shenyang 110034, People’s Republic of China
- Key
Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness
in Liaoning Province, Shenyang 110034, People’s
Republic of China
- Key Laboratory
of Phenomics in Shenyang, Shenyang 110034, People’s
Republic of China
| |
Collapse
|
5
|
Liu J, Geng Q, Geng Z. A Route to the Colorimetric Detection of Alpha-Fetoprotein Based on a Smartphone. MICROMACHINES 2024; 15:1116. [PMID: 39337777 PMCID: PMC11433964 DOI: 10.3390/mi15091116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Alpha-fetoprotein (AFP) is a key marker for early cancer detection and assessment. However, the current detection methods struggle to balance accuracy with the need for decentralized medical treatment. To address this issue, a new AFP analysis platform utilizing digital image colorimetry has been developed. Functionalized gold nanoparticles act as colorimetric agents, changing from purple-red to light gray-blue when exposed to different AFP concentrations. A smartphone app captures these color changes and calculates the AFP concentration in the sample. To improve detection accuracy, a hardware device ensures uniform illumination. Testing has confirmed that this system can quantitatively analyze AFP using colorimetry. The limit of detection reached 0.083 ng/mL, and the average accuracy reached 90.81%. This innovative method enhances AFP testing by offering portability, precision, and low cost, making it particularly suitable for resource-limited areas.
Collapse
Affiliation(s)
- Junjie Liu
- School of Information Engineering, Minzu University of China, Beijing 100081, China
| | - Qingfubo Geng
- School of Information Engineering, Minzu University of China, Beijing 100081, China
| | - Zhaoxin Geng
- School of Information Engineering, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing 100081, China
| |
Collapse
|
6
|
Yano K, Matsuie Y, Sato A, Okada M, Akimoto T, Sugimoto I. Characterization of plasma polymerized acetonitrile film for fluorescence enhancement and its application to aptamer-based sandwich assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5311-5320. [PMID: 39028106 DOI: 10.1039/d4ay00795f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Among biosensing systems for sensitive diagnoses fluorescence enhancement techniques have attracted considerable attention. This study constructed a simple multilayered structure comprising a plane metal mirror coated with a plasma-polymerized film (PPF) as an optical interference layer on a glass slide for fluorescence enhancement. Plasma polymerization enables the easy deposition of organic thin films containing functional groups, such as amino groups. This study prepared PPFs using acetonitrile as a monomer, and the influences of washing and the output powers of plasma polymerization on PPF thickness were examined by Fourier transform infrared spectroscopy. This is because controlling the PPF thickness is vital in fluorescence enhancement. Multilayered glass slides prepared using a silver layer with 84 nm-thick acetonitrile PPFs exhibited 11- and 281-fold fluorescence enhancements compared with those obtained from the substrates with a bare surface and only modified by the silver layer, respectively. Oligonucleotides labeled with a thiol group and cyanine5 were successfully immobilized on the multilayered substrates, and the fluorescence of the acetonitrile PPFs was superior to that of the allylamine and cyclopropylamine PPFs. Furthermore, an aptamer-based sandwich assay targeting thrombin was performed on the multilayered glass slides, resulting in an approximately 5.1-fold fluorescence enhancement compared with that obtained from the substrate with a bare surface. Calibration curves revealed the relationship between fluorescence intensity and thrombin concentration of 10-1000 nM. This study demonstrates that PPFs can function as materials for fluorescence enhancement, immobilization for biomaterials, and aptamer-based sandwich assays.
Collapse
Affiliation(s)
- Kazuyoshi Yano
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Yutaro Matsuie
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Ayaka Sato
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Maiko Okada
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Takuo Akimoto
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Iwao Sugimoto
- Graduate School of Computer Sciences, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|
7
|
Xiang Y, Ke W, Qin Y, Zhou B, Hu Y. PfAgo-based dual signal amplification biosensor for rapid and highly sensitive detection of alkaline phosphatase activity. Mikrochim Acta 2024; 191:439. [PMID: 38954110 DOI: 10.1007/s00604-024-06516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
A Pyrococcus furiosus Argonaute (PfAgo)-based biosensor is presented for alkaline phosphatase (ALP) activity detection in which the ALP-catalyzed hydrolysis of 3'-phosphate-modified functional DNA activates the strand displacement amplification, and the amplicon mediates the fluorescent reporter cleavage as a guide sequence of PfAgo. Under the dual amplification mode of PfAgo-catalyzed multiple-turnover cleavage activity and pre-amplification technology, the developed method was successfully applied to ALP activity determination with a detection limit (LOD) of 0.0013 U L-1 (3σ) and a detection range of 0.0025 to 1 U L-1 within 90 min. The PfAgo-based method exhibits satisfactory analytic performance in the presence of potential interferents and in complex human serum samples. The proposed method shows several advantages, such as rapid analysis, high sensitivity, low-cost, and easy operation, and has great potential in disease evolution fundamental studies and clinical diagnosis applications.
Collapse
Affiliation(s)
- YuQiang Xiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Weikang Ke
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
| | - Yuqing Qin
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
| | - Bosheng Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
| | - Yonggang Hu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
8
|
Zhang Y, Yi K, Gong F, Tang Z, Feng Y, Tian Y, Xiang M, Zhou F, Liu M, Ji X, He Z. A simple, rapid and sensitive sandwich immunoassay based on poly(N-isopropylacrylamide) for the detection of alpha-fetoprotein. Talanta 2024; 274:125932. [PMID: 38537351 DOI: 10.1016/j.talanta.2024.125932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 05/04/2024]
Abstract
Alpha-fetoprotein (AFP), as a tumor marker, plays a vital role in the diagnosis of liver cancer. In this work, a novel sandwich immunoassay based on a thermosensitive polymer, poly(N-isopropylacrylamide) (PNIPAM), was developed for the detection of AFP. This immunoassay could realize one-step rapid reaction within 1 h, and facilitate the separation of the target molecules by incorporating PNIPAM. In this method, a conjugate of PNIPAM and capture antibody (Ab1) was successfully synthesized as a capture probe and the synthetic method of PNIPAM-Ab1 was simple, while the detection antibody (Ab2) was labeled with fluorescein isothiocyanate (FITC) to form a fluorescent detection probe. By employing a sandwich immunoassay, the method achieved quantitative determination of AFP, exhibiting a wide linear range from 5 ng/mL to 200 ng/mL and a low detection limit of 2.44 ng/mL. Furthermore, it was successfully applied to the analysis of spiked human serum samples and the screening of patients with hepatic diseases in clinical samples, indicating its potential application prospect in the diagnosis of liver cancer.
Collapse
Affiliation(s)
- Yaran Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kebing Yi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Feng Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ziwen Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yilong Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ming Xiang
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430072, Wuhan, China
| | - Min Liu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
9
|
Guo H, Zhang H, Sun T, Wang X, Gong P. Research on Key Technologies of Dual-Light-Type Photoelectric Colorimetric Method for Phosphate Determination. MICROMACHINES 2024; 15:821. [PMID: 39064332 PMCID: PMC11279197 DOI: 10.3390/mi15070821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Phosphate plays a crucial role in microbial proliferation, and the regulation of the phosphate concentration can modulate the fermentation efficiency. In this study, based on Lambert-Beer's Law and the selective absorption characteristics of substances under light, a dual-light-type photoelectric colorimetric device for phosphate determination was designed. The device's main components, such as the excitation light path and incubation stations, were modeled and simulated. The primary performance of the instrument was verified, and comparative experiments with a UV-1780 spectrophotometer were conducted to validate its performance. The experimental results demonstrate that this device exhibits a high degree of linearity with an R2 value of 0.9956 and a repeatability of ≤1.72%. The average temperature rise rate at the incubation stations was measured at 0.44 °C/s, with a temperature uniformity ≤ ±0.1 °C (temperature set at 37.3 °C). Consistently observed trends in the measurement of 23 CHO cell suspensions using the UV-1780 spectrophotometer further validated the accuracy and reliability of the device's detection results.
Collapse
Affiliation(s)
- Hongzhuang Guo
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (H.G.); (T.S.)
| | - Hao Zhang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China;
| | - Tingting Sun
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (H.G.); (T.S.)
| | - Xin Wang
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (H.G.); (T.S.)
| | - Ping Gong
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China;
| |
Collapse
|
10
|
Nam US, Suh HN, Sung SK, Seo C, Lee JH, Lee JY, Kim S, Lee J. Rapid and High-Density Antibody Immobilization Using Electropolymerization of Pyrrole for Highly Sensitive Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30611-30621. [PMID: 38857116 PMCID: PMC11194765 DOI: 10.1021/acsami.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Polypyrrole (Ppy) is a biologically compatible polymer that is used as a matrix, in which drugs and enzymes can be incorporated by doping. Here, we suggest an inventive application of Ppy as a biorecognition film encapsulated with an antibody (Ab) as an alternative strategy for the on-site multistep functionalization of thiol-based self-assembled monolayers. The fabrication steps of the recognition films were followed by dropping pyrrole and Ab mixed solutions onto the electrode and obtaining a thin film by direct current electropolymerization. The efficiency of Ab immobilization was studied by using fluorescence microscopy and electrochemical (EC) methods. Finally, the Ab density was increased and immobilized in 1 min, and the sensing performance as an EC immunosensor was demonstrated using α-fetoprotein with a limit of detection of 3.13 pg/mL and sensing range from 1 pg/mL to 100 ng/mL. This study demonstrates the potential for electrochemical functionalization of biomolecules with high affinity and rapidity.
Collapse
Affiliation(s)
- USun Nam
- Department
of Medical IT Convergence, Kumoh National
Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Han Na Suh
- Korea
Institute of Toxicology (KIT), Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Sang-Keun Sung
- Digital
Healthcare Research Center, Gumi Electronics
and Information Technology Research Institute (GERI), Gumi, Gyeongbuk 39253, Republic
of Korea
| | - ChaeWon Seo
- Department
of Medical IT Convergence, Kumoh National
Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Jung Hyun Lee
- Department
of Dermatology, School of Medicine, University
of Washington, 850 Republican Street, Seattle, Washington 98109, United States
- Institute
for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, Washington 98109, United States
| | - Jeong Yoon Lee
- The Laboratory
of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan-si, Jeollabuk-do 54531, Republic
of Korea
| | - SangHee Kim
- Department
of Medical IT Convergence, Kumoh National
Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - JuKyung Lee
- Digital
Healthcare Research Center, Gumi Electronics
and Information Technology Research Institute (GERI), Gumi, Gyeongbuk 39253, Republic
of Korea
| |
Collapse
|
11
|
Chen LG, Li J, Sun L, Wang HB. Ratiometric fluorometric assay triggered by alkaline phosphatase: Proof-of-concept toward a split-type biosensing strategy for DNA detection. Talanta 2024; 271:125703. [PMID: 38271841 DOI: 10.1016/j.talanta.2024.125703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Herein, a sensitive ratiometric and split-type fluorescent sensing platform has been constructed for DNA detection based on one signal precursor and two fluorescent signal indicators. In this assay, o-phenylenediamine (OPD) was selected as the signal precursor. On one hand, Cu2+ can oxidize OPD to produce 2, 3-diaminophenazine (DAP), which with an emission peak at 555 nm. On the other hand, ascorbic acid (AA) could react with Cu2+ to generate dehydroascorbic acid (DHAA), which could further react with OPD to form 3-(1, 2-dihydroxy ethyl)furo[3, 4-b]quinoxalin-1 (3H)-on (DFQ) with a strong emission peak at 420 nm. As a result, the formation of DAP was inhibited, and leading to the decrease of fluorescence intensity at 555 nm. Alkaline phosphatase (ALP) could catalyze the substrate l-ascorbic acid-2-phosphate (AA2P) to produce AA in situ. Inspired by the successful use of ALP as a biocatalytic marker in bioassay, a split-type ratiometric fluorescent assay has been designed for DNA detection by using H1N1 DNA as the target model. It was realized for ratiometric fluorescent determination of H1N1 in a linear ranging from 50 pM to 1.5 nM with a limit of detection of 10 pM. The novel strategy could reduce the mutual interferences between the biomolecular recognition system and the fluorescence signal conversion system, which improving the accuracy of detection and effectively reducing the background signal. Furthermore, the strategy provided a promising platform for biomarkers detection in the fields of ratiometric fluorescent biosensors and bioanalysis.
Collapse
Affiliation(s)
- Lin-Ge Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Jiajun Li
- CNOOC Tianjin Research and Design Institute of Chemical Industry, Tianjin, 300131, PR China
| | - Lu Sun
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China.
| |
Collapse
|
12
|
Zhao Y, Chen W, Fang H, Zhang J, Wu S, Yang H, Zhou Y. Ratiometric fluorescence immunoassay based on silver nanoclusters and calcein-Ce 3+ for detecting ochratoxin A. Talanta 2024; 269:125470. [PMID: 38011811 DOI: 10.1016/j.talanta.2023.125470] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Ochratoxin A (OTA), a dangerous mycotoxin, is found in many crops. It is essential to create sensitive OTA detection techniques to ensure food safety. Based on the principle of p-nitrophenol (PNP) quenched the fluorescence of bovine serum albumin silver nanocluster (BSA-AgNCs) through an internal filtering effect, and phosphate activated fluorescence of calcein-Ce3+ system, a ratiometric fluorescence immunoassay for OTA detection was developed. In this strategy, the value of F518/F640 was used as a signal for response of OTA concentration. The detection range of this strategy was 0.625-25 ng/mL, the limit of detection (LOD) was 0.04 ng/mL. This new immunoassay offered a brand-new platform for detecting OTA.
Collapse
Affiliation(s)
- Yanan Zhao
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Wang Chen
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Huajuan Fang
- College of Life Science, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Junxiang Zhang
- College of Life Science, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Shixiang Wu
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Hualin Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, People's Republic of China; College of Life Science, Yangtze University, Jingzhou, 434025, People's Republic of China.
| | - Yu Zhou
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, People's Republic of China.
| |
Collapse
|
13
|
Liu W, Huang Y, Ji C, Grimes CA, Liang Z, Hu H, Kang Q, Yan HL, Cai QY, Zhou YG. Eu 3+-Doped Anionic Zinc-Based Organic Framework Ratio Fluorescence Sensing Platform: Supersensitive Visual Identification of Prescription Drugs. ACS Sens 2024; 9:759-769. [PMID: 38306386 DOI: 10.1021/acssensors.3c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Advanced techniques for both environmental and biological prescription drug monitoring are of ongoing interest. In this work, a fluorescent sensor based on an Eu3+-doped anionic zinc-based metal-organic framework (Eu3+@Zn-MOF) was constructed for rapid visual analysis of the prescription drug molecule demecycline (DEM), achieving both high sensitivity and selectivity. The ligand 2-amino-[1,1'-biphenyl]-4,4'-dicarboxylic acid (bpdc-NH2) not only provides stable cyan fluorescence (467 nm) for the framework through intramolecular charge transfer of bpdc-NH2 infinitesimal disturbanced by Zn2+ but also chelates Eu3+, resulting in red (617 nm) fluorescence. Through the synergy of photoinduced electron transfer and the antenna effect, a bidirectional response to DEM is achieved, enabling concentration quantification. The Eu3+@Zn-MOF platform exhibits a wide linear range (0.25-2.5 μM) to DEM and a detection limit (LOD) of 10.9 nM. Further, we integrated the DEM sensing platform into a paper-based system and utilized a smartphone for the visual detection of DEM in water samples and milk products, demonstrating the potential for large-scale, low-cost utilization of the technology.
Collapse
Affiliation(s)
- Wensheng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yao Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chenhui Ji
- Department of Chemistry, Baotou Teachers College, Baotou 014030, China
| | - Craig A Grimes
- Flux Photon Corporation, Alpharetta, Georgia 30005, United States
| | - Zerong Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hairong Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qing Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hai-Long Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qing-Yun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yi-Ge Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
14
|
Terzapulo X, Kassenova A, Bukasov R. Immunoassays: Analytical and Clinical Performance, Challenges, and Perspectives of SERS Detection in Comparison with Fluorescent Spectroscopic Detection. Int J Mol Sci 2024; 25:2080. [PMID: 38396756 PMCID: PMC10889711 DOI: 10.3390/ijms25042080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Immunoassays (IAs) with fluorescence-based detection are already well-established commercialized biosensing methods, such as enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay (LFIA). Immunoassays with surface-enhanced Raman spectroscopy (SERS) detection have received significant attention from the research community for at least two decades, but so far they still lack a wide clinical commercial application. This review, unlike any other review that we have seen, performs a three-dimensional performance comparison of SERS IAs vs. fluorescence IAs. First, we compared the limit of detection (LOD) as a key performance parameter for 30 fluorescence and 30 SERS-based immunoassays reported in the literature. We also compared the clinical performances of a smaller number of available reports for SERS vs. fluorescence immunoassays (FIAs). We found that the median and geometric average LODs are about 1.5-2 orders of magnitude lower for SERS-based immunoassays in comparison to fluorescence-based immunoassays. For instance, the median LOD for SERS IA is 4.3 × 10-13 M, whereas for FIA, it is 1.5 × 10-11 M. However, there is no significant difference in average relative standard deviation (RSD)-both are about 5-6%. The analysis of sensitivity, selectivity, and accuracy reported for a limited number of the published clinical studies with SERS IA and FIA demonstrates an advantage of SERS IA over FIA, at least in terms of the median value for all three of those parameters. We discussed common and specific challenges to the performances of both SERS IA and FIA, while proposing some solutions to mitigate those challenges for both techniques. These challenges include non-specific protein binding, non-specific interactions in the immunoassays, sometimes insufficient reproducibility, relatively long assay times, photobleaching, etc. Overall, this review may be useful for a large number of researchers who would like to use immunoassays, but particularly for those who would like to make improvements and move forward in both SERS-based IAs and fluorescence-based IAs.
Collapse
Affiliation(s)
| | | | - Rostislav Bukasov
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| |
Collapse
|
15
|
Kong RM, Li P, Ge X, Zhao Y, Kong W, Xiang MH, Xia L, Qu F. Ratiometric fluorescence determination of alkaline phosphatase activity based on carbon dots and Ce 3+-crosslinked copper nanoclusters. Mikrochim Acta 2023; 190:487. [PMID: 38010451 DOI: 10.1007/s00604-023-06048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023]
Abstract
A new ratiometric fluorescent probe for efficient determination of ALP was developed. The probe was constructed by combining Ce3+-crosslinked copper nanoclusters (Ce3+-CuNCs) which exhibit the aggregation-induced emission (AIE) feature with carbon dots (CDs). The introduction of phosphate (Pi) induced the generation of CePO4 precipitation, resulting in significant decrease of fluorescence emission of CuNCs at 634 nm. At the same time, the fluorescence of CDs at 455 nm was obviously enhanced, thus generating ratiometric fluorescence response. Based on the fact that the hydrolysis of pyrophosphate (PPi) by ALP can produce Pi, the CD/Ce3+-CuNCs ratiometric probe was successfully used to determine ALP. A good linear relationship between the ratiometric value of F455/F634 and ALP concentrations ranging from 0.2 to 80 U·L- 1 was obtained, with a low detection limit of 0.1 U·L- 1. The ratiometric responses of the probe resulted in the visible fluorescence color change from orange red to blue with the increase of ALP concentration. The smartphone-based RGB recognition of the fluorescent sample images was used for ALP quantitative determination. A novel ratiometric fluorescent system based on Ce3+-CuNCs with AIE feature and CDs were constructed for efficient detection of ALP.
Collapse
Affiliation(s)
- Rong-Mei Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China.
| | - Peihua Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Xinyue Ge
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Yan Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Weiheng Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Mei-Hao Xiang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Lian Xia
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Fengli Qu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| |
Collapse
|
16
|
Yu G, Wang J, Zhang Y, Wu H, Wang Y, Cui Y, Yang Y, Tang X, Zhang Q, Wang J, Sun J, Chen R, Wang Y, Li P. Anti-Idiotypic Nanobody Alkaline Phosphatase Fusion Protein-Triggered On-Off-On Fluorescence Immunosensor for Aflatoxin in Cereals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37917663 DOI: 10.1021/acs.jafc.3c05376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Nanobodies (Nbs) are widely used in immunoassays with the advantages of small size and high stability. Here, the nanobody employed as the surrogate of aflatoxin antigen and the recognition mechanism of antiaflatoxin mAb with nanobody was studied by molecular modeling, which verified the feasibility of Nbs as antigen substitutes. On this basis, a nanobody-alkaline phosphatase fusion protein (Nb-AP) was constructed, and a highly sensitive "on-off-on" fluorescent immunosensor (OFO-FL immunosensor) based on the calcein/Ce3+ system was developed for aflatoxin quantification. Briefly, calcein serves as a signal transducer, and its fluorescence can be quenched after it is bound with Ce3+. In the presence of Nb-AP, AP catalyzed p-nitrophenyl phosphate to generate orthophosphate, which competes in binding with Ce3+, leading to fluorescence recovery. The method has a linearity range of 0.005-100 ng/mL, and the IC50 of the OFO-FL immunosensor was 0.063 ng/mL, which was 18-fold lower than that of conventional enzyme-linked immunosorbent assay. The assay was successfully applied in food samples with a recovery of 88-121%.
Collapse
Affiliation(s)
- Gege Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiamin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haofen Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yueqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuefan Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqian Tang
- , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Zhang
- , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Ran Chen
- Sinograin Hubei Branch Quality Inspection Center Co, LTD., Wuhan 430062, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiwu Li
- , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
17
|
Xiao Q, Mu P, Ning G, Zhang W, Li B, Huang S. A ratiometric fluorescent probe for simultaneous detection of L-ascorbic acid and alkaline phosphatase activity based on red carbon dots/polydopamine nanocomposite. Talanta 2023; 264:124724. [PMID: 37271005 DOI: 10.1016/j.talanta.2023.124724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Herein, efficient red carbon dots (R-CDs) were synthesized by one-step hydrothermal treatment of N-(4-amino phenyl) acetamide and (2,3-difluoro phenyl) boronic acid. The optimal emission peak of R-CDs was at 602 nm (under 520 nm excitation) and the absolute fluorescence quantum yield of R-CDs was 12.9%. Polydopamine, which was formed by the self-polymerization and cyclization of dopamine in alkaline condition, emitted characteristic fluorescence with peak position of 517 nm (under 420 nm excitation) and affected the fluorescence intensity of R-CDs through inner filter effect. L-Ascorbic acid (AA), which was the hydrolysis product of L-ascorbic acid-2-phosphate trisodium salt under the catalytic reaction of alkaline phosphatase (ALP), effectively prevented the polymerization of dopamine. Combined with the ALP-mediated AA production and the AA-mediated polydopamine generation, the ratiometric fluorescence signal of polydopamine with R-CDs was correlated closely with the concentration of both AA and ALP. Under optimal conditions, the detection limits of AA and ALP were 0.28 μM during linear range of 0.5-30 μM and 0.044 U/L with linear range of 0.05-8 U/L, respectively. This ratiometric fluorescence detection platform can efficiently shield the background interference of sophisticated samples by introducing a self-calibration as reference signal in a multi-excitation mode, which can detect AA and ALP in human serum samples with satisfactory results. Such R-CDs/polydopamine nanocomposite provides a steadfast quantitative information and makes R-CDs be excellent candidate for biosensors via combining target recognition strategy.
Collapse
Affiliation(s)
- Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China.
| | - Pingping Mu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Gan Ning
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Wenqian Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China.
| |
Collapse
|
18
|
Liu L, Chang Y, Lou J, Zhang S, Yi X. Overview on the Development of Alkaline-Phosphatase-Linked Optical Immunoassays. Molecules 2023; 28:6565. [PMID: 37764341 PMCID: PMC10536125 DOI: 10.3390/molecules28186565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The drive to achieve ultrasensitive target detection with exceptional efficiency and accuracy requires the advancement of immunoassays. Optical immunoassays have demonstrated significant potential in clinical diagnosis, food safety, environmental protection, and other fields. Through the innovative and feasible combination of enzyme catalysis and optical immunoassays, notable progress has been made in enhancing analytical performances. Among the kinds of reporter enzymes, alkaline phosphatase (ALP) stands out due to its high catalytic activity, elevated turnover number, and broad substrate specificity, rendering it an excellent candidate for the development of various immunoassays. This review provides a systematic evaluation of the advancements in optical immunoassays by employing ALP as the signal label, encompassing fluorescence, colorimetry, chemiluminescence, and surface-enhanced Raman scattering. Particular emphasis is placed on the fundamental signal amplification strategies employed in ALP-linked immunoassays. Furthermore, this work briefly discusses the proposed solutions and challenges that need to be addressed to further enhance the performances of ALP-linked immunoassays.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Shuo Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
19
|
Olorundare FOG, Sipuka DS, Sebokolodi TI, Kodama T, Arotiba OA, Nkosi D. An electrochemical immunosensor for an alpha-fetoprotein cancer biomarker on a carbon black/palladium hybrid nanoparticles platform. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3577-3585. [PMID: 37458385 DOI: 10.1039/d3ay00702b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The early detection of cancer is a key step in cancer survival. Thus, there is a need to develop low-cost technologies, such as electrochemical immunosensor technologies, for timely screening and diagnostics. The discovery of alpha-feto protein (AFP) as a tumour-associated antigen lends AFP as a biomarker for cancer detection and monitoring. Thus, immunosensors can be developed to target AFP in cancer diagnostics. Hence, we report the application of a hybrid nanocomposite of carbon black nanoparticles (CBNPs) and palladium nanoparticles (PdNPs) as a platform for the electrochemical immunosensing of cancer biomarkers. The hybrid carbon-metal nanomaterials were immobilised by using the drop-drying and electrodeposition technique on a glassy carbon electrode, followed by the immobilisation of the anti-AFP to fabricate an immunosensor. The nanoparticles were characterised with electron microscopy, voltammetry, and electrochemical impedance spectroscopy (EIS). Square wave voltammetry (SWV) and EIS were used to study the immunosensor signal toward the bio-recognition of the AFP cancer biomarker. The hybrid nanoparticles enhanced the immunosensor performance. A linear detection range from 0.005 to 1000 ng mL-1 with low detection limits of 0.0039 ng mL-1 and 0.0131 ng mL-1 were calculated for SWV and EIS, respectively. The immunosensor demonstrated good stability, reproducibility, and selectivity. Its real-life application potential was tested with detection in human serum matrix.
Collapse
Affiliation(s)
- Foluke O G Olorundare
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa.
| | - Dimpo S Sipuka
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Tsholofelo I Sebokolodi
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Duduzile Nkosi
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| |
Collapse
|
20
|
Kang G, Zhao D, Wang H, Liu F, Wang T, Chen C, Lu Y. Malathion detection based on polydopamine enhanced oxidase-mimetic activity of palladium nanocubes. Talanta 2023; 262:124730. [PMID: 37245431 DOI: 10.1016/j.talanta.2023.124730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Nowadays, fabricating simple and efficient pesticide detection methods become a research focus due to the great threat pesticide residues posed to human health and environment. Herein, we constructed a high-efficiency and sensitive colorimetric detection platform for malathion detection based on polydopamine-dressed Pd nanocubes (PDA-Pd/NCs). The Pd/NCs coated with PDA exhibited excellent oxidase-like activity, which was attributed to the substrates accumulation and accelerated electron transfer induced by PDA. What's more, we successfully achieved sensitive detection of acid phosphatase (ACP) using 3,3',5,5'-tetramethylbenzidine (TMB) as the chromogenic substrate, relying on the satisfactory oxidase activity from PDA-Pd/NCs. However, the addition of malathion could inhibit the activity of ACP and limit the production of medium AA. Therefore, we constructed a colorimetric assay for malathion based on PDA-Pd/NCs + TMB + ACP system. The wide linear range (0-8 μM) and low detection limit (0.023 μM) indicate excellent analytical performance, which is superior to most malathion analysis methods previously reported. This work not only provides a new idea for dopamine coated nano-enzyme to improve its catalytic activity, but also creates a new tactics for the detection of pesticides such as malathion.
Collapse
Affiliation(s)
- Ge Kang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Dan Zhao
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, China.
| | - Hao Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Fangning Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Tingting Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China.
| |
Collapse
|
21
|
Hu S, Yang G, Chen Z, Li Q, Liu B, Liu M, Zhang D, Chang S, Kong R. Docking guided phase display to develop fusion protein with novel scFv and alkaline phosphatase for one-step ELISA salbutamol detection. Front Microbiol 2023; 14:1190793. [PMID: 37250048 PMCID: PMC10213401 DOI: 10.3389/fmicb.2023.1190793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Salbutamol (SAL) is a β2 adrenergic receptor agonist which has potential hazardous effects for human health. It is very important to establish a sensitive and convenient method to monitor SAL. Methods Here we introduce a method to combine the information from docking and site specific phage display, with the aim to obtain scFv with high affinity to SAL. First, single chain variable fragment (scFv) antibodies against SAL were generated through phage display. By using molecular docking approach, the complex structure of SAL with antibody was predicted and indicated that H3 and L3 contribute to the binding. Then new libraries were created by randomization specific residues located on H3 and L3 according to the docking results. Results and discussion Anti-SAL scFv antibodies with high efficiency were finally identified. In addition, the selected scFv was fused with alkaline phosphatase and expressed in E coli to develop a rapid and low-cost one step ELISA to detect SAL.
Collapse
Affiliation(s)
- Shuai Hu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Guangbo Yang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Zhou Chen
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Qiuye Li
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Bin Liu
- Beijing New BioConcepts Biotech Co., Ltd., Beijing, China
| | - Ming Liu
- Beijing New BioConcepts Biotech Co., Ltd., Beijing, China
| | - Dawei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
22
|
Ma W, Pang L, Liu J, Wen L, Ma H, Li Y, Xu Z, Zhang C, Yu HD. MnO 4--Triggered Immediate-Stable Real-Time Fluorescence Immunosensor with High Response Speed and Low Steady-State Error. Anal Chem 2023; 95:6323-6331. [PMID: 37018486 DOI: 10.1021/acs.analchem.2c05149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Real-time chemical and biological sensing in vitro is important for application in health and environmental monitoring. Thus, a more rapid and stable detection method is urgently needed. Herein, an immediate-stable real-time fluorescent immunosensor with a high response speed (∼100%, <1 s) and approximately zero steady-state error is constructed. The developed sensor is based on the MnO4--triggered in situ immediate-stable fluorogenic reaction between dopamine and orcinol monohydrate to produce azamonardine (DMTM). The obtained DMTM is identified and characterized by high-resolution mass spectrometry, 1H NMR spectroscopy, 13C NMR spectroscopy, and theoretical calculations. The present sensor achieves a highly sensitive detection of dopamine (DA) with a limit of detection (LOD) of 10 nM as well as alkaline phosphates (ALP) with an LOD of 0.1 mU/mL by using orcinol monohydrate phosphate sodium salt as a substrate. As a proof of concept, ALP-triggered fluorescence ELISA using cardiac troponin I (cTnI) as a model antigen target is further constructed. The developed real-time sensor achieves the detection of cTnI with an LOD of 0.05 ng/mL. Moreover, the sensor proposed by us is successfully applied to assess the cTnI level in clinical serum specimens and yields results consistent with those obtained by the commercial ELISA method. The immediate-stable real-time fluorescence immunosensor provides a promising and powerful platform for the trace detection of biomolecules in clinical diagnosis.
Collapse
Affiliation(s)
- Wenlin Ma
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lihua Pang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lei Wen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry, Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yinhui Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry, Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Zhihui Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian Road, Taiyuan 310003, China
| | - Hai-Dong Yu
- Xi'an Institute of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics (KLoFE) & Xi'an Key Laboratory of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
23
|
Li Q, Wang Y, Zhu Q, Liu H, Liu J, Meng HM, Li Z. A dual-mode system based on molybdophosphoric heteropoly acid and fluorescent microspheres for the reliable and ultrasensitive detection of alkaline phosphatase. Analyst 2023; 148:1259-1264. [PMID: 36779364 DOI: 10.1039/d2an02052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel colorimetric and fluorescent dual-mode sensing system based on molybdophosphoric heteropoly acid (PMA) and fluorescent microspheres (FMs) was established for monitoring the activity of alkaline phosphatase (ALP). In the presence of ALP, L-ascorbic acid-2-phosphate (AAP) could be hydrolyzed catalytically to ascorbic acid (AA), which could reduce PMA to phosphorus molybdenum blue (PMB), accompanied by the generation of colorimetric signals depending on the level of ALP. Meanwhile, the fluorescence of FMs was quenched markedly by the PMB produced due to the inner-filter effect, which constituted the response mechanism for the dual-mode sensing systems of ALP. On this basis, a PMA-FMs based dual-mode sensing system was used for the detection of ALP, which not only possessed remarkable sensitivity, with a limit of detection of 0.27 U L-1 and 0.11 U L-1, but also exhibited good analytical performance in biological samples with satisfactory results. Moreover, a simple and portable test kit for the visual detection of ALP in real serum samples was fabricated utilizing a smartphone with image-recognition and data-processing capabilities as a visual-detection platform.
Collapse
Affiliation(s)
- Qiannan Li
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China.
| | - Yufei Wang
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China.
| | - Qianqian Zhu
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China.
| | - Haifang Liu
- Henan Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, Zhengzhou Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, China
| | - Jianbo Liu
- Henan Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, Zhengzhou Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, China
| | - Hong-Min Meng
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhaohui Li
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
24
|
Du L, Chen Y, Huang Y, Yan S, Zhang S, Dai H. Photothermal enhanced fluorescence quenching of Tb-norfloxacin for ultrasensitive human epididymal 4 detection. Mikrochim Acta 2023; 190:108. [PMID: 36867247 DOI: 10.1007/s00604-023-05689-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 03/04/2023]
Abstract
A fluorescence quenching enhanced immunoassay has been developed to achieve ultrasensitive recognition of human epididymal 4 (HE4) modifying the fluorescence quencher. The carboxymethyl cellulose sodium-functionalized Nb2C MXene nanocomposite (CMC@MXene) was firstly introduced to quench the fluorescence signal of the luminophore Tb-Norfloxacin coordination polymer nanoparticles (Tb-NFX CPNPs). The Nb2C MXene nanocomposite as fluorescent nanoquencher inhibits the electron transfer between Tb and NFX to quench the fluorescent signal by coordinating the strongly electronegative carboxyl group on CMC with Tb (III) of Tb-NFX complex. Simultaneously, due to the superior photothermal conversion capability of CMC@MXene, the fluorescence signal has been further weakened by the photothermal effect driven non-radiative decay of the excited state under near-infrared laser irradiation. The constructed fluorescent biosensor based on CMC@MXene probe finally realized the enhanced fluorescence quenching effect, and achieved ultra-high sensitivity and selective detection of HE4, exhibiting a wide linear relationship with HE4 concentration on the logarithmic axis in the range of 10-5 to 10 ng/mL and a low detection limit of 3.3 fg/mL (S/N = 3). This work not only provides an enhanced fluorescent signal quenching method for the detection of HE4, but also provides novel insights for the design of fluorescent sensor toward different biomolecules.
Collapse
Affiliation(s)
- Lizhen Du
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, People's Republic of China
| | - Yanjie Chen
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, People's Republic of China
| | - Yitian Huang
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, People's Republic of China
| | - Shanshan Yan
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 32400, Zhejiang, China.
| | - Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 32400, Zhejiang, China
| | - Hong Dai
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 32400, Zhejiang, China.
| |
Collapse
|
25
|
Zhu W, Li Z, Dai L, Yang W, Li Y. Label-free fluorescence detection of alkaline phosphatase activity using a G-triplex based dumbbell-shaped probe. ANAL SCI 2023; 39:297-302. [PMID: 36536167 DOI: 10.1007/s44211-022-00241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Based on the fluorescence enhancement property of the G-triplex (G3)-Thioflavin T (ThT) complex, a fluorescent biosensor was successfully constructed for detection of ALP using a G3-based dumbbell-shaped probe (DP). In this work, calf intestinal ALP (CIP) can act on the 5'-terminal phosphate of DP, thereby regulating the subsequent DNA ligation reaction and enzyme cleavage of the DP nick. When the DP is digested by exonuclease, the released G3 can bind to ThT, resulting in enhanced fluorescence signal. The linear range of the sensor for CIP detection is 0.00002-0.002 U/μL, and the detection limit is 1.8 × 10-5 U/μL. The proposed method has the advantages of simplicity, no fluorophore labeling, and low cost, which was successfully applied to the screening of enzyme inhibitors and ALP determination in human serum samples. To the best of our knowledge, this is the first report of a biosensor using G3-ThT as the signal indicator for ALP detection, which should promote the further exploitation of applying G3-ThT complex in the field of various targets recognition and analysis.
Collapse
Affiliation(s)
- Wenping Zhu
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China.
| | - Zhiyi Li
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Liyan Dai
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Weijie Yang
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Yanxia Li
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| |
Collapse
|
26
|
Ultrarapid Microwave-Assisted Synthesis of Fluorescent Silver Coordination Polymer Nanoparticles and Its Application in Detecting Alkaline Phosphatase Activity. Molecules 2023; 28:molecules28041892. [PMID: 36838879 PMCID: PMC9965027 DOI: 10.3390/molecules28041892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Fluorescent silver coordination polymer nanoparticles (Ag-TPA CPNs) were synthesized using a combination of terephthalic acid (TPA) and silver nitrate via an ultrarapid microwave-assisted strategy within 15 min. The Ag-TPA CPNs displayed a high fluorescent quantum yield (QY = 20.19%) and large Stokes shift (~200 nm), with two emission peaks at 490 nm and 520 nm under an excitation wavelength of 320 nm. A fluorescent "turn-off" method using fluorescent Ag-TPA CPNs was applied to detect the alkaline phosphatase (ALP) activity on the basis of the ALP-catalyzed hydrolysis of ascorbic acid 2-phosphate (AA2P) to ascorbic acid (AA), and the AA product triggered the reduction of Ag+ ions into silver nanoparticles. The fluorescent lifetime of Ag-TPA CPNs decreased from 3.93 ms to 3.80 ms after the addition of ALP, which suggests that this fluorescent "turn-off" detection of ALP activity is a dynamic quenching process. The fluorescent intensity had a linear relationship with the concentration of ALP in the range of 0.2-12 mU/mL (r = 0.991) and with a limit of detection (LOD) of 0.07 mU/mL. It showed high selectivity in ALP detection towards metal ions and amino acids, as well as other enzymes such as horseradish peroxidase, glucose oxidase, tyrosinase, trypsin, lysozyme, and superoxides. When it was applied for the fluorescent "turn-off" detection of ALP activity in serum samples, mean recovery levels ranging from 99.5% to 101.2% were obtained, with relative standard deviations (RSDs) lower than 4% accuracy. Therefore, it is an efficient and accurate tool for analyzing ALP levels in biosamples.
Collapse
|
27
|
Si F, Zhang Y, Lu J, Hou M, Yang H, Liu Y. A highly sensitive, eco-friendly electrochemical assay for alkaline phosphatase activity based on a photoATRP signal amplification strategy. Talanta 2023; 252:123775. [DOI: 10.1016/j.talanta.2022.123775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022]
|
28
|
A Ratiometric Probe Based on Carbon Dots and Calcein & Eu3+ for the Fluorescent Detection of Sodium Tripolyphosphate. J Fluoresc 2022; 33:965-972. [PMID: 36542222 DOI: 10.1007/s10895-022-03121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Sodium tripolyphosphate, a food additive, is applied broadly in food industry. However, excessive accumulation of sodium tripolyphosphate can result in electrolyte abnormality of the body. Therefore, it is of great importance to investigate an effective method for the detection of sodium tripolyphosphate. In this work, nitrogen-doped carbon dots (NCDs) with constant fluorescence were fabricated using a domestic microwave oven. A ratiometric fluorescent probe was constructed in which NCDs were as internal standard, calcein & Eu3+ were as the detection signal. The fluorescence of calcein at 515 nm was quenched by Eu3+, whereas the emission peak of NCDs at 446 nm was almost unchanged. Additionally, the fluorescence of calcein was recovered because of the strong interaction of sodium tripolyphosphate and Eu3+. The linear range for sodium tripolyphosphate was 0.5-6 µmol/L with detection limit of 0.12 µmol/L. Furthermore, the ratiometric fluorescent probe was applied for sodium tripolyphosphate detection in real milk samples.
Collapse
|
29
|
Zhu YL, Wang JK, Chen ZP, Zhao YJ, Yu RQ. Ultrasensitive detection of multiple cancer biomarkers by a triple cascade amplification strategy in combination with single particle inductively coupled plasma mass spectrometry. Mikrochim Acta 2022; 190:20. [PMID: 36512161 DOI: 10.1007/s00604-022-05604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
A versatile triple cascade amplification strategy was developed for ultrasensitive simultaneous detection of multiple cancer biomarkers using single particle inductively coupled plasma mass spectrometry (spICP-MS). The triple cascade amplification strategy consisted of an enhanced RecJf exonuclease-assisted target recycling amplification module, a hybridization chain reaction amplification module, and a signal amplification module based on DNA-templated multiple metal nanoclusters. In the enhanced RecJf exonuclease-assisted target recycling amplification module, the DNA bases at the 5' ends of aptamers for specific recognition of biomarkers were deliberately replaced by the corresponding RNA bases to enhance amplification efficiency. The signal amplification module based on DNA-templated multiple metal nanoclusters was innovatively used to amplify the signals measured by spICP-MS and at the same time effectively suppress possible background interferences. The proposed spICP-MS platform achieved satisfactory quantitative results for both carcinoembryonic antigen (CEA) and a-fetoprotein (AFP) in human serum samples with accuracy comparable to that of the commercial ELISA kits. Moreover, it has wide dynamic ranges for both CEA (0.01-100 ng/mL) and AFP (0.01-200 ng/mL). The limit of detection for CEA and AFP was 0.6 and 0.5 pg/mL, respectively. Compared with conventional biomarkers detection methods, the proposed spICP-MS platform has the advantages of operational simplicity, ultra-high sensitivity, wide dynamic range, and low background. Therefore, it is reasonable to expect that the proposed spICP-MS platform can be further developed to be a promising alternative tool for biomarker detection in fields of clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Yan-Li Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, People's Republic of China
| | - Ji-Kai Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Zeng-Ping Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China.
| | - Yu-Jie Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, People's Republic of China
| |
Collapse
|
30
|
Li P, Liang N, Liu C, Xia L, Qu F, Song ZL, Kong RM. Silver ion-regulated ratiometric fluorescence assay for alkaline phosphatase detection based on carbon dots and o-phenylenediamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121682. [PMID: 35926289 DOI: 10.1016/j.saa.2022.121682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In this work, a novel silver ion (Ag+)-regulated ratiometric fluorescence method for the effective and sensitive determination of alkaline phosphatase (ALP) was established based on carbon dots (CDs) and o-phenylenediamine (OPD). OPD can be oxidized by Ag+ to generate fluorescent 2, 3-diaminophenazine (DAP). Thus, based on inner-filter effect (IFE) or/and fluorescence resonance energy transfer (FRET) between CDs and DAP, the CDs-Ag+-OPD system can generate dual-emission at 454 nm and 570 nm respectively when excited at 360 nm. The introduction of ascorbic acid (AA) can react with Ag+ to produce dehydroascorbic acid (DHAA), which inhibits the generation of DAP, resulting in the fluorescence decrease at 570 nm and fluorescence recovery of CDs at 454 nm. Meanwhile, DHAA can react with OPD to generate quoxaline (QX), which emits strong blue fluorescence at 440 nm, further inhibiting the IFE or/and FRET between CDs and DAP. An obvious ratiometric fluorescence response was observed with the increase of the concentration of AA introduced. Due to the fact that AA can be generated by the enzyme catalysis reaction between ALP and 2-phospho-l-ascorbic acid (AAP), the CDs-Ag+-OPD ratiometric system was applied to the determination of ALP successfully. The ratiometric fluorescence value of F454/F570 increases with increasing ALP concentration, with a linear range of 0.2 to 40 U/L and detection limit of 0.1 U/L. In addition, the CDs-Ag+-OPD ratiometric system was successfully applied to the detection of ALP in human serum samples.
Collapse
Affiliation(s)
- Peihua Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Na Liang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Chao Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Lian Xia
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Fengli Qu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Zhi-Ling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Rong-Mei Kong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China.
| |
Collapse
|
31
|
Ding Y, Lin T, Shen J, Wei Y, Wang C. In situ reaction-based ratiometric fluorescent assay for alkaline phosphatase activity and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121698. [PMID: 35940067 DOI: 10.1016/j.saa.2022.121698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Alkaline phosphatase (ALP) is an important biomarker, it is of great significance to develop a sensitive and efficient analytical method for ALP. In this study, an in situ reaction based ratiometric fluorescence assay for ALP was proposed. l-ascorbic acid-2-phosphate (AA2P) was used as a substrate for ALP, and Cu2+/o-phenylenediamine (OPD) were involved in this system. Cu2+ can oxidize OPD to 2,3-diaminophenazine (OPDox) with an emission centered at 566 nm. The presence of ALP can catalyze the hydrolysis of AA2P to ascorbic acid (AA), which will inhibit the production of OPDox and reduce the corresponding fluorescence intensity, and AA will react with OPD to generate 3-(dihydroxyethyl)furan[3,4-b]quinoxalin-1-one (DFQ) with an emission peak at 447 nm. The fluorescence ratio of F447/F566 has a linear relationship with ALP activity. The proposed method is highly sensitive, finely selective, cost efficiency and easy to operate, it exhibits good linearity in the range of 0.5-22 and 22-40 mU·mL-1, with a detection limit as low as 0.06 mU·mL-1. The excellent applicability of this strategy in human serum samples and MCF-7 cells imaging suggests that this method has promising prospects for biomedical research.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Tianxia Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
32
|
Abstract
Luminogens with aggregation-induced emission (AIEgens) properties have numerous broad applications in fields of chemical and biological analyses due to their exceptional photostability, excellent signal reliability, high quantum yield, and large Stokes' shift. In particular, AIEgens also bring new blood for immunoassay. Since publication of the first 2004 paper, AIEgens-based immunoassays have received significant attention because of their high sensitivity, specificity, accuracy, and reliability. However, until now, there have been no comprehensive literature reviews focused on the evolving field of AIEgens-based immunoassays. Thus, we have extensively reviewed AIEgens-based immunoassays from their basic working principles to specific applications. We focus on several fundamental elements of AIEgens-based immunoassays, including the typical structures of AIEgens, emission mechanism of AIEgens probes, function of AIEgens in immunoassays, and platform of AIEgens-based immunoassays. Then, the representative applications of AIEgens-based immunoassays in food safety, medical diagnostics, and environmental monitoring are explored. Thus, proposals on how to further improve the AIEgens-based immunoassay performance are also discussed, as well as future challenges and perspectives, aiming to provide brief and valid guidelines for choosing suitable AIEgens-based immunoassays according to specific application requirements.
Collapse
Affiliation(s)
- Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qing Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
33
|
Hu QH, Gao X, Shi YZ, Liang RP, Zhang L, Lin S, Qiu JD. Tailor-Made Multiple Interpenetrated Metal–Organic Framework for Selective Detection and Adsorption of ReO 4–. Anal Chem 2022; 94:16864-16870. [DOI: 10.1021/acs.analchem.2c03983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Qing-Hua Hu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Xin Gao
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yu-Zhen Shi
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Li Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Sen Lin
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
34
|
Huang S, Yang W, Ye S, Cao S, Li Y, Wei Z, Yan Ngai K, Dai J, Mao G, Ma Y. Fluorescence recovery based on synergetic effect for ALP detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121550. [PMID: 35777229 DOI: 10.1016/j.saa.2022.121550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Alkaline phosphatase (ALP) is an important biomarker associated with diabetes, liver dysfunction, bone diseases, and breast cancer. Here we developed a method based on synergetic fluorescence recovery for the sensitive detection of ALP. Cadmium-zinc-selenium (CdZnSe) quantum dots (QDs) were prepared by one-pot water bath method without any complicated and rigorous conditions. CdZnSe QDs displayed high luminous efficiency, good stability, and good biocompatibility. KMnO4 and ascorbic acid phosphate (AAP) can dynamically quench the fluorescence of CdZnSe QDs. Ascorbic acid, produced by ALP-catalyzed hydrolysis of AAP, reacted with KMnO4, causing the synergetic fluorescence recovery of CdZnSe QDs. The synergetic recovery efficiency correlates well with the logarithmic ALP concentration in the range of 2.5-250 U/L with a detection limit of 0.21 U/L. In addition, good recoveries were obtained in the detection of ALP in human serum. This method provided a new research idea to improve the detection sensitivity and selectivity of ALP detection.
Collapse
Affiliation(s)
- Siqi Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weishan Yang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Silu Ye
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shijie Cao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yifang Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhaoying Wei
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ka Yan Ngai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guobin Mao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
35
|
A self-assembly lanthanide nanoparticle for ratiometric fluorescence determination of alkaline phosphatase activity. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Huang J, Wei F, Cui Y, Hou L, Lin T. Fluorescence immunosensor based on functional nanomaterials and its application in tumor biomarker detection. RSC Adv 2022; 12:31369-31379. [PMID: 36349017 PMCID: PMC9624183 DOI: 10.1039/d2ra04989a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
An immunosensor is defined as an analytical device that detects the binding of an antigen to its specific antibody by coupling an immunochemical reaction to the surface of a device called a transducer. Fluorescence immunosensing is one of the most promising immunoassays at present, and has the advantages of simple operation, fast response and high stability. A traditional fluorescence immunosensor often uses an enzyme-labelled antibody as a recognition unit and an organic dye as a fluorescence probe, so it is easily affected by environmental factors with low sensitivity. Nanomaterials have unique photostability, catalytic properties and biocompatibility, which open up a new path for the construction of stable and sensitive fluorescence immunosensors. This paper briefly introduces different kinds of immunosensors and the role of nanomaterials in the construction of immunosensors. The significance of fluorescent immunosensors constructed from functional nanomaterials to detect tumor biomarkers was analyzed, and the strategies to further improve the performance of fluorescent immunosensors and their future development trend were summarized.
Collapse
Affiliation(s)
- Juanjuan Huang
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| | - Fenghuang Wei
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| | - Yuling Cui
- Jinan Center for Food and Drug Control Jinan 250102 Shandong China
| | - Li Hou
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| | - Tianran Lin
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
37
|
Sen Ding S, Xiao Li M, Xiang Y, Tang J, Zhang Q, Huang M, Hui Zhao X, Wang J, Mei Li C. Synergistic effect-mediated fluorescence switching of nitrogen-doped carbon dots for visual detection of alkaline phosphatase. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Shaban SM, Byeok Jo S, Hafez E, Ho Cho J, Kim DH. A comprehensive overview on alkaline phosphatase targeting and reporting assays. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Liang X, Lin Z, Li L, Tang D, Kong J. Ratiometric fluorescence enzyme-linked immunosorbent assay based on carbon dots@SiO 2@CdTe quantum dots with dual functionalities for alpha-fetoprotein. Analyst 2022; 147:2851-2858. [PMID: 35621880 DOI: 10.1039/d2an00691j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular tags such as fluorophores are increasingly being replaced with nanoparticles thanks to their superior optical properties, substantial chemical stability, and stability against photobleaching. Herein, we innovatively constructed a new ratiometric fluorescence enzyme-linked immunosorbent assay (RF-ELISA) for the screening of alpha-fetoprotein (AFP) in early hepatocellular carcinoma in vitro diagnostics using carbon dots@SiO2@CdTe quantum dots (CDs@SiO2@CdTe QDs). Carbon dots with blue fluorescence were initially encapsulated into SiO2 nanospheres through the typical Stöber method. Thereafter, CdTe QDs with red fluorescence were modified onto the surface of CDs@SiO2 nanospheres. Dual-emission nanotags with blue and red fluorescent signals were utilized to design a RF-ELISA method for the determination of AFP on the anti-AFP capture antibody-coated microplate using glucose oxidase (GOx)-labeled anti-AFP secondary antibody. After the formation of the sandwiched immunocomplex, GOx catalyzed glucose to generate hydrogen peroxide (H2O2), which could quench the red fluorescence of CdTe QDs on the surface of nanotags. Meanwhile, the encapsulated carbon dots in the nanotags could still maintain the initial blue fluorescence intensity. The ratio between red fluorescence intensity and blue-emission intensity could be used for the quantitative monitoring of AFP concentration under optimum conditions. The experimental results indicated that CDs@SiO2@CdTe QDs-based RF-ELISA could exhibit a good fluorescence signal with a dynamic linear range of 0.05-60 ng mL-1 at a low detection limit of 8.7 pg mL-1. Moreover, the fluorescence color of the solution including CDs@SiO2@CdTe QDs changed from pink to purple to blue with the increasing AFP level when viewed by the naked eye. Good reproducibility, high specificity, and acceptable stability were achieved for the analysis of target AFP. Importantly, the accuracy of ratiometric fluorescence immunoassay was evaluated to determine human serum samples, giving well-matched results relative to commercially usable human AFP ELISA method.
Collapse
Affiliation(s)
- Xiuhui Liang
- Department of Operating Theatre, Department of Liver Disease, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China.
| | - Zhenzhen Lin
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, China.,Guoguang Middle School, Nan'an, Nan'an 362321, Fujian, China
| | - Ling Li
- The First Clinical Medical College of Fujian Medical University, Fuzhou 350004, China. .,Department of Intervention, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China.,Hepatopancreatobiliary Surgery Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Dianping Tang
- Department of Operating Theatre, Department of Liver Disease, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China. .,Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jinfeng Kong
- Department of Operating Theatre, Department of Liver Disease, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China.
| |
Collapse
|
40
|
Lai W, Guo J, Wang Y, Lin Y, Ye S, Zhuang J, Tang D. Enzyme-controllable just-in-time production system of copper hexacyanoferrate nanoparticles with oxidase-mimicking activity for highly sensitive colorimetric immunoassay. Talanta 2022; 247:123546. [PMID: 35594834 DOI: 10.1016/j.talanta.2022.123546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
Nanozymes are a series of elaborately designed nanomaterials that can mimic the catalytic sites of natural enzymes for reactions. Bypassing the tedious design and preparation of nanomaterial, in this work, we report on a novel just-in-time production system of copper hexacyanoferrate nanoparticles (CHNPs), which act as an oxidase-mimicking nanozyme. This system can rapidly produce CHNPs nanozyme on demand by simply mixing Cu(II) with potassium hexacyanoferrate(III) (K3[Fe(CN)6]). It is found that once K3[Fe(CN)6] is reduced to K4[Fe(CN)6], the formation of CHNPs is inhibited. Therefore, the just-in-time production system of CHNPs was coupled with alkaline phosphatase (ALP) to construct an enzyme-controllable just-in-time production (ECJP) system, in which ALP could inhibit the production of by catalyzing the hydrolysis of ascorbic acid 2-phosphate (AAP) to generating ascorbic acid (AA). The ECJP system is then used to probe the activity of ALP by employing 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) as the chromogenic substrate, and a detection limit of 0.003 U L-1 was achieved. Moreover, by adapting ALP as the enzyme label, an ECJP system-based colorimetric immunoassay protocol was established for sensitive detection of aflatoxin B1 (AFB1), and a detection limit as low as 0.73 pg mL-1 was achieved. The developed immunoassay method is successfully applied to the detection of AFB1 in peanut samples. The operation of ECJP system is quite simple and the coupling of ALP with CHNPs nanozyme can arouse dual enzyme-like cascade signal amplification. So, we believe this work can offer a new perspective for the development of nanozymes-based biodetection methods and colorimetric immunoassay strategies.
Collapse
Affiliation(s)
- Wenqiang Lai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China.
| | - Jiaqing Guo
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Yuqin Wang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Youxiu Lin
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Shuai Ye
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Junyang Zhuang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, Fujian Province, China.
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| |
Collapse
|
41
|
Ding L, Zhang T, Dong C, Ren J. Brightness Analysis per Moving Particle: In Situ Analysis of Alkaline Phosphatase in Living Cells. Anal Chem 2022; 94:5181-5189. [PMID: 35293715 DOI: 10.1021/acs.analchem.2c00268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In situ quantitative analysis of enzymes such as phosphatase is important to understand a number of involved biological processes ranging from various metabolisms to signal transduction and cellular regulation. In this paper, a novel in situ measurement strategy was proposed to detect alkaline phosphatase (ALP) activity in different locations within single living cells. The principle is based on the measurement of the resonance light scattering brightness ratio (SBR) per moving nanoparticle that forms in an ALP-related chemical reaction. In the method, a novel resonance light scattering correlation spectroscopy (RLSCS) system was developed using two lasers for illumination or two detection channels. Using the gold nanoparticles (AuNPs) as probes, the Au@Ag nanoparticles (Au@Ag NPs) formed due to the ALP-catalyzed hydrolysis of ascorbic acid 2-phosphate (AAP) and the subsequent reduction-deposition reaction of Ag ions that occurred on the AuNPs. The SBR value per moving particle was determined based on the obtained RLS intensity traces and RLSCS curves. The SBR value was found to be not influenced by the intracellular viscosity and size that was confirmed in the experiments. The linear relation between the SBR and ALP activity was established and applied to detect ALP activity and evaluate the inhibition of different drugs. Finally, the method was successfully used to in situ measure ALP activity within living cells. The method overcomes the shortcoming of conventional methods that lack quantitative analysis and are susceptible to intracellular viscosity.
Collapse
Affiliation(s)
- Luoyu Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
42
|
Liu J, Ruan G, Ma W, Sun Y, Yu H, Xu Z, Yu C, Li H, Zhang CW, Li L. Horseradish peroxidase-triggered direct in situ fluorescent immunoassay platform for sensing cardiac troponin I and SARS-CoV-2 nucleocapsid protein in serum. Biosens Bioelectron 2022; 198:113823. [PMID: 34838374 PMCID: PMC8606172 DOI: 10.1016/j.bios.2021.113823] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/27/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Direct in situ fluorescent enzyme-linked immunosorbent assay (ELISA) is rarely investigated and reported. Herein, a direct in situ high-performance HRP-labeled fluorescent immunoassay platform was constructed. The platform was developed based on a rapid in situ fluorogenic reaction between Polyethyleneimine (PEI) and p-Phenylenediamine (PPD) analogues to generate fluorescent copolymer nanoparticles (FCNPs). The formation mechanism of FCNPs was found to be the oxidation of •OH radicals, which was further proved by nitrogen protection and scavenger of •OH radicals. Meantime, the fluorescence wavelength of FCNPs could be adjusted from 471 to 512 nm by introducing various substitution groups into the PPD structure. Using cardiac troponin I (cTnI) and SARS-CoV-2 nucleocapsid protein (N-protein) as the model antigens, the proposed fluorescent ELISA exhibited a wide dynamic range of 5-180 ng/mL and a low limit of detection (LOD) of 0.19 ng/mL for cTnI, and dynamic range of 0-120 ng/mL and a LOD of 0.33 ng/mL for SARS-CoV-2 N protein, respectively. Noteworthy, the proposed method was successful applied to evaluate the cTnI and SARS-CoV-2 N protein levels in serum with satisfied results. Therefore, the proposed platform paved ways for developing novel fluorescence-based HRP-labeled ELISA technologies and broadening biomarker related clinical diagnostics.
Collapse
Affiliation(s)
- Jinhua Liu
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
| | - Guotong Ruan
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Wenlin Ma
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Yujie Sun
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Zhihui Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, PR China
| | - Changmin Yu
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Hai Li
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Cheng-Wu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian Road, Taiyuan, 310003, PR China.
| | - Lin Li
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
| |
Collapse
|
43
|
Liu X, Mei X, Yang J, Li Y. Hydrogel-Involved Colorimetric Platforms Based on Layered Double Oxide Nanozymes for Point-of-Care Detection of Liver-Related Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6985-6993. [PMID: 35080175 DOI: 10.1021/acsami.1c21578] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Monitoring the liver status in a convenient and low-cost way is significant for obtaining a warning about drug-indued liver diseases promptly. Herein, we designed a novel colorimetric point-of-care (POC) platform for the determination of three liver-related biomarkers─aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP). This platform integrated agarose hydrogels into a portable device, where hydrogels were loaded with nanozymes and different reaction substances for triggering specific reactions and generating colorimetric signals. Typically, Au-decorated CoAl-layered double oxide (Au/LDO) was for the first time developed as the nanozyme with peroxidase (POD) mimic activity, which can accelerate the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxTMB with the coexistence of hydrogen peroxide (H2O2). The detection mechanism of AST and ALT is based on the fact that they can cause individual cascade reactions to generate H2O2, and H2O2 further activates the Au/LDO nanozyme to catalyze the chromogenic reaction of TMB. As for ALP, it can catalytically hydrolyze l-ascorbic acid-2-phosphate to ascorbic acid. The latter then discolored the oxTMB that was produced with the assistance of Au/LDO. Teaming up with a smartphone, the color information of hydrogels can be converted to hue values, which allow quantitative analysis of ALT, AST, and ALP with detection limits of 15, 10, and 5 U/L, respectively. Moreover, the simple and cost-effective platform was successfully applied for the simultaneous determination of the three analytes in human plasma. Additionally, since the hydrogel is disposable and can be replaced by new ones loaded with different reaction regents, the platform is expected to serve the POC testing of various chem/bio targets.
Collapse
Affiliation(s)
- Xiaoxue Liu
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xuecui Mei
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiao Yang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yingchun Li
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
44
|
Enhanced oxidase-like activity of g-C3N4 nanosheets supported Pd nanosheets for ratiometric fluorescence detection of acetylcholinesterase activity and its inhibitor. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Pan W, Jiang T, Lu T, Jin Q, Xi Y, Zhang W. Biomimetic-mineralized bifunctional nanoflowers for enzyme-free and colorimetric immunological detection of protein biomarker. Talanta 2022; 238:123001. [PMID: 34857334 DOI: 10.1016/j.talanta.2021.123001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
Detection of protein biomarkers relies largely on the development of modern immunological methods. Herein, a new enzyme-free immunological method is proposed to detect protein biomarkers. Employment of antibody-Cu3(PO4)2 hybrid nanoflowers, which are prepared through a facile and mild biomimetic-mineralizing process, is the core concept of the method. These nanoflowers can perform functions: one is to bind to target protein biomarkers with high specificity; the other is to release large amounts of Cu2+ upon acid treatment, which can interact with creatinine and exert peroxidase-mimicking enzyme activity, therefore producing a distinctly amplified signal. Using osteocalcin, a well-known circulating protein biomarker for bone formation, as a model, the method affords a linear range from 0.1 to 50 ng/mL with a detection limit of 0.042 ng/mL, which is superior to reported methods. Moreover, the method shows considerable specificity, desirable performance in serum samples and eliminates the use of enzymes, so a great potential for this method is expected to meet the need of the clinical diagnosis.
Collapse
Affiliation(s)
- Wenming Pan
- Department of Spine Surgery, The Second People's Hospital of Changshu, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, 215500, China
| | - Tinwang Jiang
- Department of Spine Surgery, The Second People's Hospital of Changshu, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, 215500, China
| | - Tong Lu
- Changshu Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Changshu, 215500, China
| | - Quanshan Jin
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yanhai Xi
- Department of Spine Surgery, Changzheng Hospital, Sencond Military Medical University, Shanghai, 200003, China.
| | - Wenju Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
46
|
Farshbaf S, Dey K, Mochida W, Kanakubo M, Nishiyabu R, Kubo Y, Anzenbacher P. Detection of phosphates in water utilizing a Eu 3+-mediated relay mechanism. NEW J CHEM 2022. [DOI: 10.1039/d1nj04578d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent carboxyamidoquinolines form ensembles with Eu3+ that can be successfully leveraged in sensing of phosphates showing off–on fluorescence signaling.
Collapse
Affiliation(s)
- Sepideh Farshbaf
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Kaustav Dey
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Wakana Mochida
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Masashi Kanakubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Ryuhei Nishiyabu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Pavel Anzenbacher
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
47
|
Liu W, Kang Q, Wang P, Zhou F. Ratiometric fluorescence immunoassay based on MnO2–o-phenylenediamine–fluorescent carbon nanodots for the detection of α-fetoprotein via fluorescence resonance energy transfer. NEW J CHEM 2022. [DOI: 10.1039/d1nj04787f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ratiometric fluorescence immunoassay based on MnO2–o-phenylenediamine–fluorescent carbon nanodots is superior to the traditional single-wavelength-based method.
Collapse
Affiliation(s)
- Wenwen Liu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Qing Kang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
48
|
Wu X, Wei J, Wu C, Lv G, Wu L. ZrO 2/CeO 2/polyacrylic acid nanocomposites with alkaline phosphatase-like activity for sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120165. [PMID: 34304012 DOI: 10.1016/j.saa.2021.120165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
In the present work, we synthesized ZrO2/CeO2/polyacrylic acid (PAA) nanocomposites (nanozyme) with phosphatase-like activity. ZrO2 evenly distributed in CeO2 nanorods considered as lewis acids to enhance the phosphatase-like activity of CeO2 nanorods. Furthermore, PAA was used to coat ZrO2/CeO2/ nanorods and improve the dispersion, stability and robustness. The ZrO2/CeO2/PAA nanocomposites had 100% enhanced phosphatase-like activity compared with CeO2 nanorods and excellent adaptability in a wide pH range from 4.0 to 12.0. ZrO2/CeO2/PAA nanocomposites could hydrolyze methyl parathion (MP) to p-nitrophenol (p-NP) with bright yellow color for colorimetric detection. The developed colorimetric detection system showed a linear response from 7.60 × 10-11-7.60 × 10-8 M with a detection limit of 0.021 nM and was successfully applied for the determination of MP in corn samples.
Collapse
Affiliation(s)
- Xiangchuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jinhui Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Chengyuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Guangping Lv
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
49
|
Ma RN, Zhang M, Hu CL, Pan HJ, Si L, Wang H. A novel ratiometric MALDI-MS quantitation strategy for alkaline phosphatase activity with a homogeneous reaction and a tunable dynamic range. Chem Commun (Camb) 2021; 57:8885-8888. [PMID: 34486626 DOI: 10.1039/d1cc03863j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A unique ratiometric MALDI-MS strategy is proposed for the convenient and reliable quantitation of alkaline phosphatase based on the homogeneous enzymatic cleavage of a coded phosphopeptide (CPP)-triggered double-signal output. The dynamic range can be tuned by simply adjusting the primary concentration of CPP. The proposed strategy is also capable of being challenged by real human serum, and thus it may offer a wonderful approach for the convenient identification and quantitation of various enzyme activities in clinical diagnosis.
Collapse
Affiliation(s)
- Rong-Na Ma
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng 252059, Shandong, P. R. China.
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng 252059, Shandong, P. R. China.
| | - Chao-Long Hu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng 252059, Shandong, P. R. China.
| | - Hui-Jing Pan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng 252059, Shandong, P. R. China.
| | - Lei Si
- Department of Clinical Laboratory, Liaocheng People's Hospital, Shandong First Medical University, Liaocheng 252000, Shandong, P. R. China
| | - Huaisheng Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng 252059, Shandong, P. R. China.
| |
Collapse
|
50
|
Ye W, Li L, Feng Z, Tu B, Hu Z, Xiao X, Wu T. Sensitive detection of alkaline phosphatase based on terminal deoxynucleotidyl transferase and endonuclease IV-assisted exponential signal amplification. J Pharm Anal 2021; 12:692-697. [PMID: 36105169 PMCID: PMC9463482 DOI: 10.1016/j.jpha.2021.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
|