1
|
Bi M, Tian Z. Mass spectrometry-based structure-specific N-glycoproteomics and biomedical applications. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1172-1183. [PMID: 39118567 PMCID: PMC11464918 DOI: 10.3724/abbs.2024133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
N-linked glycosylation is a common posttranslational modification of proteins that results in macroheterogeneity of the modification site. However, unlike simpler modifications, N-glycosylation introduces an additional layer of complexity with tens of thousands of possible structures arising from various dimensions, including different monosaccharide compositions, sequence structures, linking structures, isomerism, and three-dimensional conformations. This results in additional microheterogeneity of the modification site of N-glycosylation, i.e., the same N-glycosylation site can be modified with different glycans with a certain stoichiometric ratio. N-glycosylation regulates the structure and function of N-glycoproteins in a site- and structure-specific manner, and differential expression of N-glycosylation under disease conditions needs to be characterized through site- and structure-specific quantitative analysis. Numerous advanced methods ranging from sample preparation to mass spectrum analysis have been developed to distinguish N-glycan structures. Chemical derivatization of monosaccharides, online liquid chromatography separation and ion mobility spectrometry enable the physical differentiation of samples. Tandem mass spectrometry further analyzes the macro/microheterogeneity of intact N-glycopeptides through the analysis of fragment ions. Moreover, the development of search engines and AI-based software has enhanced our understanding of the dissociation patterns of intact N-glycopeptides and the clinical significance of differentially expressed intact N-glycopeptides. With the help of these modern methods, structure-specific N-glycoproteomics has become an important tool with extensive applications in the biomedical field.
Collapse
Affiliation(s)
- Ming Bi
- />School of Chemical Science and EngineeringTongji UniversityShanghai200092China
| | - Zhixin Tian
- />School of Chemical Science and EngineeringTongji UniversityShanghai200092China
| |
Collapse
|
2
|
Zhao Y, Zhang Y, Meng B, Luo M, Li G, Liu F, Chang C, Dai X, Fang X. A Novel Integrated Pipeline for Site-Specific Quantification of N-glycosylation. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:213-226. [PMID: 39398429 PMCID: PMC11467155 DOI: 10.1007/s43657-023-00150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 10/15/2024]
Abstract
The site-specific N-glycosylation changes of human plasma immunoglobulin gamma molecules (IgGs) have been shown to modulate the immune response and could serve as potential biomarkers for the accurate diagnosis of various diseases. However, quantifying intact N-glycopeptides accurately in large-scale clinical samples remains a challenge, and the quantitative N-glycosylation of plasma IgGs in patients with chronic kidney diseases (CKDs) has not yet been studied. In this study, we present a novel integrated intact N-glycopeptide quantitative pipeline (termed GlycoQuant), which combines our recently developed mass spectrometry fragmentation method (EThcD-sceHCD) and an intact N-glycopeptide batch quantification software tool (the upgraded PANDA v.1.2.5). We purified and digested human plasma IgGs from 58 healthy controls (HCs), 48 patients with membranous nephropathy (MN), and 35 patients with IgA nephropathy (IgAN) within an hour. Then, we analyzed the digested peptides without enrichment using EThcD-sceHCD-MS/MS, which provided higher spectral quality and greater identified depth. Using upgraded PANDA, we performed site-specific N-glycosylation quantification of IgGs. Several quantified intact N-glycopeptides not only distinguished CKDs from HCs, but also different types of CKD (MN and IgAN) and may serve as accurate diagnostic tools for renal tubular function. In addition, we proved the applicability of this pipeline to complex samples by reanalyzing the intact N-glycopeptides from cell, urine, plasma, and tissue samples that we had previously identified. We believe that this pipeline can be applied to large-scale clinical N-glycoproteomic studies, facilitating the discovery of novel glycosylated biomarkers. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00150-w.
Collapse
Affiliation(s)
- Yang Zhao
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 102206 China
| | - Yong Zhang
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Bo Meng
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 102206 China
| | - Mengqi Luo
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Guisen Li
- Renal Department and Institute of Nephrology, Sichuan Provincial People’s Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Fang Liu
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
- Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206 China
| | - Xinhua Dai
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 102206 China
| | - Xiang Fang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 102206 China
| |
Collapse
|
3
|
Garapati K, Jain A, Madden BJ, Mun DG, Sharma J, Budhraja R, Pandey A. Defining albumin as a glycoprotein with multiple N-linked glycosylation sites. J Transl Med 2024; 22:454. [PMID: 38741158 PMCID: PMC11090807 DOI: 10.1186/s12967-024-05000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Glycosylation is an enzyme-catalyzed post-translational modification that is distinct from glycation and is present on a majority of plasma proteins. N-glycosylation occurs on asparagine residues predominantly within canonical N-glycosylation motifs (Asn-X-Ser/Thr) although non-canonical N-glycosylation motifs Asn-X-Cys/Val have also been reported. Albumin is the most abundant protein in plasma whose glycation is well-studied in diabetes mellitus. However, albumin has long been considered a non-glycosylated protein due to absence of canonical motifs. Albumin contains two non-canonical N-glycosylation motifs, of which one was recently reported to be glycosylated. METHODS We enriched abundant serum proteins to investigate their N-linked glycosylation followed by trypsin digestion and glycopeptide enrichment by size-exclusion or mixed-mode anion-exchange chromatography. Glycosylation at canonical as well as non-canonical sites was evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) of enriched glycopeptides. Deglycosylation analysis was performed to confirm N-linked glycosylation at non-canonical sites. Albumin-derived glycopeptides were fragmented by MS3 to confirm attached glycans. Parallel reaction monitoring was carried out on twenty additional samples to validate these findings. Bovine and rabbit albumin-derived glycopeptides were similarly analyzed by LC-MS/MS. RESULTS Human albumin is N-glycosylated at two non-canonical sites, Asn68 and Asn123. N-glycopeptides were detected at both sites bearing four complex sialylated glycans and validated by MS3-based fragmentation and deglycosylation studies. Targeted mass spectrometry confirmed glycosylation in twenty additional donor samples. Finally, the highly conserved Asn123 in bovine and rabbit serum albumin was also found to be glycosylated. CONCLUSIONS Albumin is a glycoprotein with conserved N-linked glycosylation sites that could have potential clinical applications.
Collapse
Affiliation(s)
- Kishore Garapati
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Anu Jain
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jyoti Sharma
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Li J, Liu D, Zhang Y, Shen J, Dan W, Chen Z, Sun S. Site-Specific Analysis of Core and Antenna Fucosylation on Serum Glycoproteins. Anal Chem 2024; 96:5741-5745. [PMID: 38573003 DOI: 10.1021/acs.analchem.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Fucosylation is an important structural feature of glycans and plays an essential role in the regulation of glycoprotein functions. Fucosylation can be classified into core- (CF) and antenna-fucosylation (AF, also known as (sialyl-) Lewis) based on the location on N-glycans, and they perform distinct biological functions. In this study, core- and antenna-fucosylated N-glycans on human serum glycoproteins that hold great clinical application values were systematically characterized at the site-specific level using StrucGP combined with the recently developed fucosylation assignment method. The results showed that fucosylation was widely distributed on serum glycoproteins, with 50% of fucosylated glycopeptides modified by AF N-glycans, 37% by CF N-glycans, and 13% by dual-fucosylated N-glycans. Interestingly, CF and AF N-glycans preferred to modify different groups of serum glycoproteins with different tissue origins and were involved in distinctive biological processes. Specifically, AF N-glycoproteins are mainly from the liver and participated in complement activation, blood coagulation, and endopeptidase activities, while CF N-glycoproteins originate from diverse tissues and are mainly involved in cell adhesion and signaling transduction. These data further enhanced our understanding of fucosylation on circulation glycoproteins.
Collapse
Affiliation(s)
- Jun Li
- College of Life Sciences, Northwest University, Xi'an 710069, China P.R
| | - Didi Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China P.R
| | - Yingjie Zhang
- College of Life Sciences, Northwest University, Xi'an 710069, China P.R
| | - Jiechen Shen
- College of Life Sciences, Northwest University, Xi'an 710069, China P.R
| | - Wei Dan
- College of Life Sciences, Northwest University, Xi'an 710069, China P.R
| | - Zexuan Chen
- College of Life Sciences, Northwest University, Xi'an 710069, China P.R
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an 710069, China P.R
| |
Collapse
|
5
|
Ogundiran AI, Chang TL, Ivanov A, Kumari N, Nekhai S, Chandran PL. Shear-reversible clusters of HIV-1 in solution: stabilized by antibodies, dispersed by mucin. J Virol 2023; 97:e0075223. [PMID: 37712704 PMCID: PMC10617397 DOI: 10.1128/jvi.00752-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/03/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE The phenomenon of reversible clustering is expected to further nuance HIV immune stealth because virus surfaces can escape interaction with antibodies (Abs) by hiding temporarily within clusters. It is well known that mucin reduces HIV virulence, and the current perspective is that mucin aggregates HIV-1 to reduce infections. Our findings, however, suggest that mucin is dispersing HIV clusters. The study proposes a new paradigm for how HIV-1 may broadly evade Ab recognition with reversible clustering and why mucin effectively neutralizes HIV-1.
Collapse
Affiliation(s)
- Ayobami I. Ogundiran
- Department of Chemical Engineering, College of Engineering and Architecture, Howard University, Washington, DC, USA
| | - Tzu-Lan Chang
- Department of Chemical Engineering, College of Engineering and Architecture, Howard University, Washington, DC, USA
| | - Andrey Ivanov
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Namita Kumari
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
- Department of Medicine, College of Medicine, Howard University, Washington, DC, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
- Department of Medicine, College of Medicine, Howard University, Washington, DC, USA
| | - Preethi L. Chandran
- Department of Chemical Engineering, College of Engineering and Architecture, Howard University, Washington, DC, USA
| |
Collapse
|
6
|
Lin T, Chen Z, Luo M, Zhao Y, Zeng W, Zheng S, Su T, Zhong Y, Wang S, Jin Y, Hu L, Zhao W, Li J, Wang X, Wu C, Li D, Liu F, Li G, Yang H, Zhang Y. Characterization of site-specific N-glycosylation signatures of isolated uromodulin from human urine. Analyst 2023; 148:5041-5049. [PMID: 37667671 DOI: 10.1039/d3an01018j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Uromodulin (Umod, Tamm-Horsfall protein) is the most abundant urinary N-glycoprotein produced exclusively by the kidney. It can form filaments to antagonize the adhesion of uropathogens. However, the site-specific N-glycosylation signatures of Umod in healthy individuals and patients with IgA nephropathy (IgAN) remain poorly understood due to the lack of suitable isolation and analytical methods. In this study, we first presented a simple and fast method based on diatomaceous earth adsorption to isolate Umod. These isolated glycoproteins were digested by trypsin and/or Glu-C. Intact N-glycopeptides with or without HILIC enrichment were analyzed using our developed EThcD-sceHCD-MS/MS. Based on the optimized workflow, we identified a total of 780 unique intact N-glycopeptides (7 N-glycosites and 152 N-glycan compositions) from healthy individuals. As anticipated, these glycosites exhibited glycoform heterogeneity. Almost all N-glycosites were modified completely by the complex type, except for one N-glycosite (N275), which was nearly entirely occupied by the high-mannose type for mediating Umod's antiadhesive activity. Then, we compared the N-glycosylation of Umod between healthy controls (n = 9) and IgAN patients (n = 9). The N-glycosylation of Umod in IgAN patients will drastically decrease and be lost. Finally, we profiled the most comprehensive site-specific N-glycosylation map of Umod and revealed its alterations in IgAN patients. Our method provides a high-throughput workflow for characterizing the N-glycosylation of Umod, which can aid in understanding its roles in physiology and pathology, as well as serving as a potential diagnostic tool for evolution of renal tubular function.
Collapse
Affiliation(s)
- Tianhai Lin
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuo Chen
- Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengqi Luo
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yang Zhao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Wenjuan Zeng
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Shanshan Zheng
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Tao Su
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Zhong
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Shisheng Wang
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Youmei Jin
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Liqiang Hu
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wanjun Zhao
- Division of Thyroid Surgery, Department of General Surgery of Nursing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaxu Li
- School of Nursing, Chengde Medical University, Chengde, Hebei 067000, China
| | - Xuanyi Wang
- Mingde College, Zhangjiakou University, Zhangjiakou, Hebei 075000, China
| | - Changwei Wu
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu 611731, China.
| | - Dapeng Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fang Liu
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Guisen Li
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu 611731, China.
| | - Hao Yang
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Zhang
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Mallagaray A, Rudolph L, Lindloge M, Mölbitz J, Thomsen H, Schmelter F, Alhabash MW, Abdullah MR, Saraei R, Ehlers M, Graf T, Sina C, Petersmann A, Nauck M, Günther UL. Towards a Precise NMR Quantification of Acute Phase Inflammation Proteins from Human Serum. Angew Chem Int Ed Engl 2023; 62:e202306154. [PMID: 37341676 DOI: 10.1002/anie.202306154] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
Nuclear Magnetic Resonance (NMR) spectra of human serum and plasma show, besides metabolites and lipoproteins, two characteristic signals termed GlycA and B arising from the acetyl groups of glycoprotein glycans from acute phase proteins, which constitute good markers for inflammatory processes. Here, we report a comprehensive assignment of glycoprotein glycan NMR signals observed in human serum, showing that GlycA and GlycB signals originate from Neu5Ac and GlcNAc moieties from N-glycans, respectively. Diffusion-edited NMR experiments demonstrate that signal components can be associated with specific acute phase proteins. Conventionally determined concentrations of acute phase glycoproteins correlate well with distinct features in NMR spectra (R2 up to 0.9422, p-value <0.001), allowing the simultaneous quantification of several acute phase inflammation proteins. Overall, a proteo-metabolomics NMR signature of significant diagnostic potential is obtained within 10-20 min acquisition time. This is exemplified in serum samples from COVID-19 and cardiogenic shock patients showing significant changes in several acute phase proteins compared to healthy controls.
Collapse
Affiliation(s)
- Alvaro Mallagaray
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Lorena Rudolph
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Melissa Lindloge
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Jarne Mölbitz
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Henrik Thomsen
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Franziska Schmelter
- Institute of Nutritional Medicine, University of Lübeck and Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Mohamad Ward Alhabash
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Mohammed R Abdullah
- Institute of Clinical Chemistry and Laboratory Medicine, Greifswald University Hospital, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Roza Saraei
- Department of Cardiology, Angiology and Intensive Care Medicine, University Heart Center Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- German Centre for Cardiogenic Vascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Marc Ehlers
- Institute of Nutritional Medicine, University of Lübeck and Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Tobias Graf
- Department of Cardiology, Angiology and Intensive Care Medicine, University Heart Center Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- German Centre for Cardiogenic Vascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck and Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Mönkhofer Weg 239 a, 23538, Lübeck, Germany
| | - Astrid Petersmann
- Institute of Clinical Chemistry and Laboratory Medicine, Greifswald University Hospital, Fleischmannstraße 8, 17475, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Carl von Ossietzky University, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, Greifswald University Hospital, Fleischmannstraße 8, 17475, Greifswald, Germany
- German Centre for Cardiogenic Vascular Research (DZHK), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Ulrich L Günther
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| |
Collapse
|
8
|
Allgoewer K, Wu S, Choi H, Vogel C. Re-mining serum proteomics data reveals extensive post-translational modifications upon Zika and dengue infection. Mol Omics 2023; 19:308-320. [PMID: 36810580 PMCID: PMC10175154 DOI: 10.1039/d2mo00258b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are two closely related flaviviruses with similar symptoms. However, due to the implications of ZIKV infections for pregnancy outcomes, understanding differences in their molecular impact on the host is of high interest. Viral infections change the host proteome, including post-translational modifications. As modifications are diverse and of low abundance, they typically require additional sample processing which is not feasible for large cohort studies. Therefore, we tested the potential of next-generation proteomics data in its ability to prioritize specific modifications for later analysis. We re-mined published mass spectra from 122 serum samples from ZIKV and DENV patients for the presence of phosphorylated, methylated, oxidized, glycosylated/glycated, sulfated, and carboxylated peptides. We identified 246 modified peptides with significantly differential abundance in ZIKV and DENV patients. Amongst these, methionine-oxidized peptides from apolipoproteins and glycosylated peptides from immunoglobulin proteins were more abundant in ZIKV patient serum and generate hypotheses on the potential roles of the modification in the infection. The results demonstrate how data-independent acquisition techniques can help prioritize future analyses of peptide modifications.
Collapse
Affiliation(s)
- Kristina Allgoewer
- New York University, Department of Biology, Center for Genomics and Systems Biology, New York, NY, USA.
- Humboldt University, Department of Biology, Berlin, Germany
| | - Shaohuan Wu
- New York University, Department of Biology, Center for Genomics and Systems Biology, New York, NY, USA.
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University, Singapore, Singapore
| | - Christine Vogel
- New York University, Department of Biology, Center for Genomics and Systems Biology, New York, NY, USA.
| |
Collapse
|
9
|
Dong W, Liu H, Chen Z, Chen L, Jia L, Shen J, Zhu B, Li P, Fan D, Sun S. De-sialylation of glycopeptides by acid treatment: enhancing sialic acid removal without reducing the identification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2913-2919. [PMID: 35877071 DOI: 10.1039/d2ay00949h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sialic acid, a common terminal monosaccharide on many glycoconjugates, plays essential roles in many biological processes such as immune responses, pathogen recognition, and cancer development. For various purposes, sialic acids may need to be removed from glycopeptides or glycans, mainly using enzymatical or chemical approaches. In this study, we found that most commonly used chemical methods couldn't completely remove sialic acids from glycopeptides. Although the de-sialylation efficiency could be further enhanced by increasing the treatment time or acid concentration, the undesirable side reactions on the peptide portion would decrease glycopeptide identification. By adding the deamidation on carbamidomethyl-cysteine (C), asparagine (N), and glutamine (Q) residues as a variable modification during database search, most of the unidentified spectra could be recovered. This optional acid-treatment and database search method for the complete removal of sialic acids without losing much spectral identification should be quite useful for many glycomic and glycoproteomic studies.
Collapse
Affiliation(s)
- Wenbo Dong
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, China.
| | - Huanhuan Liu
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, China.
| | - Zexuan Chen
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, China.
| | - Lin Chen
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, China.
| | - Li Jia
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, China.
| | - Jiechen Shen
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, China.
| | - Bojing Zhu
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, China.
| | - Pengfei Li
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi Province 710069, China
| | - Shisheng Sun
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, China.
| |
Collapse
|
10
|
Xin M, Xu Y, You S, Li C, Zhu B, Shen J, Chen Z, Shi W, Xue X, Shi J, Sun S. Precision Structural Interpretation of Site-Specific N-Glycans in Seminal Plasma. J Proteome Res 2022; 21:1664-1674. [PMID: 35616904 DOI: 10.1021/acs.jproteome.2c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
N-Linked glycoproteins are rich in seminal plasma, playing various essential roles in supporting sperm function and the fertilization process. However, the detailed information on these glycoproteins, particularly site-specific glycan structures, is still limited. In this study, a precision site-specific N-glycoproteome map of human seminal plasma was established by employing the site-specific glycoproteomic approach and a recently developed glycan structure interpretation software, StrucGP. A total of 9567 unique glycopeptides identified in human seminal plasma were composed of 773 N-linked glycan structures and 1019 N-glycosites from 620 glycoproteins. These glycans were comprised of four types of core structures and 13 branch structures. The majority of identified glycoproteins functioned in response to stimulus and immunity. As we reported in human spermatozoa, heavy fucosylation (fucose residues ≥6 per glycan) was also detected on seminal plasma glycoproteins such as clusterin and galectin-3-binding protein, which were involved in the immune response of biological processes and reactome pathways. Comparison of site-specific glycans between seminal plasma and spermatozoa revealed more complicated glycan structures in seminal plasma than in spermatozoa, even on their shared glycoproteins. These present data will be greatly beneficial for the in-depth structural and functional study of glycosylation in the male reproduction system.
Collapse
Affiliation(s)
- Miaomiao Xin
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, PR China.,Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodnany 38925, Czech Republic
| | - Yintai Xu
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Shanshan You
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Cheng Li
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Bojing Zhu
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Jiechen Shen
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Zexuan Chen
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Wenhao Shi
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, Xi'an 710003, PR China
| | - Xia Xue
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, Xi'an 710003, PR China
| | - Juanzi Shi
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, Xi'an 710003, PR China
| | - Shisheng Sun
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| |
Collapse
|
11
|
Zhi Y, Jia L, Shen J, Li J, Chen Z, Zhu B, Hao Z, Xu Y, Sun S. Formylation: an undesirable modification on glycopeptides and glycans during storage in formic acid solution. Anal Bioanal Chem 2022; 414:3311-3317. [PMID: 35229171 DOI: 10.1007/s00216-022-03989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
In glycomic and glycoproteomic studies, solutions containing diluted organic acids such as formic acid (FA) have been widely used for dissolving intact glycopeptide and glycan samples prior to mass spectrometry analysis. Here, we show that an undesirable + 28 Da modification occurred in a time-dependent manner when the glycan and glycopeptide samples were stored in FA solution at - 20 °C. We confirmed that this unexpected modification was caused by formylation between the hydroxyl groups of glycans and FA with a relatively low reaction rate. As this incomplete modification affected the glycan and glycopeptide identification and quantification in glycomic and glycoproteomic studies, the storage at - 20 °C should be avoided once the glycan and glycopeptide samples have been dissolved in FA solution.
Collapse
Affiliation(s)
- Yuan Zhi
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Li Jia
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Jiechen Shen
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Jun Li
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Zexuan Chen
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Bojing Zhu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Zhifang Hao
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Yintai Xu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| |
Collapse
|
12
|
Xin M, You S, Xu Y, Shi W, Zhu B, Shen J, Wu J, Li C, Chen Z, Su Y, Shi J, Sun S. Precision glycoproteomics reveals distinctive N-glycosylation in human spermatozoa. Mol Cell Proteomics 2022; 21:100214. [PMID: 35183770 PMCID: PMC8958358 DOI: 10.1016/j.mcpro.2022.100214] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/22/2022] [Accepted: 02/06/2022] [Indexed: 12/21/2022] Open
Abstract
Spermatozoon represents a very special cell type in human body, and glycosylation plays essential roles in its whole life including spermatogenesis, maturation, capacitation, sperm–egg recognition, and fertilization. In this study, by mapping the most comprehensive N-glycoproteome of human spermatozoa using our recently developed site-specific glycoproteomic approaches, we show that spermatozoa contain a number of distinctive glycoproteins, which are mainly involved in spermatogenesis, acrosome reaction and sperm:oocyte membrane binding, and fertilization. Heavy fucosylation is observed on 14 glycoproteins mostly located at extracellular and cell surface regions in spermatozoa but not in other tissues. Sialylation and Lewis epitopes are enriched in the biological process of immune response in spermatozoa, while bisected core structures and LacdiNAc structures are highly expressed in acrosome. These data deepen our knowledge about glycosylation in spermatozoa and lay the foundation for functional study of glycosylation and glycan structures in male infertility. A precision site-specific glycoproteome is documented in human spermatozoa. Distinctive glycoproteins and heavy fucosylation are detected in spermatozoa. Sialylation and Lewis epitopes are related to immune response of spermatozoa. Bisected core structures and LacdiNAc are enriched on acrosome of spermatozoa.
Collapse
|
13
|
Zhang Y, Zheng S, Mao Y, Cao W, Zhao L, Wu C, Cheng J, Liu F, Li G, Yang H. Systems analysis of plasma IgG intact N-glycopeptides from patients with chronic kidney diseases via EThcD-sceHCD-MS/MS. Analyst 2021; 146:7274-7283. [PMID: 34747425 DOI: 10.1039/d1an01657a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Immunoglobulin G (IgG) molecules modulate an immune response. However, site-specific N-glycosylation signatures of plasma IgG in patients with chronic kidney disease (CKD) remain unclear. This study aimed to propose a novel method to explore the N-glycosylation pattern of IgG and to compare it with reported methods. We separated human plasma IgG from 58 healthy controls (HC) and 111 patients with CKD. Purified IgG molecules were digested by trypsin. Tryptic peptides without enrichment of intact N-glycopeptides were analyzed using a combination of electron-transfer/higher-energy collisional dissociation (EThcD) and stepped collision energy/higher-energy collisional dissociation (sceHCD) mass spectrometry (EThcD-sceHCD-MS/MS). This resulted in higher spectral quality, more informative fragment ions, higher Byonic score, and nearly twice the depth of intact N-glycopeptide identification than sceHCD or EThcD alone. Site-specific N-glycosylation mapping revealed that intact N-glycopeptides were differentially expressed in HC and CKD patients; thus, it can be a diagnostic tool. This study provides a method for the determination of glycosylation patterns in CKD and a framework for understanding the role of IgG in the pathophysiology of CKD. Data are available via ProteomeXchange with identifier PXD027174.
Collapse
Affiliation(s)
- Yong Zhang
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China. .,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan Zheng
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yonghong Mao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Cao
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lijun Zhao
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Changwei Wu
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu 611731, China.
| | - Jingqiu Cheng
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Fang Liu
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guisen Li
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu 611731, China.
| | - Hao Yang
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China. .,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Zhang Y, Zheng S, Zhao W, Mao Y, Cao W, Zeng W, Liu Y, Hu L, Gong M, Cheng J, Chen Y, Yang H. Sequential Analysis of the N/O-Glycosylation of Heavily Glycosylated HIV-1 gp120 Using EThcD-sceHCD-MS/MS. Front Immunol 2021; 12:755568. [PMID: 34745128 PMCID: PMC8567067 DOI: 10.3389/fimmu.2021.755568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Deciphering the glycosylation of the viral envelope (Env) glycoprotein is critical for evaluating viral escape from the host’s immune response and developing vaccines and antiviral drugs. However, it is still challenging to precisely decode the site-specific glycosylation characteristics of the highly glycosylated Env proteins, although glycoproteomics have made significant advances in mass spectrometry techniques and data analysis tools. Here, we present a hybrid dissociation technique, EThcD-sceHCD, by combining electron transfer/higher-energy collisional dissociation (EThcD) and stepped collision energy/higher-energy collisional dissociation (sceHCD) into a sequential glycoproteomic workflow. Following this scheme, we characterized site-specific N/O-glycosylation of the human immunodeficiency virus type 1 (HIV-1) Env protein gp120. The EThcD-sceHCD method increased the number of identified glycopeptides when compared with EThcD, while producing more comprehensive fragment ions than sceHCD for site-specific glycosylation analysis, especially for accurate O-glycosite assignment. Finally, eighteen N-glycosites and five O-glycosites with attached glycans were assigned unambiguously from heavily glycosylated gp120. These results indicate that our workflow can achieve improved performance for analysis of the N/O-glycosylation of a highly glycosylated protein containing numerous potential glycosites in one process. Knowledge of the glycosylation landscape of the Env glycoprotein will be useful for understanding of HIV-1 infection and development of vaccines and drugs.
Collapse
Affiliation(s)
- Yong Zhang
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| | - Shanshan Zheng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wanjun Zhao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Mao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Cao
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjuan Zeng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yueqiu Liu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liqiang Hu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Gong
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Kawahara R, Chernykh A, Alagesan K, Bern M, Cao W, Chalkley RJ, Cheng K, Choo MS, Edwards N, Goldman R, Hoffmann M, Hu Y, Huang Y, Kim JY, Kletter D, Liquet B, Liu M, Mechref Y, Meng B, Neelamegham S, Nguyen-Khuong T, Nilsson J, Pap A, Park GW, Parker BL, Pegg CL, Penninger JM, Phung TK, Pioch M, Rapp E, Sakalli E, Sanda M, Schulz BL, Scott NE, Sofronov G, Stadlmann J, Vakhrushev SY, Woo CM, Wu HY, Yang P, Ying W, Zhang H, Zhang Y, Zhao J, Zaia J, Haslam SM, Palmisano G, Yoo JS, Larson G, Khoo KH, Medzihradszky KF, Kolarich D, Packer NH, Thaysen-Andersen M. Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat Methods 2021; 18:1304-1316. [PMID: 34725484 DOI: 10.1101/2021.03.14.435332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/22/2021] [Indexed: 05/18/2023]
Abstract
Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.
Collapse
Affiliation(s)
- Rebeca Kawahara
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anastasia Chernykh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kathirvel Alagesan
- Institute for Glycomics, Griffith University Gold Coast Campus, Southport, QLD, Australia
| | | | - Weiqian Cao
- Institutes of Biomedical Sciences, and the NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Robert J Chalkley
- UCSF, School of Pharmacy, Department of Pharmaceutical Chemistry, San Francisco, CA, USA
| | - Kai Cheng
- State University of New York, Buffalo, NY, USA
| | - Matthew S Choo
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Nathan Edwards
- Clinical and Translational Glycoscience Research Center (CTGRC), Georgetown University, Washington, DC, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Radoslav Goldman
- Clinical and Translational Glycoscience Research Center (CTGRC), Georgetown University, Washington, DC, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Marcus Hoffmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Yingwei Hu
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | | | - Benoit Liquet
- Department of Mathematics and Statistics, Macquarie University, Sydney, NSW, Australia
- CNRS, Laboratoire de Mathématiques et de leurs Applications de PAU, E2S-UPPA, Pau, France
| | - Mingqi Liu
- Institutes of Biomedical Sciences, and the NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Bo Meng
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
| | | | - Terry Nguyen-Khuong
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska academy, University of Gothenburg, Gothenburg, Sweden
| | - Adam Pap
- BRC, Laboratory of Proteomics Research, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gun Wook Park
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Benjamin L Parker
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, QLD, Australia
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Toan K Phung
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, QLD, Australia
| | - Markus Pioch
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- glyXera GmbH, Magdeburg, Germany
| | - Enes Sakalli
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Miloslav Sanda
- Clinical and Translational Glycoscience Research Center (CTGRC), Georgetown University, Washington, DC, USA
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, QLD, Australia
| | - Nichollas E Scott
- Deparment of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Georgy Sofronov
- Department of Mathematics and Statistics, Macquarie University, Sydney, NSW, Australia
| | - Johannes Stadlmann
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hung-Yi Wu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Pengyuan Yang
- Institutes of Biomedical Sciences, and the NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Yong Zhang
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Joseph Zaia
- Department of Biochemistry, Boston University Medical Campus, Boston, MA, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Giuseppe Palmisano
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jong Shin Yoo
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kai-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Katalin F Medzihradszky
- UCSF, School of Pharmacy, Department of Pharmaceutical Chemistry, San Francisco, CA, USA
- BRC, Laboratory of Proteomics Research, Szeged, Hungary
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University Gold Coast Campus, Southport, QLD, Australia
| | - Nicolle H Packer
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Institute for Glycomics, Griffith University Gold Coast Campus, Southport, QLD, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Saraswat M, Garapati K, Mun DG, Pandey A. Extensive heterogeneity of glycopeptides in plasma revealed by deep glycoproteomic analysis using size-exclusion chromatography. Mol Omics 2021; 17:939-947. [PMID: 34368825 PMCID: PMC8664156 DOI: 10.1039/d1mo00132a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several plasma glycoproteins are clinically useful as biomarkers in a variety of diseases. Although thousands of proteins are present in plasma, >95% of the plasma proteome by mass is represented by only 22 proteins. This necessitates strategies to deplete the abundant proteins and enrich other subsets of proteins. Although glycoproteins are abundant in plasma, in routine proteomic analyses, glycopeptides are not often investigated. Traditional methods such as lectin-based enrichment of glycopeptides followed by deglycosylation have helped understand the glycoproteome, but they lack any information about the attached glycans. Here, we apply size-exclusion chromatography (SEC) as a simple strategy to enrich intact N-glycopeptides based on their larger size which achieves broad selectivity regardless of the nature of attached glycans. Using this approach, we identified 1317 N-glycopeptides derived from 266 glycosylation sites on 154 plasma glycoproteins. The deep coverage achieved by this approach was evidenced by extensive heterogeneity that was observed. For instance, 20-100 glycopeptides were observed per protein for the 15 most-glycosylated glycoproteins. Notably, we discovered 615 novel glycopeptides of which 39 glycosylation sites (from 38 glycoproteins) were not included in protein databases such as Uniprot and GlyConnectDB. Finally, we also identified 12 novel glycopeptides containing di-sialic acid, which is a rare glycan epitope. Our results demonstrate the utility of SEC for efficient LC-MS/MS-based deep glycoproteomics analysis of human plasma. Overall, the SEC-based method described here is a simple, rapid and high-throughput strategy for characterization of any glycoproteome.
Collapse
Affiliation(s)
- Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA. and Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India and Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Kishore Garapati
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA. and Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India and Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India and Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, India
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA. and Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India and Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India and Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, India and Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
17
|
Zhang Y, Zhao W, Mao Y, Chen Y, Wang S, Zhong Y, Su T, Gong M, Du D, Lu X, Cheng J, Yang H. Site-specific N-glycosylation Characterization of Recombinant SARS-CoV-2 Spike Proteins. Mol Cell Proteomics 2021; 20:100058. [PMID: 33077685 DOI: 10.1101/2020.03.28.013276] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
The glycoprotein spike (S) on the surface of severe acute respiratory syndrome coronavirus (SARS-CoV-2) is a determinant for viral invasion and host immune response. Herein, we characterized the site-specific N-glycosylation of S protein at the level of intact glycopeptides. All 22 potential N-glycosites were identified in the S-protein protomer and were found to be preserved among the 753 SARS-CoV-2 genome sequences. The glycosites exhibited glycoform heterogeneity as expected for a human cell-expressed protein subunit. We identified masses that correspond to 157 N-glycans, primarily of the complex type. In contrast, the insect cell-expressed S protein contained 38 N-glycans, completely of the high-mannose type. Our results revealed that the glycan types were highly determined by the differential processing of N-glycans among human and insect cells, regardless of the glycosites' location. Moreover, the N-glycan compositions were conserved among different sizes of subunits. Our study indicates that the S protein N-glycosylation occurs regularly at each site, albeit the occupied N-glycans were diverse and heterogenous. This N-glycosylation landscape and the differential N-glycan patterns among distinct host cells are expected to shed light on the infection mechanism and present a positive view for the development of vaccines and targeted drugs.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wanjun Zhao
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Mao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yaohui Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shisheng Wang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhong
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Su
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Gong
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofeng Lu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Hao Yang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Zhang Y, Zhao W, Mao Y, Chen Y, Wang S, Zhong Y, Su T, Gong M, Du D, Lu X, Cheng J, Yang H. Site-specific N-glycosylation Characterization of Recombinant SARS-CoV-2 Spike Proteins. Mol Cell Proteomics 2021; 20:100058. [PMID: 33077685 PMCID: PMC7876485 DOI: 10.1074/mcp.ra120.002295] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The glycoprotein spike (S) on the surface of severe acute respiratory syndrome coronavirus (SARS-CoV-2) is a determinant for viral invasion and host immune response. Herein, we characterized the site-specific N-glycosylation of S protein at the level of intact glycopeptides. All 22 potential N-glycosites were identified in the S-protein protomer and were found to be preserved among the 753 SARS-CoV-2 genome sequences. The glycosites exhibited glycoform heterogeneity as expected for a human cell-expressed protein subunit. We identified masses that correspond to 157 N-glycans, primarily of the complex type. In contrast, the insect cell-expressed S protein contained 38 N-glycans, completely of the high-mannose type. Our results revealed that the glycan types were highly determined by the differential processing of N-glycans among human and insect cells, regardless of the glycosites' location. Moreover, the N-glycan compositions were conserved among different sizes of subunits. Our study indicates that the S protein N-glycosylation occurs regularly at each site, albeit the occupied N-glycans were diverse and heterogenous. This N-glycosylation landscape and the differential N-glycan patterns among distinct host cells are expected to shed light on the infection mechanism and present a positive view for the development of vaccines and targeted drugs.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wanjun Zhao
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Mao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yaohui Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shisheng Wang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhong
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Su
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Gong
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofeng Lu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Hao Yang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Čaval T, Lin YH, Varkila M, Reiding KR, Bonten MJM, Cremer OL, Franc V, Heck AJR. Glycoproteoform Profiles of Individual Patients' Plasma Alpha-1-Antichymotrypsin are Unique and Extensively Remodeled Following a Septic Episode. Front Immunol 2021; 11:608466. [PMID: 33519818 PMCID: PMC7840657 DOI: 10.3389/fimmu.2020.608466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/24/2020] [Indexed: 01/08/2023] Open
Abstract
Sepsis and septic shock remain the leading causes of death in intensive care units (ICUs), yet the pathogenesis originating from the inflammatory response during sepsis remains ambiguous. Acute-phase proteins are typically highly glycosylated, and the nature of the glycans have been linked to the incidence and severity of such inflammatory responses. To further build upon these findings we here monitored, the longitudinal changes in the plasma proteome and, in molecular detail, glycoproteoform profiles of alpha-1-antichymotrypsin (AACT) extracted from plasma of ten individual septic patients. For each patient we included four different time-points, including post-operative (before sepsis) and following discharge from the ICU. We isolated AACT from plasma depleted for albumin, IgG and serotransferrin and used high-resolution native mass spectrometry to qualitatively and quantitatively monitor the multifaceted glycan microheterogeneity of desialylated AACT, which allowed us to monitor how changes in the glycoproteoform profiles reflected the patient's physiological state. Although we observed a general trend in the remodeling of the AACT glycoproteoform profiles, e.g. increased fucosylation and branching/LacNAc elongation, each patient exhibited unique features and responses, providing a resilient proof-of-concept for the importance of personalized longitudinal glycoproteoform profiling. Importantly, we observed that the AACT glycoproteoform changes induced by sepsis did not readily subside after discharge from ICU.
Collapse
Affiliation(s)
- Tomislav Čaval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Yu-Hsien Lin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Meri Varkila
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Karli R. Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Marc J. M. Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Olaf L. Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| |
Collapse
|
20
|
Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat Methods 2021; 18:1304-1316. [PMID: 34725484 PMCID: PMC8566223 DOI: 10.1038/s41592-021-01309-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.
Collapse
|
21
|
L-Fucose treatment of FUT8-CDG. Mol Genet Metab Rep 2020; 25:100680. [PMID: 33312876 PMCID: PMC7719959 DOI: 10.1016/j.ymgmr.2020.100680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 11/22/2022] Open
Abstract
FUT8-CDG is a severe multisystem disorder caused by mutations in FUT8, encoding the α-1,6-fucosyltransferase. We report on dizygotic twins with FUT8-CDG presenting with dysmorphisms, failure to thrive, and respiratory abnormalities. Due to the severe phenotype, oral L-fucose supplementation was started. Glycosylation analysis using mass spectrometry indicated a limited response to fucose therapy while the clinical presentation stabilized. Further research is needed to assess the concept of substrate supplementation in FUT8-CDG.
Collapse
|
22
|
Robin T, Mariethoz J, Lisacek F. Examining and Fine-tuning the Selection of Glycan Compositions with GlyConnect Compozitor. Mol Cell Proteomics 2020; 19:1602-1618. [PMID: 32636234 PMCID: PMC8014996 DOI: 10.1074/mcp.ra120.002041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/01/2020] [Indexed: 01/22/2023] Open
Abstract
A key point in achieving accurate intact glycopeptide identification is the definition of the glycan composition file that is used to match experimental with theoretical masses by a glycoproteomics search engine. At present, these files are mainly built from searching the literature and/or querying data sources focused on posttranslational modifications. Most glycoproteomics search engines include a default composition file that is readily used when processing MS data. We introduce here a glycan composition visualizing and comparative tool associated with the GlyConnect database and called GlyConnect Compozitor. It offers a web interface through which the database can be queried to bring out contextual information relative to a set of glycan compositions. The tool takes advantage of compositions being related to one another through shared monosaccharide counts and outputs interactive graphs summarizing information searched in the database. These results provide a guide for selecting or deselecting compositions in a file in order to reflect the context of a study as closely as possible. They also confirm the consistency of a set of compositions based on the content of the GlyConnect database. As part of the tool collection of the Glycomics@ExPASy initiative, Compozitor is hosted at https://glyconnect.expasy.org/compozitor/ where it can be run as a web application. It is also directly accessible from the GlyConnect database.
Collapse
Affiliation(s)
- Thibault Robin
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CMU, Geneva, Switzerland; Computer Science Dept., Faculty of Science, University of Geneva, Switzerland; CALIPHO Group, SIB Swiss Institute of BioinformaticsCMU, Geneva, Switzerland; Microbiology and Molecular Medicine Dept., Faculty of Medicine, University of Geneva, Switzerland
| | - Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CMU, Geneva, Switzerland; Computer Science Dept., Faculty of Science, University of Geneva, Switzerland
| | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CMU, Geneva, Switzerland; Computer Science Dept., Faculty of Science, University of Geneva, Switzerland; Section of Biology, Faculty of Science, University of Geneva, Switzerland.
| |
Collapse
|
23
|
Zhang Y, Lin T, Zhao Y, Mao Y, Tao Y, Huang Y, Wang S, Hu L, Cheng J, Yang H. Characterization of N-linked intact glycopeptide signatures of plasma IgGs from patients with prostate carcinoma and benign prostatic hyperplasia for diagnosis pre-stratification. Analyst 2020; 145:5353-5362. [PMID: 32568312 DOI: 10.1039/d0an00225a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The discovery of novel non-invasive biomarkers for discriminating between prostate carcinoma (PCa) patients and benign prostatic hyperplasia (BPH) patients is necessary to reduce the burden of biopsies, avoid overdiagnosis and improve quality of life. Previous studies suggest that abnormal glycosylation of immunoglobulin gamma molecules (IgGs) is strongly associated with immunological diseases and prostate diseases. Hence, characterizing N-linked intact glycopeptides of IgGs that correspond to the N-glycan structure with specific site information might enable a better understanding of the molecular pathogenesis and discovery of novel signatures in preoperative discrimination of BPH from PCa. In this study, we profiled N-linked intact glycopeptides of purified IgGs from 51 PCa patients and 45 BPH patients by our developed N-glycoproteomic method using hydrophilic interaction liquid chromatography enrichment coupled with high resolution LC-MS/MS. The quantitative analysis of the N-linked intact glycopeptides using pGlyco 2.0 and MaxQuant software provided quantitative information on plasma IgG subclass-specific and site-specific N-glycosylation. As a result, we found four aberrantly expressed N-linked intact glycopeptides across different IgG subclasses. In particular, the N-glycopeptide IgG2-GP09 (EEQFNSTFR (H5N5S1)) was dramatically elevated in plasma from PCa patients, compared with that in BPH patients (PCa/BPH ratio = 5.74, p = 0.001). Additionally, the variations in these N-linked intact glycopeptide abundances were not caused by the changes in the IgG concentrations. Furthermore, IgG2-GP09 displayed a more powerful prediction capability (auROC = 0.702) for distinguishing PCa from BPH than the clinical index t-PSA (auROC = 0.681) when used alone or in combination with other indicators (auROC = 0.853). In conclusion, these abnormally expressed N-linked intact glycopeptides have potential for non-invasive monitoring and pre-stratification of prostate diseases.
Collapse
Affiliation(s)
- Yong Zhang
- Key Lab of Transplant Engineering and Immunology, MOH; West China-Washington Mitochondria and Metabolism Research Center; Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhao T, Jia L, Li J, Ma C, Wu J, Shen J, Dang L, Zhu B, Li P, Zhi Y, Lan R, Xu Y, Hao Z, Chai Y, Li Q, Hu L, Sun S. Heterogeneities of Site-Specific N-Glycosylation in HCC Tumors With Low and High AFP Concentrations. Front Oncol 2020; 10:496. [PMID: 32426269 PMCID: PMC7212448 DOI: 10.3389/fonc.2020.00496] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is still one of the malignant tumors with high morbidity and mortality in China and worldwide. Although alpha-fetoprotein (AFP) as well as core fucosylated AFP-L3 have been widely used as important biomarkers for HCC diagnosis and evaluation, the AFP level shows a huge variation among HCC patient populations. In addition, the AFP level has also been proved to be associated with pathological grade, progression, and survival of HCC patients. Understanding the intrinsic heterogeneities of HCC associated with AFP levels is essential for the molecular mechanism studies of HCC with different AFP levels as well as for the potential early diagnosis and personalized treatment of HCC with AFP negative. In this study, an integrated N-glycoproteomic and proteomic analysis of low and high AFP levels of HCC tumors was performed to investigate the intrinsic heterogeneities of site-specific glycosylation associated with different AFP levels of HCC. By large-scale profiling and quantifying more than 4,700 intact N-glycopeptides from 20 HCC and 20 paired paracancer samples, we identified many commonly altered site-specific N-glycans from HCC tumors regardless of AFP levels, including decreased modifications by oligo-mannose and sialylated bi-antennary glycans, and increased modifications by bisecting glycans. By relative quantifying the intact N-glycopeptides between low and high AFP tumor groups, the great heterogeneities of site-specific N-glycans between two groups of HCC tumors were also uncovered. We found that several sialylated but not core fucosylated tri-antennary glycans were uniquely increased in low AFP level of HCC tumors, while many core fucosylated bi-antennary or hybrid glycans as well as bisecting glycans were uniquely increased in high AFP tumors. The data provide a valuable resource for future HCC studies regarding the mechanism, heterogeneities and new biomarker discovery.
Collapse
Affiliation(s)
- Ting Zhao
- College of Life Science, Northwest University, Xi'an, China
| | - Li Jia
- College of Life Science, Northwest University, Xi'an, China
| | - Jun Li
- College of Life Science, Northwest University, Xi'an, China
| | - Chen Ma
- College of Life Science, Northwest University, Xi'an, China
| | - Jingyu Wu
- College of Life Science, Northwest University, Xi'an, China
| | - Jiechen Shen
- College of Life Science, Northwest University, Xi'an, China
| | - Liuyi Dang
- College of Life Science, Northwest University, Xi'an, China
| | - Bojing Zhu
- College of Life Science, Northwest University, Xi'an, China
| | - Pengfei Li
- College of Life Science, Northwest University, Xi'an, China
| | - Yuan Zhi
- College of Life Science, Northwest University, Xi'an, China
| | - Rongxia Lan
- College of Life Science, Northwest University, Xi'an, China
| | - Yintai Xu
- College of Life Science, Northwest University, Xi'an, China
| | - Zhifang Hao
- College of Life Science, Northwest University, Xi'an, China
| | - Yichao Chai
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingshan Li
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liangshuo Hu
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shisheng Sun
- College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
25
|
Shu Q, Li M, Shu L, An Z, Wang J, Lv H, Yang M, Cai T, Hu T, Fu Y, Yang F. Large-scale Identification of N-linked Intact Glycopeptides in Human Serum using HILIC Enrichment and Spectral Library Search. Mol Cell Proteomics 2020; 19:672-689. [PMID: 32102970 PMCID: PMC7124471 DOI: 10.1074/mcp.ra119.001791] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/10/2020] [Indexed: 11/12/2022] Open
Abstract
Large-scale identification of N-linked intact glycopeptides by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in human serum is challenging because of the wide dynamic range of serum protein abundances, the lack of a complete serum N-glycan database and the existence of proteoforms. In this regard, a spectral library search method was presented for the identification of N-linked intact glycopeptides from N-linked glycoproteins in human serum with target-decoy and motif-specific false discovery rate (FDR) control. Serum proteins were firstly separated into low-abundance and high-abundance proteins by acetonitrile (ACN) precipitation. After digestion, the N-linked intact glycopeptides were enriched by hydrophilic interaction liquid chromatography (HILIC) and a portion of the enriched N-linked intact glycopeptides were processed by Peptide-N-Glycosidase F (PNGase F) to generate N-linked deglycopeptides. Both N-linked intact glycopeptides and deglycopeptides were analyzed by LC-MS/MS. From N-linked deglycopeptides data sets, 764 N-linked glycoproteins, 1699 N-linked glycosites and 3328 unique N-linked deglycopeptides were identified. Four types of N-linked glycosylation motifs (NXS/T/C/V, X≠P) were used to recognize the N-linked deglycopeptides. The spectra of these N-linked deglycopeptides were utilized for N-linked deglycopeptides library construction and identification of N-linked intact glycopeptides. A database containing 739 N-glycan masses was constructed and utilized during spectral library search for the identification of N-linked intact glycopeptides. In total, 526 N-linked glycoproteins, 1036 N-linked glycosites, 22,677 N-linked intact glycopeptides and 738 N-glycan masses were identified under 1% FDR, representing the most in-depth serum N-glycoproteome identified by LC-MS/MS at N-linked intact glycopeptide level.
Collapse
Affiliation(s)
- Qingbo Shu
- Laboratory of Protein and Peptide Pharmaceuticals & Proteomics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, Louisiana 70112
| | - Mengjie Li
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100101, China; Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, Louisiana 70112
| | - Lian Shu
- Laboratory of Protein and Peptide Pharmaceuticals & Proteomics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, Louisiana 70112; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwu An
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100101, China; Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, Louisiana 70112
| | - Jifeng Wang
- Laboratory of Protein and Peptide Pharmaceuticals & Proteomics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Lv
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100101, China; Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, Louisiana 70112; Research Center for Basic Sciences of Medicine, Basic Medical College, Guizhou Medical University, Guiyang 550025, China
| | - Ming Yang
- Laboratory of Protein and Peptide Pharmaceuticals & Proteomics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, Louisiana 70112
| | - Tanxi Cai
- Laboratory of Protein and Peptide Pharmaceuticals & Proteomics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, Louisiana 70112
| | - Tony Hu
- National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Fu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100101, China; Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, Louisiana 70112.
| | - Fuquan Yang
- Laboratory of Protein and Peptide Pharmaceuticals & Proteomics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Zhu J, Lin YH, Dingess KA, Mank M, Stahl B, Heck AJR. Quantitative Longitudinal Inventory of the N-Glycoproteome of Human Milk from a Single Donor Reveals the Highly Variable Repertoire and Dynamic Site-Specific Changes. J Proteome Res 2020; 19:1941-1952. [PMID: 32125861 PMCID: PMC7252941 DOI: 10.1021/acs.jproteome.9b00753] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein N-glycosylation on human milk proteins assists in protecting an infant's health and functions among others as competitive inhibitors of pathogen binding and immunomodulators. Due to the individual uniqueness of each mother's milk and the overall complexity and temporal changes of protein N-glycosylation, analysis of the human milk N-glycoproteome requires longitudinal personalized approaches, providing protein- and N-site-specific quantitative information. Here, we describe an automated platform using hydrophilic-interaction chromatography (HILIC)-based cartridges enabling the proteome-wide monitoring of intact N-glycopeptides using just a digest of 150 μg of breast milk protein. We were able to map around 1700 glycopeptides from 110 glycoproteins covering 191 glycosites, of which 43 sites have not been previously reported with experimental evidence. We next quantified 287 of these glycopeptides originating from 50 glycoproteins using a targeted proteomics approach. Although each glycoprotein, N-glycosylation site, and attached glycan revealed distinct dynamic changes, we did observe a few general trends. For instance, fucosylation, especially terminal fucosylation, increased across the lactation period. Building on the improved glycoproteomics approach outlined above, future studies are warranted to reveal the potential impact of the observed glycosylation microheterogeneity on the healthy development of infants.
Collapse
Affiliation(s)
- Jing Zhu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Beijing Institute of Nutritional Resources, 100069 Beijing, China
| | - Yu-Hsien Lin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kelly A Dingess
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marko Mank
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Bernd Stahl
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands.,Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CG Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
27
|
Zhang Y, Mao Y, Zhao W, Su T, Zhong Y, Fu L, Zhu J, Cheng J, Yang H. Glyco-CPLL: An Integrated Method for In-Depth and Comprehensive N-Glycoproteome Profiling of Human Plasma. J Proteome Res 2019; 19:655-666. [PMID: 31860302 DOI: 10.1021/acs.jproteome.9b00557] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yong Zhang
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yonghong Mao
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Thoracic Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanjun Zhao
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Su
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhong
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linru Fu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiang Zhu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, MOH, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Mass spectrometry-based qualitative and quantitative N-glycomics: An update of 2017-2018. Anal Chim Acta 2019; 1091:1-22. [PMID: 31679562 DOI: 10.1016/j.aca.2019.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
N-glycosylation is one of the most frequently occurring protein post-translational modifications (PTMs) with broad cellular, physiological and pathological relevance. Mass spectrometry-based N-glycomics has become the state-of-the-art instrumental analytical pipeline for sensitive, high-throughput and comprehensive characterization of N-glycans and N-glycomes. Improvement and new development of methods in N-glycan release, enrichment, derivatization, isotopic labeling, separation, ionization, MS, tandem MS and informatics accompany side-by-side wider and deeper application. This review provides a comprehensive update of mass spectrometry-based qualitative and quantitative N-glycomics in the years of 2017-2018.
Collapse
|
29
|
Xiao H, Sun F, Suttapitugsakul S, Wu R. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:356-379. [PMID: 30605224 PMCID: PMC6610820 DOI: 10.1002/mas.21586] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 05/16/2023]
Abstract
Protein glycosylation is ubiquitous in biological systems and plays essential roles in many cellular events. Global and site-specific analysis of glycoproteins in complex biological samples can advance our understanding of glycoprotein functions and cellular activities. However, it is extraordinarily challenging because of the low abundance of many glycoproteins and the heterogeneity of glycan structures. The emergence of mass spectrometry (MS)-based proteomics has provided us an excellent opportunity to comprehensively study proteins and their modifications, including glycosylation. In this review, we first summarize major methods for glycopeptide/glycoprotein enrichment, followed by the chemical and enzymatic methods to generate a mass tag for glycosylation site identification. We next discuss the systematic and quantitative analysis of glycoprotein dynamics. Reversible protein glycosylation is dynamic, and systematic study of glycoprotein dynamics helps us gain insight into glycoprotein functions. The last part of this review focuses on the applications of MS-based proteomics to study glycoproteins in different biological systems, including yeasts, plants, mice, human cells, and clinical samples. Intact glycopeptide analysis is also included in this section. Because of the importance of glycoproteins in complex biological systems, the field of glycoproteomics will continue to grow in the next decade. Innovative and effective MS-based methods will exponentially advance glycoscience, and enable us to identify glycoproteins as effective biomarkers for disease detection and drug targets for disease treatment. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 9999: XX-XX, 2019.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| |
Collapse
|
30
|
Choo MS, Wan C, Rudd PM, Nguyen-Khuong T. GlycopeptideGraphMS: Improved Glycopeptide Detection and Identification by Exploiting Graph Theoretical Patterns in Mass and Retention Time. Anal Chem 2019; 91:7236-7244. [PMID: 31079452 DOI: 10.1021/acs.analchem.9b00594] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The leading proteomic method for identifying N-glycosylated peptides is liquid chromatography coupled with tandem fragmentation mass spectrometry (LCMS/MS) followed by spectral matching of MS/MS fragment masses to a database of possible glycan and peptide combinations. Such database-dependent approaches come with challenges such as needing high-quality informative MS/MS spectra, ignoring unexpected glycan or peptide sequences, and making incorrect assignments because some glycan combinations are equivalent in mass to amino acids. To address these challenges, we present GlycopeptideGraphMS, a graph theoretical bioinformatic approach complementary to the database-dependent method. Using the AXL receptor tyrosine kinase (AXL) as a model glycoprotein with multiple N-glycosylation sites, we show that those LCMS features that could be grouped into graph networks on the basis of glycan mass and retention time differences were actually N-glycopeptides with the same peptide backbone but different N-glycan compositions. Conversely, unglycosylated peptides did not exhibit this grouping behavior. Furthermore, MS/MS sequencing of the glycan and peptide composition of just one N-glycopeptide in the graph was sufficient to identify the rest of the N-glycopeptides in the graph. By validating the identifications with exoglycosidase cocktails and MS/MS fragmentation, we determined the experimental false discovery rate of identifications to be 2.21%. GlycopeptideGraphMS detected more than 500 unique N-glycopeptides from AXL, triple the number found by a database search with Byonic software, and detected incorrect assignments due to a nonspecific protease cleavage. This method overcomes some limitations of the database approach and is a step closer to comprehensive automated glycoproteomics.
Collapse
Affiliation(s)
- Matthew S Choo
- Bioprocessing Technology Institute , 20 Biopolis Way #06-01 , Singapore 138668
| | - Corrine Wan
- Bioprocessing Technology Institute , 20 Biopolis Way #06-01 , Singapore 138668
| | - Pauline M Rudd
- Bioprocessing Technology Institute , 20 Biopolis Way #06-01 , Singapore 138668.,National Institute for Bioprocessing Research and Training , Conway Institute , Dublin , Ireland.,University College Dublin, Belfield , Dublin , Ireland
| | - Terry Nguyen-Khuong
- Bioprocessing Technology Institute , 20 Biopolis Way #06-01 , Singapore 138668
| |
Collapse
|
31
|
Dang L, Jia L, Zhi Y, Li P, Zhao T, Zhu B, Lan R, Hu Y, Zhang H, Sun S. Mapping human N-linked glycoproteins and glycosylation sites using mass spectrometry. Trends Analyt Chem 2019; 114:143-150. [PMID: 31831916 PMCID: PMC6907083 DOI: 10.1016/j.trac.2019.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
N-linked glycoprotein is a highly interesting class of proteins for clinical and biological research. Over the last decade, large-scale profiling of N-linked glycoproteins and glycosylation sites from biological and clinical samples has been achieved through mass spectrometry-based glycoproteomic approaches. In this paper, we reviewed the human glycoproteomic profiles that have been reported in more than 80 individual studies, and mainly focused on the N-glycoproteins and glycosylation sites identified through their deglycosylated forms of glycosite-containing peptides. According to our analyses, more than 30,000 glycosite-containing peptides and 7,000 human glycoproteins have been identified from five different body fluids, twelve human tissues (or related cell lines), and four special cell types. As the glycoproteomic data is still missing for many organs and tissues, a systematical glycoproteomic analysis of various human tissues and body fluids using a uniform platform is still needed for an integrated map of human N-glycoproteomes.
Collapse
Affiliation(s)
- Liuyi Dang
- College of Life Sciences, Northwest University, Xi’an, Shaanxi province 710069, China
| | - Li Jia
- College of Life Sciences, Northwest University, Xi’an, Shaanxi province 710069, China
| | - Yuan Zhi
- College of Life Sciences, Northwest University, Xi’an, Shaanxi province 710069, China
| | - Pengfei Li
- College of Life Sciences, Northwest University, Xi’an, Shaanxi province 710069, China
| | - Ting Zhao
- College of Life Sciences, Northwest University, Xi’an, Shaanxi province 710069, China
| | - Bojing Zhu
- College of Life Sciences, Northwest University, Xi’an, Shaanxi province 710069, China
| | - Rongxia Lan
- College of Life Sciences, Northwest University, Xi’an, Shaanxi province 710069, China
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi’an, Shaanxi province 710069, China
| |
Collapse
|
32
|
Cho KC, Chen L, Hu Y, Schnaubelt M, Zhang H. Developing Workflow for Simultaneous Analyses of Phosphopeptides and Glycopeptides. ACS Chem Biol 2019; 14:58-66. [PMID: 30525447 DOI: 10.1021/acschembio.8b00902] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Enrichment of modified peptides from global peptides is inevitable in mass spectrometric analysis protein modifications because of their importance in the study of cellular functions and low abundance in the global proteomic analysis. Recent advances in enrichment methods for modified peptides such as phosphopeptides and intact glycopeptides (IGPs) show that the methods for proteomic analyses of both protein modifications are robust. We have recently observed and reported a large number of IGPs from phosphoproteomic analysis using IMAC-based phosphopeptides enrichment procedure. To determine whether phosphorylated peptides could be specifically isolated from coenriched IGPs in IMAC experiments with different pH, IMAC procedures were performed at different pH conditions, and we found that the enrichment of phosphopeptides at pH 2.0 was the optimal condition for having the highest number of phosphopeptide identifications; however, coenrichment of phosphopeptides and glycopeptides was inevitable in the entire pH range. The hydrophilic enrichments of IGPs performed before or after IMAC enrichment were evaluated subsequently to determine the optimal workflow for simultaneous analyses of phosphopeptides and glycopeptides, and IMAC enrichment followed by hydrophilic enrichment was chosen as the optimized workflow. Applying the workflow to the TMT-labeled peptides from luminal and basal-like type of breast cancer patient-derived xenograft (PDX) models allowed quantitative analyses of phospho- and glycoproteomics with 17582 phosphopeptides and 3468 glycopeptides identified, and 1237 phosphopeptides and 236 glycopeptides showed significant expression differences between luminal and basal-like, respectively. This method allows simultaneous analyses of phosphoprotein and glycoprotein modifications, extending our understanding of roles of glycosylation and phosphorylation in biology and diseases.
Collapse
Affiliation(s)
- Kyung-Cho Cho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
33
|
Zhang W, Jiang L, Fu L, Jia Q. Selective enrichment of glycopeptides based on copper tetra(N-carbonylacrylic) aminephthalocyanine and iminodiacetic acid functionalized polymer monolith. J Sep Sci 2019; 42:1037-1044. [DOI: 10.1002/jssc.201801030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Wenjuan Zhang
- College of Chemistry; Jilin University; Changchun China
| | - Liyan Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; School of Life Sciences; Jilin University; Changchun China
| | - Li Fu
- The Second Hospital of Jilin University; Changchun China
| | - Qiong Jia
- College of Chemistry; Jilin University; Changchun China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; School of Life Sciences; Jilin University; Changchun China
| |
Collapse
|
34
|
Tkac J, Bertok T, Hires M, Jane E, Lorencova L, Kasak P. Glycomics of prostate cancer: updates. Expert Rev Proteomics 2018; 16:65-76. [PMID: 30451032 DOI: 10.1080/14789450.2019.1549993] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Prostate cancer (PCa) is a life-threatening disease affecting millions of men. The current best PCa biomarker (level of prostate-specific antigen in serum) lacks specificity for PCa diagnostics and this is why novel PCa biomarkers in addition to the conventional ones based on biomolecules such as DNA, RNA and proteins need to be identified. Areas covered: This review details the potential of glycans-based biomarkers to become diagnostic, prognostic, predictive and therapeutic PCa biomarkers with a brief description of the innovative approaches applied to glycan analysis to date. Finally, the review covers the possibility to use exosomes as a rich source of glycans for future innovative and advanced diagnostics of PCa. The review covers updates in the field since 2016. Expert commentary: The summary provided in this review paper suggests that glycan-based biomarkers can offer high-assay accuracy not only for diagnostic purposes but also for monitoring/surveillance of the PCa disease.
Collapse
Affiliation(s)
- Jan Tkac
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia.,b Glycanostics Ltd ., Bratislava , Slovakia
| | - Tomas Bertok
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia.,b Glycanostics Ltd ., Bratislava , Slovakia
| | - Michal Hires
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia
| | - Eduard Jane
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia
| | - Lenka Lorencova
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia.,b Glycanostics Ltd ., Bratislava , Slovakia
| | - Peter Kasak
- c Center for Advanced Materials , Qatar University , Doha , Qatar
| |
Collapse
|
35
|
Zhang W, Jiang L, Wang D, Jia Q. Preparation of copper tetra(N-carbonylacrylic) aminephthalocyanine functionalized zwitterionic-polymer monolith for highly specific capture of glycopeptides. Anal Bioanal Chem 2018; 410:6653-6661. [DOI: 10.1007/s00216-018-1278-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/21/2018] [Accepted: 07/17/2018] [Indexed: 01/05/2023]
|