1
|
Xie C, Peng Y, Zhang Z, Luo K, Yang Q, Tan L, Zhou L. Tumor Microenvironment Activatable Nanoprodrug System for In Situ Fluorescence Imaging and Therapy of Liver Cancer. Anal Chem 2024; 96:5006-5013. [PMID: 38484040 DOI: 10.1021/acs.analchem.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The development of new imaging and treatment nanoprodrug systems is highly demanded for diagnosis and therapy of liver cancer, a severe disease characterized by a high recurrence rate. Currently, available small molecule drugs are not possible for cancer diagnosis because of the fast diffusion of imaging agents and low efficacy in treatment due to poor water solubility and significant toxic side effects. In this study, we report the development of a tumor microenvironment activatable nanoprodrug system for the diagnosis and treatment of liver cancer. This nanoprodrug system can accumulate in the tumor site and be selectively activated by an excess of hydrogen peroxide (H2O2) in the tumor microenvironment, releasing near-infrared solid-state organic fluorescent probe (HPQCY-1) and phenylboronic acid-modified camptothecin (CPT) prodrug. Both HPQCY-1 and CPT prodrugs can be further activated in tumor sites for achieving more precise in situ near-infrared (NIR) fluorescence imaging and treatment while reducing the toxic effects of drugs on normal tissues. Additionally, the incorporation of hydrophilic multivalent chitosan as a carrier effectively improved the water solubility of the system. This research thus provides a practical new approach for the diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Peng
- The Key Laboratory of Biochemistry and Mo-lecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiaomei Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Libin Tan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
2
|
Chen J, Gao F, Xu Z, Liu Y, Hu M, Yuan C, Zhang Y, Liu W, Wang X. A terbium(III) complex-based time-resolved luminescent probe for selenocysteine as an inhibitor of selenoproteins. Chem Commun (Camb) 2024; 60:1440-1443. [PMID: 38206371 DOI: 10.1039/d3cc05680e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A terbium(III) complex-based time-resolved luminescence probe for selenocysteine can inhibit selenoprotein activity via a selenolate-triggered cleavage reaction of sulfonamide bonds in living cells.
Collapse
Affiliation(s)
- Jiefang Chen
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Furong Gao
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Zhongren Xu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yuanhao Liu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Ming Hu
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Chengyi Yuan
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yunhua Zhang
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Wukun Liu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xiaohui Wang
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
3
|
Wu F, Malek AM, Buchanich JM, Arena VC, Rager JR, Sharma RK, Vena JE, Bear T, Talbott EO. Exposure to ambient air toxicants and the risk of amyotrophic lateral sclerosis (ALS): A matched case control study. ENVIRONMENTAL RESEARCH 2024; 242:117719. [PMID: 37993052 DOI: 10.1016/j.envres.2023.117719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with few risk factors identified and no known cure. Gene-environment interaction is hypothesized especially for sporadic ALS cases (90-95%) which are of unknown etiology. We aimed to investigate risk factors for ALS including exposure to ambient air toxics. METHODS This population-based case-control study included 267 ALS cases (from the United States [U.S.] Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry National ALS Registry and Biorepository) and 267 age, sex, and county-matched controls identified via a commercial database. Exposure assessment for 34 ambient air toxicants was performed by assigning census tract-level U.S. Environmental Protection Agency (EPA) 2011 National Air Toxics Assessment (NATA) data to participants' residential ZIP codes. Conditional logistic regression was used to compute adjusted odds ratios (aORs) and 95% confidence intervals (CIs) for individual compounds, chemical classes, and overall exposure. Sensitivity analyses using both conditional logistic regression and Bayesian grouped weighted quartile sum (GWQS) models were performed to assess the integrity of findings. RESULTS Using the 2011 NATA, the highest exposure quartile (Q4) compared to the lowest (Q1) of vinyl chloride (aOR = 6.00, 95% CI: 1.87-19.25), 2,4-dinitrotoluene (aOR = 5.45, 95% CI: 1.53-19.36), cyanide (aOR = 4.34, 95% CI: 1.52-12.43), cadmium (aOR = 3.30, 95% CI: 1.11-9.77), and carbon disulfide (aOR = 2.98, 95% CI: 1.00-8.91) was associated with increased odds of ALS. Residential air selenium showed an inverse association with ALS (second quartile [Q2] vs. Q1: aOR = 0.38, 95% CI: 0.18-0.79). Additionally, residential exposure to organic/chlorinated solvents (Q4 vs Q1: aOR = 2.62, 95% CI: 1.003-6.85) was associated with ALS. CONCLUSIONS Our findings using the 2011 NATA linked by census tract to residential area provide evidence of increased ALS risk in cases compared to controls for 2,4-dinitrotoluene, vinyl chloride, cyanide, and the organic/chlorinated solvents class. This underscores the importance of ongoing surveillance of potential exposures for at-risk populations.
Collapse
Affiliation(s)
- Fan Wu
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Angela M Malek
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeanine M Buchanich
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vincent C Arena
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Judith R Rager
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ravi K Sharma
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - John E Vena
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Todd Bear
- Department of Behavioral and Community Health Sciences, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Evelyn O Talbott
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
4
|
Zhang X, Tang F, Shu W, Li D, Liu Y, Xiao H, Zhou J, Li P. Small-molecule fluorescent probes for bioactive species in inflammatory disease: arthritis, pneumonia and hepatitis. Analyst 2023; 148:5303-5321. [PMID: 37796086 DOI: 10.1039/d3an01289a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Inflammation as an adaptive response underlies a wide variety of physiological and pathological processes. The progression of inflammation is closely intertwined with various bioactive molecules. To dissect the biological mechanisms and physiopathological functions of these molecules, exploitation of versatile detection mean is of great importance. Fluorescence imaging technique has been widely employed to track bioactive species in living systems. As a result, many small-molecule fluorescent probes for bioactive species in inflammatory disease have been developed. However, this interesting and frontier topic hasn't been systematically categorized. Therefore, in this review, we have generalized the construction strategies and biological imaging applications of small-molecule fluorescent probes for various bioactive species, including reactive oxygen/nitrogen/sulfur species, enzyme, mainly in arthritis, pneumonia and hepatitis. Moreover, the future challenges in constructing novel fluorescent probes for inflammatory disease are also present. This review will facilitate the comprehension of superior fluorescent probes for active molecules associated with inflammation.
Collapse
Affiliation(s)
- Xiaolei Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Fuyan Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, P. R. China
| | - Dongpeng Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Yuying Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
5
|
Song J, Wang D, Zhou M, You X, Tan Q, Liu W, Yu L, Wang B, Chen W, Zhang X. Carbon disulfide exposure induced lung function reduction partly through oxidative protein damage: A cross-sectional and longitudinal analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131464. [PMID: 37104953 DOI: 10.1016/j.jhazmat.2023.131464] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
Carbon disulfide (CS2) exposure has been associated with lung function reduction in occupational population. However, evidence on the general population with relatively low CS2 exposure is lacking and the mechanism involved remains largely unknown. Urinary CS2 metabolite (2-mercaptothiazolidine-4-carboxylic acid, TTCA) and lung function were determined in the urban adults from the Wuhan-Zhuhai cohort at baseline in 2011-2012 and were repeated every 3 years. Cross-sectional and longitudinal associations between TTCA and lung function were estimated using linear mixed models. Inflammation and oxidative damage biomarkers in blood/urine were measured to evaluate their potential mediating roles involved. Cross-sectionally, participants in the highest quartile of TTCA level showed a 0.64% reduction in FEV1/FVC and a -308.22 mL/s reduction in PEF, compared to those in the lowest quartile. Longitudinally, participants with consistently high TTCA level had annually -90.27 mL/s decline in PEF, compared to those with consistently low TTCA level. Mediation analysis revealed that plasma protein carbonyl mediated 49.89% and 22.10% of TTCA-associated FEV1/FVC and PEF reductions, respectively. Conclusively, there was a cross-sectional and longitudinal association between CS2 exposure and lung function reduction in the general urban adults, and protein carbonylation (oxidative protein damage) partly mediated lung function reduction from CS2 exposure.
Collapse
Affiliation(s)
- Jiahao Song
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojie You
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| |
Collapse
|
6
|
Valand RS, Sivaiah A. Recent progress in the development of small-molecule fluorescent probes for detection and imaging of selenocysteine and application in thyroid disease diagnosis. J Mater Chem B 2023; 11:2614-2630. [PMID: 36877143 DOI: 10.1039/d3tb00035d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Selenocysteine (SeCys) is the 21st genetically encoded amino acid present in proteins and is involved in various biological functions. Inappropriate levels of SeCys can be considered as a sign of various diseases. Therefore, small molecular fluorescent probes for the detection and imaging of SeCys in vivo in biological systems are considered to be of significant interest for understanding the physiological role of SeCys. Thus, this article mainly provides a critical evaluation of recent advances made in SeCys detection along with the biomedical applications based on small molecular fluorescent probes published in the literature during the past half a dozen years. Therefore, the article primarily deals with the rational design of fluorescent probes, wherein these were selective towards SeCys over other biologically abundant molecules, in particular the thiol-based ones. The detection has been monitored by different spectral techniques, such as fluorescence and absorption spectroscopy and in some cases even visual color changes. Further, the detection mechanism and the utility of fluorescent probes for in vitro and in vivo cell imaging applications are addressed. For clarity, the main features have been conveniently divided into four categories based on the chemical reactions of the probe, viz., in terms of the cleavage of the responsive group by the SeCys nucleophile: (i) 2,4-dinitrobene sulphonamide group, (ii) 2,4-dinitrobenesulfonate ester group, (iii) 2,4-dinitrobenzeneoxy group and (iv) miscellaneous types. Overall this article deals with the analysis of more than two dozen fluorescent probes demonstrated for selective detection of SeCys along with their applications towards disease diagnosis.
Collapse
Affiliation(s)
- Ravinkumar Sunilbhai Valand
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Surat-Dumas road, Surat-395007, Gujarat, India.
| | - Areti Sivaiah
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Surat-Dumas road, Surat-395007, Gujarat, India.
| |
Collapse
|
7
|
Huang Y, Song B, Chen K, Tang Z, Ma H, Kong D, Liu Q, Yuan J. Mitochondria-Targetable Ratiometric Time-Gated Luminescence Probe Activated by Selenocysteine for the Visual Monitoring of Liver Injuries. Anal Chem 2023; 95:4024-4032. [PMID: 36799513 DOI: 10.1021/acs.analchem.2c04409] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Liver injury can result from various risk factors including diabetes, virus, alcohol, drugs, and other toxins, which is mainly responsible for global mortality and morbidity. Selenocysteine (Sec), as the main undertaker of selenium function in the life system, features prominently in a series of hepatic injuries and has close association with the pathological progression of liver injuries. Here, we report a mitochondria-targetable lanthanide complex-based probe, Mito-NPTTA-Tb3+/Eu3+, that can be used for accurately determining Sec in live cells and laboratory animals via the ratiometric time-gated luminescence (TGL) technique. This probe is composed of 2,2':6',2″-terpyridine-Tb3+/Eu3+ mixed complexes as the luminophore, 2,4-dinitrophenyl (DNP) as the responsive moiety and a lipophilic triphenylphosphonium cation (PPh3+) as the mitochondria-targeting moiety. Upon reaction with Sec, accompanied by the cleavage of DNP from the probe molecule, the I540/I690 ratio of the probe increased by 55 times, which enabled Sec to be detected with the ratiometric TGL method. After being incubated with living cells, the probe molecules were selectively accumulated in mitochondria to allow the mitochondrial Sec to be successfully imaged under the ratiometric TGL mode. Importantly, using this probe coupled with the ratiometric TGL imaging technique, the fluctuations of liver Sec in various liver injuries of model mice induced by diabetes, drug, toxin, and alcohol were precisely monitored, revealing that Sec plays an important antioxidant role during the oxidative stress process in liver injury, and the Sec levels have a close interrelationship with the degree of liver injury. All the results suggest that the new probe Mito-NPTTA-Tb3+/Eu3+ could be a potential tool for the accurate diagnosis of liver injury.
Collapse
Affiliation(s)
- Yundi Huang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kaiwen Chen
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhixin Tang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hua Ma
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Deshu Kong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Thomas CN, Alfahad N, Capewell N, Cowley J, Hickman E, Fernandez A, Harrison N, Qureshi OS, Bennett N, Barnes NM, Dick AD, Chu CJ, Liu X, Denniston AK, Vendrell M, Hill LJ. Triazole-derivatized near-infrared cyanine dyes enable local functional fluorescent imaging of ocular inflammation. Biosens Bioelectron 2022; 216:114623. [PMID: 36029662 DOI: 10.1016/j.bios.2022.114623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
Near-infrared (NIR) chemical fluorophores are promising tools for in-vivo imaging in real time but often succumb to rapid photodegradation. Indocyanine green (ICG) is the only NIR dye with regulatory approval for ocular imaging in humans; however, ICG, when employed for applications such as labelling immune cells, has limited sensitivity and does not allow precise detection of specific inflammatory events, for example leukocyte recruitment during uveitic flare-ups. We investigated the potential use of photostable novel triazole NIR cyanine (TNC) dyes for detecting and characterising activated T-cell activity within the eye. Three TNC dyes were evaluated for ocular cytotoxicity in-vitro using a MTT assay and optimised concentrations for intraocular detection within ex-vivo porcine eyes after topical application or intracameral injections of the dyes. TNC labelled T-cell tracking experiments and mechanistic studies were also performed in-vitro. TNC-1 and TNC-2 dyes exhibited greater fluorescence intensity than ICG at 10 μM, whereas TNC-3 was only detectable at 100 μM within the porcine eye. TNC dyes did not demonstrate any ocular cell toxicity at working concentrations of 10 μM. CD4+T-cells labelled with TNC-1 or TNC-2 were detected within the porcine eye, with TNC-1 being brighter than TNC-2. Detection of TNC-1 and TNC-2 into CD4+T-cells was prevented by prior incubation with dynole 34-2 (50 μM), suggesting active uptake of these dyes via dynamin-dependent processes. The present study provides evidence that TNC dyes are suitable to detect activated CD4+T-cells within the eye with potential as a diagnostic marker for ocular inflammatory diseases.
Collapse
Affiliation(s)
- Chloe N Thomas
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Nada Alfahad
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Nicholas Capewell
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Jamie Cowley
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, UK
| | - Eleanor Hickman
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Antonio Fernandez
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Murcia, Spain; Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Neale Harrison
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, UK
| | - Omar S Qureshi
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, UK
| | - Naomi Bennett
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Nicholas M Barnes
- Neuropharmacology Research Group, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Andrew D Dick
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK; Academic Unit of Ophthalmology, Bristol Medical School and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Colin J Chu
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK; Academic Unit of Ophthalmology, Bristol Medical School and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Xiaoxuan Liu
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK; Health Data Research UK, London, UK
| | - Alastair K Denniston
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK; Health Data Research UK, London, UK; Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Marc Vendrell
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
9
|
Yang Q, Xie C, Luo K, Tan L, Peng L, Zhou L. Rational construction of a new water soluble turn-on colorimetric and NIR fluorescent sensor for high selective Sec detection in Se-enriched foods and biosystems. Food Chem 2022; 394:133474. [PMID: 35716503 DOI: 10.1016/j.foodchem.2022.133474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022]
Abstract
As a naturally occurring amino acid, selenocysteine (Sec) plays a key role in a variety of cellular functions and Se-enriched foods. In this work, a robust water soluble fluorescence turn-on near-infrared (NIR) sensor NIR-Sec was constructed for Sec detection over biothiols in Se-enriched foods. Specifically, NIR-Sec contains a readily prepared water soluble NIR dicyanoisophorone fluorophore and a well-known response-site 2,4-dinitrobenzenesulfonyl moiety with strong intramolecular charge transfer (ICT) effect to quench the fluorescence intensity of NIR fluorophore. Upon addition of Sec, the NIR dicyanoisophorone fluorophore was released and a bright red emission at 663 nm was observed. Moreover, NIR-Sec toward Sec exhibited rapid response time (∼1 min), a large stoke shift (183 nm), and high selectivity and sensitivity (LOD: 52 nM). Impressively, NIR-Sec was successfully employed to detect and image Sec in Se-enriched foods and shrimp, indicating NIR-Sec could provide a robust tool for investigating the role of Sec in complex real-food samples.
Collapse
Affiliation(s)
- Qiaomei Yang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, and College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, and College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, and College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Libin Tan
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, and College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Longpeng Peng
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, and College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, and College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
10
|
Han X, Wang Y, Huang Y, Wang X, Choo J, Chen L. Fluorescent probes for biomolecule detection under environmental stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128527. [PMID: 35231812 DOI: 10.1016/j.jhazmat.2022.128527] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The use of fluorescent probes in visible detection has been developed over the last several decades. Biomolecules are essential in the biological processes of organisms, and their distribution and concentration are largely influenced by environmental factors. Significant advances have occurred in the applications of fluorescent probes for the detection of the dynamic localization and quantity of biomolecules during various environmental stress-induced physiological and pathological processes. Herein, we summarize representative examples of small molecule-based fluorescent probes that provide bimolecular information when the organism is under environmental stress. The discussion includes strategies for the design of smart small-molecule fluorescent probes, in addition to their applications in biomolecule imaging under environmental stresses, such as hypoxia, ischemia-reperfusion, hyperthermia/hypothermia, organic/inorganic chemical exposure, oxidative/reductive stress, high glucose stimulation, and drug treatment-induced toxicity. We believe that comprehensive insight into the beneficial applications of fluorescent probes in biomolecule detection under environmental stress should enable the further development and effective application of fluorescent probes in the biochemical and biomedical fields.
Collapse
Affiliation(s)
- Xiaoyue Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Present: Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, UK; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
11
|
Medeiros NG, Braga CA, Câmara VS, Duarte RC, Rodembusch FS. Near‐infrared fluorophores based on heptamethine cyanine dyes: from their synthesis and photophysical properties to recent optical sensing and bioimaging applications. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Natália G Medeiros
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Cláudia A. Braga
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Viktor S Câmara
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Rodrigo C Duarte
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Fabiano Severo Rodembusch
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Gonçalves 9500Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| |
Collapse
|
12
|
Wang Z, Su W, Zheng H, Yang S, Yang T, Han T, Dessie W, He X, Jiang Y, Hao Y. Two phenanthroimidazole turn-on probes for the rapid detection of selenocysteine and its application in living cells imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120585. [PMID: 34782266 DOI: 10.1016/j.saa.2021.120585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Detection of selenocysteine (Sec) content in cells by fluorescence probe is of great significance for the identification of human related diseases. To achieve fast and sensitive detection of Sec, two isomers A4 and B4 as turn-on fluorescent probes to detect Sec were designed and synthesized. Both A4 and B4 display fast turn-on response, high selectivity and sensitivity toward Sec, which can be applied for fluorescence imaging of Sec in living cells. Compared with B4, A4 has a larger Stokes shift (125 nm), wider pH range (5-10) and lower detection limit (65.4 nM) due to its ESIPT (excited state intramolecular proton transfer) effect. In view of the detection performance of these two probes, they can be used as effective tools for detecting Sec in biological systems.
Collapse
Affiliation(s)
- Zongcheng Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Weikang Su
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Huihuang Zheng
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Shun Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Tingting Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ting Han
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Wubliker Dessie
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Xingrui He
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Yuren Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
13
|
Fei G, Ma S, Wang C, Chen T, Li Y, Liu Y, Tang B, James TD, Chen G. Imaging strategies using cyanine probes and materials for biomedical visualization of live animals. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214134] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Wang Z, Yang S, Liu X, Yang T, Han T, He X, Jiang Y, Hao Y. A near-infrared turn-on fluorescent probe for the rapid detection of selenocysteine and its application of imaging in living cells and mice. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Zhang X, Zhang L, Wang X, Han X, Huang Y, Li B, Chen L. Visualizing and evaluating mitochondrial cysteine via near-infrared fluorescence imaging in cells, tissues and in vivo under hypoxia/reperfusion stress. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126476. [PMID: 34323707 DOI: 10.1016/j.jhazmat.2021.126476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Increasingly grim environmental pollutions are closely related with the occurrence and development of diseases. However, it's obscure how environmental stress disturbs the normal physiological process, and then how endogenous reactive species mend the cases. Hypoxia/reperfusion (H/R), a common and intractable injury in aquaculture and clinic, can induce oxidative stress and ultimately cause irreversible injury to organism. Cysteine (Cys) plays essential roles in maintaining transduction of numerous reactive species and redox homeostasis in subcellular structures, cells and organisms. A great deal of fluorescence research about Cys are focusing on development of selective probes but with poor exploration of the biofunction under environmental stress. Therefore, it is of great significance to examine the bio-effects of Cys against H/R stress. In the present work, we design a fluorescent probe BCy-AC for in situ detecting Cys, the unique Enol-Keto tautomerization of fluorophore BCy-Keto propels the reaction process which will improve the sensitivity and potential application performance of the probe. BCy-AC is conveniently applied to visualize Cys in HT-22 cells, zebrafish and mice tissues. Moreover, imaging results obtained from H/R models reveal that endogenous Cys changes with hypoxia and reperfusion time and Cys pretreatment effectively defend H/R injury in cells and in vivo.
Collapse
Affiliation(s)
- Xia Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaoyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiaoyue Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Huang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
16
|
Novel lysosome-targeted anticancer fluorescent agents used in zebrafish and nude mouse tumour imaging. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2075-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
She ZP, Wang WX, Jiang WL, Wang ZQ, Mao GJ, Fei J, Li Y, Li CY. Accurate Fluorescence Diagnosis of Cancer Based on Sequential Detection of Hydrogen Sulfide and pH. Anal Chem 2021; 93:11826-11835. [PMID: 34461732 DOI: 10.1021/acs.analchem.1c02449] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer ranks as a leading cause of death in every country of the world. However, if they are discovered early, a lot of cancers can be prevented or cured. Discovering and monitoring cancer markers are the main methods for early diagnosis of cancer. To date, many fluorescent probes designed and used for early cancer diagnosis can only react with a single marker, which always causes insufficient accuracy in complex systems. Herein, a novel near-infrared (NIR) fluorescent probe (CyO-DNP) for the sequential detection of H2S and H+ is synthesized. In this probe, a heptamethine dye is selected as the fluorophore and a 2,4-dinitrophenyl (DNP) ether is chosen as recognition group. In the presence of H2S, CyO-DNP is transformed into CyO, which exhibits an intense fluorescence at 663 nm. Then, H+ induces the protonation of CyO to obtain CyOH, and the final fluorescence emission at 793 nm significantly enhances. Owing to the low cytotoxicity and the NIR fluorescence emission, CyO-DNP can sequentially monitor endogenous H2S and H+ in cancer cells and image exogenous and endogenous H2S and H+ in mice. It is worth mentioning that CyO-DNP can effectively avoid the false positive signal caused by the liver and kidney and discriminate normal mice and tumor mice accurately. For all we know, CyO-DNP is the first fluorescent probe for early accurate diagnosis of cancer by sequentially detecting H2S and H+.
Collapse
Affiliation(s)
- Zun-Pan She
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Zhi-Qing Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Junjie Fei
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.,College of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
18
|
Liu Y, Yu Y, Meng Q, Jia X, Zhu J, Tang C, Zhao Q, Feng X, Zhang J. A Fluorescent Probe for the Specific Staining of Cysteine Containing Proteins and Thioredoxin Reductase in SDS-PAGE. BIOSENSORS 2021; 11:bios11050132. [PMID: 33922498 PMCID: PMC8146322 DOI: 10.3390/bios11050132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
A naphthalimide-based fluorescent probe, Nap-I, with iodoacetamide as the alkylating group, has been synthesized, and its specific fluorescent staining of proteins containing cysteine (Cys) and selenocysteine (Sec) residues in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) has been evaluated. This molecule shows good fluorescence properties in the labeling of protein Cys/Sec residues, while reducing steric hindrance and minimizing changes in the water solubility of proteins. Reaction parameters, such as labeling time and pH, have been investigated, and the optimal labeling conditions for Cys-containing proteins have been determined. Thioredoxin reductase (TXNRD) is best stained at low pH. The probe Nap-I has been successfully used for the quantification of serum proteins and hemoglobin in Tan sheep serum, and TXNRD in Tan sheep liver and muscle has been labeled at low pH. Based on the probe Nap-I, we have also distinguished TXNRD1 and TXNRD2 by SDS-PAGE. The results showed that, compared with the normal microenvironment in which the protein resides, the lower the pH value, the greater the TXNRD activity.
Collapse
Affiliation(s)
- Yuning Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xueting Jia
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiawei Zhu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (Y.Y.); (Q.M.); (X.J.); (J.Z.); (C.T.); (Q.Z.)
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
19
|
Yin J, Quan W, Kong X, Liu C, Lu B, Lin W. Utilizing a Solvatochromic Optical Agent to Monitor the Polarity Changes in Dynamic Liver Injury Progression. ACS APPLIED BIO MATERIALS 2021; 4:3630-3638. [PMID: 35014449 DOI: 10.1021/acsabm.1c00130] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unraveling the changing rule of endoplasmic reticulum (ER) polarity is of significance for liver injury. However, the rule of the ER polarity changes during the occurrence and progression of liver injury remains a mystery. Toward that, a unique fluorescent probe, ERNT, capable of imaging ER polarity in multiple liver injury models with high accuracy and fidelity was designed herein. In light of its excellent solvatochromism, the ER polarity was determined to be higher in the case of endoplasmic reticulum stress (ERS) induced by tunicamycin and dithiothreitol than that of the normal state at the cell level. Importantly, with the assistance of the PerkinElmer IVIS Spectrum imaging system and the powerful tool of ERNT, our work first revealed that the ER polarity increases with the evolution of liver injuries. Moreover, as a demonstration, ERNT achieved evaluating hepatoprotective drug efficacy by detecting ER polarity, confirming its high clinical application prospect. Thus, our work not only first unravels the rule of ER polarity in dynamic liver injury progression but may also inspire more diagnostic and therapeutic programs for liver diseases shortly.
Collapse
Affiliation(s)
- Junling Yin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Wei Quan
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Cong Liu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Bingli Lu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China.,Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
20
|
Yan F, Sun X, Zhang Y, Jiang Y, Chen L, Ma T, Chen L. A Schiff base probe for competitively sensing Cu2+ and cysteine through hydrolysis, complexation, and cyclization. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Abdillah A, Sonawane PM, Kim D, Mametov D, Shimodaira S, Park Y, Churchill DG. Discussions of Fluorescence in Selenium Chemistry: Recently Reported Probes, Particles, and a Clearer Biological Knowledge. Molecules 2021; 26:692. [PMID: 33525729 PMCID: PMC7866183 DOI: 10.3390/molecules26030692] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
In this review from literature appearing over about the past 5 years, we focus on selected selenide reports and related chemistry; we aimed for a digestible, relevant, review intended to be usefully interconnected within the realm of fluorescence and selenium chemistry. Tellurium is mentioned where relevant. Topics include selenium in physics and surfaces, nanoscience, sensing and fluorescence, quantum dots and nanoparticles, Au and oxide nanoparticles quantum dot based, coatings and catalyst poisons, thin film, and aspects of solar energy conversion. Chemosensing is covered, whether small molecule or nanoparticle based, relating to metal ion analytes, H2S, as well as analyte sulfane (biothiols-including glutathione). We cover recent reports of probing and fluorescence when they deal with redox biology aspects. Selenium in therapeutics, medicinal chemistry and skeleton cores is covered. Selenium serves as a constituent for some small molecule sensors and probes. Typically, the selenium is part of the reactive, or active site of the probe; in other cases, it is featured as the analyte, either as a reduced or oxidized form of selenium. Free radicals and ROS are also mentioned; aggregation strategies are treated in some places. Also, the relationship between reduced selenium and oxidized selenium is developed.
Collapse
Affiliation(s)
- Ariq Abdillah
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Prasad M. Sonawane
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Donghyeon Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Dooronbek Mametov
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Shingo Shimodaira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Yunseon Park
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering), Daejeon 34141, Korea
| |
Collapse
|
22
|
Liu Y, Yu Y, Zhao Q, Tang C, Zhang H, Qin Y, Feng X, Zhang J. Fluorescent probes based on nucleophilic aromatic substitution reactions for reactive sulfur and selenium species: Recent progress, applications, and design strategies. Coord Chem Rev 2021; 427:213601. [PMID: 33024340 PMCID: PMC7529596 DOI: 10.1016/j.ccr.2020.213601] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Reactive sulfur species (RSS) and reactive selenium species (RSeS) are important substances for the maintenance of physiological balance. Imbalance of RSS and RSeS is closely related to a series of human diseases, so it is considered to be an important biomarker in early diagnosis, treatment, and stage monitoring. Fast and accurate quantitative analysis of different RSS and RSeS in complex biological systems may promote the development of personalized diagnosis and treatment in the future. One way to explore the physiological function of various types of RSS and RSeS in vivo is to detect them at the molecular level, and one of the most effective methods for this is to use fluorescent probes. Nucleophilic aromatic substitution (SNAr) reactions are commonly exploited as a detection mechanism for RSS and RSeS in fluorescent probes. In this review, we cover recent progress in fluorescent probes for RSS and RSeS based on SNAr reactions, and discuss their response mechanisms, properties, and applications. Benzenesulfonate, phenyl-O ether, phenyl-S ether, phenyl-Se ether, 7-nitro-2,1,3-benzoxadiazole (NBD), benzoate, and selenium-nitrogen bonds are all good detection groups. Moreover, based on an integration of different reports, we propose the design and synthesis of RSS- and RSeS-selective probes based on SNAr reactions, current challenges, and future research directions, considering the selection of active sites, the effect of substituents on the benzene ring, and the introduction of other functional groups.
Collapse
Affiliation(s)
- Yuning Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiyan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
23
|
Hou JT, Wang B, Zou Y, Fan P, Chang X, Cao X, Wang S, Yu F. Molecular Fluorescent Probes for Imaging and Evaluation of Hypochlorite Fluctuations during Diagnosis and Therapy of Osteoarthritis in Cells and in a Mouse Model. ACS Sens 2020; 5:1949-1958. [PMID: 32586093 DOI: 10.1021/acssensors.0c00270] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The early diagnosis of osteoarthritis (OA) can halt or delay the progression of the disease, and it is essentially beneficial to its treatment. However, biomarkers with sufficient sensitivity for dynamically identifying early OA are still yet to be determined. The overproduced hypochlorous acid (HOCl) has been proposed as an obvious symptom in early OA. Herein, based on the oxidation reaction of the sulfur atom in phenothiazine into sulfoxide, we design and synthesize a phenothiazine-derived coumarin fluorescent probe PDC for the detection of ClO- in cells and in an OA mouse model. The probe PDC exhibits excellent selectivity and sensitivity for ClO- detection with a limit of detection as low as 16.1 nM. Taking advantage of the probe PDC, we visualize and evaluate the level changes of ClO- in macrophage cells, which is stimulated by various inflammatory factors. The anti-inflammatory and therapeutic effects of selenocysteine and methotrexate in inflamed cells are also confirmed. Finally, with in vivo imaging of ClO- concentration changes in OA BALB/c mouse models, we successfully inspected the relationship between OA phenotypes and the burst of ClO-. We suggest that abnormal changes in HOCl concentration may be considered as a new biomarker for the early OA diagnosis.
Collapse
Affiliation(s)
- Ji-Ting Hou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Bingya Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Yuxia Zou
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Peiwen Fan
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xueping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Shan Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
24
|
Liu Y, Feng X, Yu Y, Zhao Q, Tang C, Zhang J. A review of bioselenol-specific fluorescent probes: Synthesis, properties, and imaging applications. Anal Chim Acta 2020; 1110:141-150. [PMID: 32278389 DOI: 10.1016/j.aca.2020.03.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 01/25/2023]
Abstract
Bioselenols are important substances for the maintenance of physiological balance and offer anticancer properties; however, their causal mechanisms and effectiveness have not been assessed. One way to explore their physiological functions is the in vivo detection of bioselenols at the molecular level, and one of the most efficient ways to do so is to use fluorescent probes. Various types of bioselenol-specific fluorescent probes have been synthesized and optimized using chemical simulations and by improving biothiol fluorescent probes. Here, we review recent advances in bioselenol-specific fluorescent probes for selenocysteine (Sec), thioredoxin reductase (TrxR), and hydrogen selenide (H2Se). In particular, the molecular design principles of different types of bioselenols, their corresponding sensing mechanisms, and imaging applications are summarized.
Collapse
Affiliation(s)
- Yuning Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
25
|
Tian Y, Li Y, Wang WX, Jiang WL, Fei J, Li CY. Novel Strategy for Validating the Existence and Mechanism of the “Gut–Liver Axis” in Vivo by a Hypoxia-Sensitive NIR Fluorescent Probe. Anal Chem 2020; 92:4244-4250. [DOI: 10.1021/acs.analchem.9b04578] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yang Tian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, P.R. China
| | - Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Junjie Fei
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| |
Collapse
|
26
|
Zhao X, Yuan G, Ding H, Zhou L, Lin Q. A TP-FRET-based fluorescent sensor for ratiometric visualization of selenocysteine derivatives in living cells, tissues and zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120918. [PMID: 31421550 DOI: 10.1016/j.jhazmat.2019.120918] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Selenium is a biologically essential micronutrient element serving as an essential building block for selenoproteins (SePs), which is playing a key role in various cellular functions. Hence, it is of great significance to developing a reliable and rapid method for detection of Sec in biosystems. Compared with the previously reported probes that have been developed for selective detection of Sec, two-photon (TP) ratiometric Sec-specific probes would be advantageous for the NIR excitation and built-in correction of the dual emission bands. To quantitatively and selectively detect Sec over biothiols with rapid and sensitive response, we for the first time report a new fluorescence resonance energy transfer (FRET)-based TP ratiometric fluorescence probe CmNp-Sec, which was constructed by conjugating a TP fluorophore 6 (coumarin derivative with a D-π-A-structure) with a naphthalimide fluorophore 9 via a non-conjugated linker, and employed a 4-dinitrobenzene-ether (DNB) with a strong ICT effect as Sec responsive moiety. It exhibits quantitatively detect Sec in a wide range (0-50 μM) with a limit of detection of 7.88 nM within 10 min. More impressively, this probe can be conveniently used to detect Sec in living cells, tissues and zebrafish, demonstrating it has the latent capability in further biological applications.
Collapse
Affiliation(s)
- Xiongjie Zhao
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Gangqiang Yuan
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 41004, China
| | - Haiyuan Ding
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 41004, China
| | - Liyi Zhou
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 41004, China.
| | - Qinlu Lin
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 41004, China
| |
Collapse
|
27
|
Zhang L, Shi Y, Sheng Z, Zhang Y, Kai X, Li M, Yin X. Bioluminescence Imaging of Selenocysteine in Vivo with a Highly Sensitive Probe. ACS Sens 2019; 4:3147-3155. [PMID: 31701738 DOI: 10.1021/acssensors.9b01268] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Selenocysteine (Sec), a vital member of reactive selenium species, is closely implicated in diverse pathophysiological states, including cancer, cardiovascular diseases, diabetes, neurodegenerative diseases, and male infertility. Monitoring Sec in vivo is of significant interest for understanding the physiological roles of Sec and the mechanisms of human diseases associated with abnormal levels of Sec. However, no bioluminescence probe for real-time monitoring of Sec in vivo has been reported. Herein, we present a novel bioluminescent probe BF-1 as an effective tool for the determination of Sec in living cells and in vivo for the first time. BF-1 has advantages of high sensitivity (a detection limit of 8 nM), remarkable bioluminescence enhancement (580-fold), reasonable selectivity, low cytotoxicity, and high signal-to-noise ratio imaging feasibility of Sec in living cells and mice. More importantly, BF-1 affords high sensitivity for monitoring Sec stimulated by Na2SeO3 in tumor-bearing mice. These results demonstrate that our new probe could serve as a powerful tool to selectively monitor Sec in vivo, thus providing a valuable approach for exploring the physiological and pathological functions and anticancer mechanisms of selenium.
Collapse
Affiliation(s)
- Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Yanfen Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Zhijia Sheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Yiran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Xiaoning Kai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Shandong University, Jinan 250012, PR China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| |
Collapse
|
28
|
Luo X, Wang R, Lv C, Chen G, You J, Yu F. Detection of Selenocysteine with a Ratiometric near-Infrared Fluorescent Probe in Cells and in Mice Thyroid Diseases Model. Anal Chem 2019; 92:1589-1597. [DOI: 10.1021/acs.analchem.9b04860] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xianzhu Luo
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Chuanzhu Lv
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Guang Chen
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jinmao You
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Fabiao Yu
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
29
|
State-of-the-art: functional fluorescent probes for bioimaging and pharmacological research. Acta Pharmacol Sin 2019; 40:717-723. [PMID: 30487651 DOI: 10.1038/s41401-018-0190-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases, neuropsychiatric disorders, and cancers seriously endanger human health. Mechanistic and pharmacological mechanisms of candidate drugs are central to the translational paradigm. Since many signal transduction and molecular events are implicated in these diseases, a novel method to interrogate the key pharmacological mechanisms is required to accelerate innovative drug discovery. Much attention now focuses on the real-time visualization of molecular disease events to yield new insights to the pathogenesis of the diseases. This review focuses on recent advances in the development of chemical probes for imaging pathological events to facilitate the study of the underlying pharmacodynamics and toxicity involved. As reviewed here, optical imaging is now frequently viewed as an indispensable technique in the field of biological research. Promoting interdisciplinary collaboration among chemistry, biology and medicine, is necessary to further refine functional fluorescent probes for diagnostic and therapeutic applications.
Collapse
|
30
|
Zhang D, Hu M, Yuan X, Wu Y, Hu X, Xu S, Liu HW, Zhang X, Liu Y, Tan W. Engineering Self-Calibrating Nanoprobes with Two-Photon-Activated Fluorescence Resonance Energy Transfer for Ratiometric Imaging of Biological Selenocysteine. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17722-17729. [PMID: 30998313 DOI: 10.1021/acsami.9b04555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Selenocysteine (Sec) has proven to be the dominant active site of diverse selenoproteins that are directly linked with human health and disease. Thus, understanding the critical functions and dynamics of endogenous Sec at cellular and tissue levels is highly demanded. However, no method has been reported that is capable of providing reliable quantitative imaging analysis of Sec in living systems, especially in deep tissues, with low background signal and high sensitivity and imaging resolution simultaneously. To address this challenge, we herein report a novel class of engineered Sec-responsive fluorescent nanoprobes that combines two-photon excitation with Förster resonance energy transfer (FRET) mechanisms for direct, yet selective, sensing and imaging of biological Sec over abundant competing biothiols. Specifically, the two-photon excitation at the near-infrared window can minimize light scattering and background signals in tissues, thus offering improved spatial and temporal imaging of deep living tissues with reduced background interference. Moreover, a reasonable FRET donor-acceptor pair has further been designed and verified by theoretical calculation. The acceptor undergoes intramolecular rearrangement specifically in response to the nucleophilic attack of Sec, hence triggering remarkable FRET-mediated ratiometric fluorescence enhancement for sensitive and reliable quantification of Sec through self-calibration of two emission channels. These striking properties, along with good water solubility and biocompatibility, suggest that this strategy may serve as a valuable imaging tool for studying various Sec-related biological events in complex biological systems.
Collapse
Affiliation(s)
- Dailiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
| | - Miaomiao Hu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
| | - Xi Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
| | - Yongxiang Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
| | - Shuai Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
| | - Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
| | - XiaoBing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , United States
| |
Collapse
|
31
|
Zhang H, Zhu X, Liu G, Ding X, Wang J, Yang M, Zhang R, Zhang Z, Tian Y, Zhou H. Conformationally Induced Off-On Two-Photon Fluorescent Bioprobes for Dynamically Tracking the Interactions among Multiple Organelles. Anal Chem 2019; 91:6730-6737. [PMID: 31001974 DOI: 10.1021/acs.analchem.9b00806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Unveiling the synergism among multiple organelles for fully exploring the mysteries of the cell has drawn more and more attention. Herein, we developed two two-photon fluorescent bioprobes (Lyso-TA and Mito-QA), of which the conformational change triggered an "off-on" fluorescent response. Lyso-TA can real-time monitor the fusion and movement of lysosomes as well as unveil the mitophagy process with the engagement of lysosomes. Mito-QA was transformed from Lyso-TA by one-step ambient temperature reaction, visualizing the dysfunctional mitochondria through a shift from mitochondria to nucleoli. With superior two-photon absorption cross section, good biocompatibility, and greater penetration depth, two small bioprobes were both applied in in vivo bioimaging of brain tissues and zebrafish.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Xiaojiao Zhu
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Gang Liu
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Xinzhi Ding
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Junjun Wang
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Mingdi Yang
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Ruilong Zhang
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Zhongping Zhang
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Hongping Zhou
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| |
Collapse
|
32
|
Zhang L, Kai X, Zhang Y, Zheng Y, Xue Y, Yin X, Zhao J. A reaction-based near-infrared fluorescent probe that can visualize endogenous selenocysteine in vivo in tumor-bearing mice. Analyst 2018; 143:4860-4869. [PMID: 30128454 DOI: 10.1039/c8an00765a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Monitoring the fluctuations of endogenous selenocysteine (Sec) in vivo is of significant interest to understand the physiological roles of Sec and the mechanisms of Sec-relevant diseases. Herein, a new near-infrared fluorescent probe, Fsec-1, has been developed for the determination of endogenous Sec in living cells and in vivo. Fsec-1 exhibits large fluorescence enhancement (136-fold) and a remarkably large Stokes shift (195 nm) when reacted with Sec. With the advantages of high sensitivity (a detection limit of 10 nM), good selectivity and low cytotoxicity, Fsec-1 was able to recognize both exogenous and endogenous Sec in living cells. The probe was also successfully applied in visualizing both exogenous and endogenous Sec in living mice. Notably, endogenously generated Sec in living tumors xenografted in nude mice was selectively detected by our reaction-based NIR probe for the first time. These results indicated that our new probe could serve as an efficient tool in monitoring endogenous Sec in vivo and exploring the anticancer mechanism of selenium.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China.
| | | | | | | | | | | | | |
Collapse
|