1
|
Xie X, Wang S, Chen Z, Yu Y, Hu X, Ma N, Ji M, Tian Y. Exploring DNA Computers: Advances in Storage, Cryptography and Logic Circuits. Chembiochem 2024:e202400670. [PMID: 39365708 DOI: 10.1002/cbic.202400670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
Over the last four decades, research on DNA as a functional material has primarily focused on its predictable conformation and programmable interaction. However, its low energy consumption, high responsiveness and sensitivity also make it ideal for designing specific signaling pathways, and enabling the development of molecular computers. This review mainly discusses recent advancements in the utilization of DNA nanotechnology for molecular computer, encompassing applications in storage, cryptography and logic circuits. It elucidates the challenges encountered in the application process and presents solutions exemplified by representative works. Lastly, it delineates the challenges and opportunities within this filed.
Collapse
Affiliation(s)
- Xiaolin Xie
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Shuang Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
| | - Zhi Chen
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yifan Yu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Xiaoxue Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Ningning Ma
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Min Ji
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Ye Tian
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Pan J, Deng F, Liu Z, Zeng L, Chen J. Construction of molecular logic gates using heavy metal ions as inputs based on catalytic hairpin assembly and CRISPR-Cas12a. Talanta 2023; 255:124210. [PMID: 36566557 DOI: 10.1016/j.talanta.2022.124210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
We successfully constructed several molecular logic gates using heavy metal ions as inputs based on catalytic hairpin assembly (CHA) and CRISPR-Cas12a. The corresponding DNAzymes were used to recognize heavy metal ions (Hg2+, Cd2+, Pb2+, and Mn2+). The specific cleavage between heavy metal ions and DNAzymes leads to the release of the trigger DNA, which can be used to activate CHA through logic computation. The CHA-generated DNA duplexes contain the protospacer adjacent motifs (PAM) sequence, which can be distinguished by CRISPR-Cas12a. The hybridization interactions between the duplexes and gRNA will activate the trans-cleavage capability of Cas12a, which can cleave the single-stranded DNA (ssDNA) reporter. The separation of the fluorescence group and quench group in ssDNA will generate a high fluorescence signal for readout. Using Hg2+ and Cd2+ as the two inputs, several basic logic gates were constructed, including OR, AND, and INHIBT. Using Hg2+, Cd2+, Pb2+, and Mn2+ as the four inputs, cascaded logic gates were further fabricated. With the advantages of scalability, versatility, and logic computing capability, our proposed molecular logic gates can provide an intelligent sensing system for heavy metal ions monitoring.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Fang Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lingwen Zeng
- Guangdong Langyuan Biotechnology Co., LTD, Foshan, 528313, China; School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
3
|
Shi L, Tang Q, Yang B, Liu W, Li B, Yang C, Jin Y. Logic-Gates of Gas Pressure for Portable, Intelligent and Multiple Analysis of Metal Ions. Anal Chem 2023; 95:5702-5709. [PMID: 36939344 DOI: 10.1021/acs.analchem.2c05677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
DNA logic gates have shown outstanding magic in intelligent biology applications, but it remains challenging to construct a portable, affordable and convenient DNA logic gate. Herein, logic gates of gas pressure were innovatively developed for multiplex analysis of metal ions. Hg2+ and Ag+ were input to interact specifically with the respective mismatched base pairs, which activated DNA extension reaction by polymerase and led to the enrichment of platinum nanoparticles for catalyzing the decomposition of peroxide hydrogen. Thus, the gas pressure obtained from a sealed well was used as output for detecting or identifying metal ions. Hg2+ and Ag+ were sensitively and selectively detected, and the assay of the real samples was also satisfactory. Based on this, DNA logic gates, including YES, NOT, AND, OR, NAND, NOR, INHIBIT, and XOR were successfully established using a portable and hand-held gas pressure meter as detector. So, the interactions between DNA and metal ions were intelligently transferred into the output of gas pressure, which made metal ions to be detected portably and identified intelligently. Given the remarkable merits of simplicity, logic operation, and portable output, the metal ion-driven DNA logic gate of gas pressure provides a promising way for intelligent and portable biosensing.
Collapse
Affiliation(s)
- Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bing Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
4
|
Deng F, Pan J, Liu Z, Zeng L, Chen J. Programmable DNA biocomputing circuits for rapid and intelligent screening of SARS-CoV-2 variants. Biosens Bioelectron 2023; 223:115025. [PMID: 36542937 PMCID: PMC9759469 DOI: 10.1016/j.bios.2022.115025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
The frequent emergence of SARS-CoV-2 variants increased viral transmissibility and reduced protection afforded by vaccines. The rapid, multichannel, and intelligent screening of variants is critical to minimizing community transmissions. DNA molecular logic gates have attracted wide attention in recent years due to the powerful information processing capabilities and molecular data biocomputing functions. In this work, some molecular switches (MSs) were connected with each other to implement arbitrary binary functions by emulating the threshold switching of MOS transistors and the decision tree model. Using specific sequences of different SARS-CoV-2 variants as inputs, the MSs net was used to build several molecular biocomputing circuits, including NOT, AND, OR, INHIBIT, XOR, half adder, half subtractor, full adder, and full subtractor. Four fluorophores (FAM, Cy3, ROX, and Cy5) were employed in the logic systems to realize the multichannel monitoring of the logic operation results. The logic response is fast and can be finished with 10 min, which facilitates the rapid wide-population screening for SARS-CoV-2 variants. Importantly, the logic results can be directly observed by the naked eye under a portable UV lamp, thus providing a simple and intelligent method to enable high-frequency point-of-care diagnostics, particularly in low-resource communities.
Collapse
Affiliation(s)
- Fang Deng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jiafeng Pan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lingwen Zeng
- Guangdong Langyuan Biotechnology Co., LTD, Foshan, 528313, China; School of Food Science and Engineering, Foshan University, Foshan, 528231, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
5
|
Cascaded molecular logic gates using antibiotics as inputs based on exonuclease III and DNAzyme. Talanta 2023; 252:123832. [DOI: 10.1016/j.talanta.2022.123832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/18/2022]
|
6
|
Pan J, Deng F, Liu Z, Shi G, Chen J. Toehold-Mediated Cascade Catalytic Assembly for Mycotoxin Detection and Its Logic Applications. Anal Chem 2022; 94:3693-3700. [PMID: 35176850 DOI: 10.1021/acs.analchem.1c05485] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work, an enzyme-free biosensor is reported for mycotoxin detection based on a toehold-mediated catalytic hairpin assembly (CHA) and a DNAzyme-cascaded hydrolysis reaction. In the presence of a mycotoxin, the recognition between an aptamer and the mycotoxin releases the trigger DNA. The trigger DNA initiates the toehold-mediated CHA, generating large amounts of partial duplex B/C with four toeholds, which can be used to assemble the DNAzyme-cascaded hydrolysis reaction. Furthermore, through a collaborative autoassembly reaction among the B/C duplex, DNA1, and DNA2, supramolecular nanostructures corresponding to Mg2+-dependent DNAzymes can be formed. With the incubation of Mg2+, the dual-modified (TAMRA/BHQ2) substrate strand DNA2 will be cleaved into two fragments, yielding a high TAMRA fluorescence signal for mycotoxin testing. Under optimal conditions, the sensing system was ultrasensitive and showed low detection limits of 0.2 pM for ochratoxin A (OTA), 0.13 pM for aflatoxin B1 (AFB1), and 0.17 pM for zearalenone (ZEN). The mycotoxin aptasensor also exhibited high selectivity and was successfully applied for the quantitative analysis of OTA, AFB1, and ZEN in wine samples. Due to the advantages of flexibility and versatility, this mycotoxin platform was used to fabricate several concatenated logic gates including "AND-INHIBIT", "INHIBIT-OR", "OR-AND", and "OR-INHIBIT" logic biocomputings. Such multiple functions of the logic system provided a universal sensing strategy for the intelligent detection of multiplex mycotoxins, demonstrating considerable potential in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.,National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fang Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.,National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Gu Shi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
7
|
Chen J, Shi G, Yan C. Visual Test Paper for on-Site Polychlorinated Biphenyls Detection and Its Logic Gate Applications. Anal Chem 2021; 93:15438-15444. [PMID: 34763426 DOI: 10.1021/acs.analchem.1c03309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visual detection method was proposed for polychlorinated biphenyls (PCBs) detection using lateral flow test paper as the sensing platform. The aptamer sequence was used to recognize the target 3,3',4,4'-tetrachlorobiphenyl (PCB77). The integration of Zn2+-dependent DNAzyme with toehold-mediated strand displacement reaction significantly improved the response signals. Gold nanoparticles were utilized as the signal tracers in the test paper, making the results visible directly by the naked eye. Under optimal conditions, the paper enables the visual detection of PCB77 as low as 10 pM without additional instrumentation. The assay displays a high selectivity for PCB77 against potential interfering molecules. The visual test paper is robust and has been applied to the detection of PCB77 in milk samples with good recovery and satisfactory accuracy. Using two different PCBs (PCB77 and PCB72) as inputs, we further fabricated OR and AND logic gates, which is conducive to the development of an intelligent detection strategy for PCBs monitoring. Given the attractive characteristics of disposability, low cost, logic operation, and intuitive output, the test paper shows great promise for on-site screening of PCBs in resource-limited areas.
Collapse
Affiliation(s)
- Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Gu Shi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chong Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
8
|
Yao L, Xu J, Cheng J, Yao B, Zheng L, Liu G, Chen W. Simultaneous and accurate screening of multiple genetically modified organism (GMO) components in food on the same test line of SERS-integrated lateral flow strip. Food Chem 2021; 366:130595. [PMID: 34298393 DOI: 10.1016/j.foodchem.2021.130595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/14/2021] [Accepted: 07/11/2021] [Indexed: 01/17/2023]
Abstract
Herein, a surface-enhanced Raman scattering (SERS)-integrated LFS platform was developed for rapid and simultaneous screening of multiple genetically modified organism (GMO) components (promoter, codon, and terminator) in soybean. Research demonstrated that, on the same test line (T line) of single LFS, three different GMP components can be well distinguished with the help of three SERS nano tags. Good linear correlations between SERS signal and concentration of each GMO component were also obtained for quantitative analysis. Of greater importance, whether these multiple analytes coexisted or not, varied in the same concentration trend or not, these multiple GMP components can be rapidly (15 min) and accurately screened with satisfied sensitivity and specificity by decoding the signals on the same T line. We envision that this decoding platform can further improve the potential of LFS and SERS for practical applications and provide a promising alternative for multiple screening of GMO identification in food.
Collapse
Affiliation(s)
- Li Yao
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang 233100, China
| | - Jianguo Xu
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jigui Cheng
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bangben Yao
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, China
| | - Lei Zheng
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guodong Liu
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang 233100, China.
| | - Wei Chen
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Intelligent Manufacturing Institute of Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
9
|
Shi G, Yan C, Chen J. Scalable Logic Circuits with Multiple Outputs and an Automatic Reset Function Based on DNAzyme-Mediated Branch Migration. Anal Chem 2021; 93:3273-3279. [PMID: 33528992 DOI: 10.1021/acs.analchem.0c05173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A scalable logic platform made up of multilayer DNA circuits was constructed using Pb2+, Cu2+, and Zn2+ as the three inputs and three different fluorescent signals as the outputs. DNAzyme-guided cyclic cleavage reactions and DNA toehold-mediated strand branch migration were utilized to organize and connect nucleic acid probes for building the high-level logic architecture. The sequence communications between each circuit enable the logic network to work as a keypad lock, which is an information protection model at the molecular level. The multi-output mode was used to monitor the gradual unlocking process of the security system, from which one can determine which password is correct or not immediately. The autocatalytic cleavage of DNAzyme makes the biocomputing circuit feasible to realize the reset function automatically without external stimuli. Importantly, the logic platform is robust and can work effectively even in complex environmental samples.
Collapse
Affiliation(s)
- Gu Shi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chong Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
10
|
Pan J, He Y, Liu Z, Chen J. Dual recognition element-controlled logic DNA circuit for COVID-19 detection based on exonuclease III and DNAzyme. Chem Commun (Camb) 2021; 57:1125-1128. [PMID: 33410447 DOI: 10.1039/d0cc06799g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two fragments of the COVID-19 genome (specific and homologous) were used as two inputs to construct an AND logic gate for COVID-19 detection based on exonuclease III and DNAzyme. The detection sensitivity of the assay can reach fM levels. Satisfactory recovery values were obtained in real sample analysis.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Ying He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
11
|
Wei B, Sun X, Yao D, Li C, Xiao S, Guo Y, Liang H. Homogeneous DNA-only keypad locks enable one-pot assay of multi-inputs. Chem Commun (Camb) 2020; 56:7427-7430. [PMID: 32490866 DOI: 10.1039/d0cc02868a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Homogeneous DNA-only keypad locks were built with multi-stranded scalable junction substrates and a series of double-stranded eliminators to differentially process correctly- and wrongly-added DNA inputs, respectively. Unlike conventional strategies that employed solid-phase platforms, one-pot assay of multiple DNA inputs was achieved, showing merits in fabricating complicated information security systems.
Collapse
Affiliation(s)
- Bing Wei
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Liang J, Wei W, Yao H, Shi K, Liu H. A biocomputing platform with electrochemical and fluorescent signal outputs based on multi-sensitive copolymer film electrodes with entrapped Au nanoclusters and tetraphenylethene and electrocatalysis of NADH. Phys Chem Chem Phys 2019; 21:24572-24583. [PMID: 31663551 DOI: 10.1039/c9cp03687c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, poly(N,N'-dimethylaminoethylmethacrylate-co-N-isopropylacrylamide) copolymer films were polymerized on the surface of Au electrodes with a facile one-step method, and Au nanoclusters (AuNCs) and tetraphenylethene (TPE) were synchronously embedded in the films, designated as P(DMA-co-NIPA)/AuNCs/TPE. Ferrocene dicarboxylic acid (FDA), an electroactive probe in solution displayed inverse pH- and SO42--sensitive on-off cyclic voltammetric (CV) behaviors at the film electrodes. The electrocatalytic oxidation of nicotinamide adenine dinucleotide (NADH) mediated by FDA in solution could substantially amplify the CV response difference between the on and off states. Moreover, the two fluorescence emission (FL) signals from the TPE constituent at 450 nm and AuNCs component at 660 nm in the films also demonstrated SO42-- and pH-sensitive behaviors. Based on the aforementioned results, a 4-input/9-output biomolecular logic circuit was constructed with pH, Na2SO4, FDA and NADH as the inputs, and the CV signals and the FL responses at 450 and 660 nm at different levels as the outputs. Additionally, some functional non-Boolean devices were elaborately designed on an identical platform, including a 1-to-2 decoder, a 2-to-1 encoder, a 1-to-2 demultiplexer and different types of keypad locks. This work combines copolymer films, bioelectrocatalysis, and fluorescence together so that more complicated biocomputing systems could be established. This work may pave a new way to develop advanced and sophisticated biocomputing logic circuits and functional devices in the future.
Collapse
Affiliation(s)
- Jiying Liang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | | | | | | | | |
Collapse
|
13
|
Huang D, Yang C, Yao Y, Li J, Guo C, Chen J, Zhang Y, Yang S, Yang Q, Tang Y. Versatile and Homogeneous DNA Tetraplex Platform for Constructing Label‐Free Logic Devices: From Design to Application. Chemistry 2019; 25:6996-7003. [PMID: 30933378 DOI: 10.1002/chem.201900734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Dan Huang
- College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Chunrong Yang
- College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Ye Yao
- College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Jicheng Li
- College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Chen Guo
- College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Jianchi Chen
- College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Yi Zhang
- Department West China School of PharmacySichuan University Chengdu 610064 P.R. China
| | - Shu Yang
- Department West China School of PharmacySichuan University Chengdu 610064 P.R. China
| | - Qianfan Yang
- College of ChemistrySichuan University Chengdu 610064 P.R. China
| | - Yalin Tang
- National Laboratory for Molecular SciencesCentre for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable, and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P.R. China
| |
Collapse
|