1
|
Zhang W, Joshi C, Smith C, Ujas TA, Rivas JR, Cowell L, Christley S, Stowe AM, Monson NL. Neuronal binding by antibodies can be influenced by low pH stress during the isolation procedure. J Immunol Methods 2023; 521:113535. [PMID: 37558123 PMCID: PMC11249026 DOI: 10.1016/j.jim.2023.113535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/18/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Low pH stress and its influence on antibody binding is a common consideration among chemists, but is only recently emerging as a consideration in Immunological studies. Antibody characterizations in Multiple Sclerosis (MS), an autoimmune disease of the Central Nervous System (CNS) has revealed that antibodies in the cerebrospinal fluid (CSF) of patients with Multiple Sclerosis bind to myelin-related and non-myelin antigen targets. Many laboratories have used molecular biology techniques to generate recombinant human antibodies (rhAbs) expressed by individual B cells from healthy donors and patients with systemic autoimmune disease to identify antigen targets. This approach has been adapted within the Neuroimmunology research community to investigate antigen targets of individual B cells in the CSF of MS patients. Our laboratory determines which antibodies to clone based on their immunogenetics and this method enriches for cloning of rhAbs that bind to neurons. However, newer technologies to assist in purification of these rhAbs from culture supernatants use an acidic elution buffer which may enhance low pH stress on the antibody structure. Our laboratory routinely uses a basic elution buffer to purify rhAbs from culture supernatants to avoid low pH stress to the antibody structure. Our goal was to investigate whether acidic elution of our rhAbs using Next Generation Chromatography would impact the rhAbs' ability to bind neurons. The limited data presented here for two neuron-binding rhAbs tested indicated that acidic elution buffers used during rhAb purification impacted the ability of rhAbs with low CDR3 charge to maintain binding to neuronal targets. Reproducibility in a larger panel of rhAbs and factors underlying these observations remain untested.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Chaitanya Joshi
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Chad Smith
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Thomas A Ujas
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Jacqueline R Rivas
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Lindsay Cowell
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Scott Christley
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Ann M Stowe
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Nancy L Monson
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America.
| |
Collapse
|
2
|
Imamura H, Ooishi A, Honda S. Getting Smaller by Denaturation: Acid-Induced Compaction of Antibodies. J Phys Chem Lett 2023; 14:3898-3906. [PMID: 37093025 PMCID: PMC10150727 DOI: 10.1021/acs.jpclett.3c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Protein denaturation is a ubiquitous process that occurs both in vitro and in vivo. While our molecular understanding of the denatured structures of proteins is limited, it is commonly accepted that the loss of unique intramolecular contacts makes proteins larger. Herein, we report compaction of the immunoglobulin G1 (IgG1) protein upon acid denaturation. Small-angle X-ray scattering coupled with size exclusion chromatography revealed that IgG1 radii of gyration at pH 2 were ∼75% of those at a neutral pH. Scattering profiles showed a compact globular shape, supported by analytical ultracentrifugation. The acid denaturation of proteins with a decrease in size is energetically costly, and acid-induced compaction requires an attractive force for domain reorientation. Such intramolecular aggregation may be widespread in immunoglobulin proteins as noncanonical structures. Herein, we discuss the potential biological significance of these noncanonical structures of antibodies.
Collapse
Affiliation(s)
- Hiroshi Imamura
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Department
of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
- Department
of Bio-Science, Nagahama Institute of Bio-Science
and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Ayako Ooishi
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinya Honda
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
3
|
Saikia A, Springer S. Peptide-MHC I complex stability measured by nanoscale differential scanning fluorimetry reveals molecular mechanism of thermal denaturation. Mol Immunol 2021; 136:73-81. [PMID: 34091103 DOI: 10.1016/j.molimm.2021.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/08/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022]
Abstract
Recombinant major histocompatibility complex class I molecules are used in diagnostic and therapeutic approaches in cancer immunotherapy, with many studies exploring their binding to antigenic peptides. Current techniques for kinetic peptide binding studies are hampered by high sample consumption, low throughput, interference with protein stability, and/or high background signal. Here, we validate nanoscale differential scanning fluorimetry (nanoDSF), a method using the tryptophan fluorescence of class I molecules, for class I/peptide binding, and we use it to determine the molecular mechanism of the thermal denaturation of HLA-A*02:01.
Collapse
Affiliation(s)
- Ankur Saikia
- Department of Life Science and Chemistry, Jacobs University Bremen, Germany
| | - Sebastian Springer
- Department of Life Science and Chemistry, Jacobs University Bremen, Germany.
| |
Collapse
|
4
|
Phillips DC, Buchanan FG, Cheng D, Solomon LR, Xiao Y, Xue J, Tahir SK, Smith ML, Zhang H, Widomski D, Abraham VC, Xu N, Liu Z, Zhou L, DiGiammarino E, Lu X, Rudra-Ganguly N, Trela B, Morgan-Lappe SE. Hexavalent TRAIL Fusion Protein Eftozanermin Alfa Optimally Clusters Apoptosis-Inducing TRAIL Receptors to Induce On-Target Antitumor Activity in Solid Tumors. Cancer Res 2021; 81:3402-3414. [PMID: 33687950 DOI: 10.1158/0008-5472.can-20-2178] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/31/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
TRAIL can activate cell surface death receptors, resulting in potent tumor cell death via induction of the extrinsic apoptosis pathway. Eftozanermin alfa (ABBV-621) is a second generation TRAIL receptor agonist engineered as an IgG1-Fc mutant backbone linked to two sets of trimeric native single-chain TRAIL receptor binding domain monomers. This hexavalent agonistic fusion protein binds to the death-inducing DR4 and DR5 receptors with nanomolar affinity to drive on-target biological activity with enhanced caspase-8 aggregation and death-inducing signaling complex formation independent of FcγR-mediated cross-linking, and without clinical signs or pathologic evidence of toxicity in nonrodent species. ABBV-621 induced cell death in approximately 36% (45/126) of solid cancer cell lines in vitro at subnanomolar concentrations. An in vivo patient-derived xenograft (PDX) screen of ABBV-621 activity across 15 different tumor indications resulted in an overall response (OR) of 29% (47/162). Although DR4 (TNFSFR10A) and/or DR5 (TNFSFR10B) expression levels did not predict the level of response to ABBV-621 activity in vivo, KRAS mutations were associated with elevated TNFSFR10A and TNFSFR10B and were enriched in ABBV-621-responsive colorectal carcinoma PDX models. To build upon the OR of ABBV-621 monotherapy in colorectal cancer (45%; 10/22) and pancreatic cancer (35%; 7/20), we subsequently demonstrated that inherent resistance to ABBV-621 treatment could be overcome in combination with chemotherapeutics or with selective inhibitors of BCL-XL. In summary, these data provide a preclinical rationale for the ongoing phase 1 clinical trial (NCT03082209) evaluating the activity of ABBV-621 in patients with cancer. SIGNIFICANCE: This study describes the activity of a hexavalent TRAIL-receptor agonistic fusion protein in preclinical models of solid tumors that mechanistically distinguishes this molecular entity from other TRAIL-based therapeutics.
Collapse
Affiliation(s)
| | | | - Dong Cheng
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | | | - Yu Xiao
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | - John Xue
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | | | - Morey L Smith
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | - Haichao Zhang
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | | | | | - Nan Xu
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | - Zhihong Liu
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | - Li Zhou
- Protein Biochemistry, AbbVie Inc., North Chicago, Illinois
| | | | - Xin Lu
- Genomic Research Center, AbbVie Inc., North Chicago, Illinois
| | | | - Bruce Trela
- Pre-clinical Safety, AbbVie Inc., North Chicago, Illinois
| | | |
Collapse
|
5
|
Zhou L, Wang Y, Wan Q, Wu F, Barbon J, Dunstan R, Gauld S, Konrad M, Leys L, McCarthy R, Namovic M, Nelson C, Overmeyer G, Perron D, Su Z, Wang L, Westmoreland S, Zhang J, Zhu R, Veldman G. A non-clinical comparative study of IL-23 antibodies in psoriasis. MAbs 2021; 13:1964420. [PMID: 34460338 PMCID: PMC8409790 DOI: 10.1080/19420862.2021.1964420] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 10/25/2022] Open
Abstract
Four antibodies that inhibit interleukin (IL)-23 are approved for the treatment of moderate-to-severe plaque psoriasis. Here, we present non-clinical data comparing ustekinumab, guselkumab, tildrakizumab and risankizumab with regard to thermostability, IL-23 binding affinity, inhibitory-binding mode, in vitro potency and in vivo efficacy. Risankizumab and guselkumab exhibited 5-fold higher affinity for IL-23 and showed more potent inhibition of IL-23 signaling than ustekinumab and tildrakizumab. Risankizumab and guselkumab completely blocked the binding of IL-23 to IL-23Rα as expected, whereas tildrakizumab did not. In vitro, risankizumab and guselkumab blocked the terminal differentiation of TH17 cells in a similar manner, while tildrakizumab had minimal impact on TH17 differentiation. In a human IL-23-induced ear-swelling mouse model, risankizumab and guselkumab were more effective than ustekinumab and tildrakizumab at reducing IL-17, IL-22, and keratinocyte gene expression. Our results indicate that the four clinically approved antibodies targeting IL-23 differ in affinity and binding epitope. These attributes contribute to differences in in vitro potency, receptor interaction inhibition mode and in vivo efficacy in preclinical studies as described in this report, and similarly may affect the clinical performance of these drugs.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/metabolism
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibody Affinity
- Binding Sites, Antibody
- Cells, Cultured
- Disease Models, Animal
- Drug Stability
- Epitopes
- Female
- Hot Temperature
- Humans
- Interleukin-23/antagonists & inhibitors
- Interleukin-23/immunology
- Interleukin-23/metabolism
- Mice, Inbred C57BL
- Protein Denaturation
- Protein Stability
- Psoriasis/drug therapy
- Psoriasis/immunology
- Psoriasis/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Ustekinumab/immunology
- Ustekinumab/metabolism
- Ustekinumab/pharmacology
- Mice
Collapse
Affiliation(s)
- Li Zhou
- Abbvie Bioresearch Center, Worcester
| | | | - Qi Wan
- Abbvie Bioresearch Center, Worcester
| | - Fei Wu
- Abbvie Bioresearch Center, Worcester
| | | | | | | | | | | | | | | | | | | | | | - Zhi Su
- Abbvie, North Chicago, USA
| | - Leyu Wang
- Abbvie Bioresearch Center, Worcester
| | | | - Jun Zhang
- Abbvie Bioresearch Center, Worcester
| | - Rui Zhu
- Abbvie Bioresearch Center, Worcester
| | | |
Collapse
|
6
|
Hu T, Wu L, Sun X, Su P, Yang Y. Comparative study on quantitation of human myoglobin by both isotope dilution mass spectrometry and surface plasmon resonance based on calibration-free analysis. Anal Bioanal Chem 2020; 412:2777-2784. [PMID: 32076791 DOI: 10.1007/s00216-020-02504-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 01/11/2023]
Abstract
The activity of proteins rather than the concentration of proteins in biopharmaceutical and in vitro diagnostics are often the primary focus. Nonetheless, development of a calibration-free concentration analysis (CFCA) approach that accurately quantifies the concentration of proteins based on molecular interactions with specific monoclonal antibodies and without the requirement of external calibrators would be beneficial to diagnostics. Generally, only analytes that interact with the antibody (Ab) are quantified by CFCA. Moreover, protein concentrations measured by CFCA usually vary when different Abs are used, and are lower than those obtained by amino acid analysis because any non-native state population of the target protein is not captured by the Ab. To achieve comparable results between CFCA and traditional amino acid analysis (AAA), an Ab that recognizes the target protein irrespective of its conformation should be used. In this report, three different monoclonal antibodies were used to quantify purified human myoglobin in solution by CFCA. The concentrations obtain by the Abs (i.e., 2.985, 2.912, 3.032 mg mL-1) were comparable with that obtained by AAA. Moreover, isotope dilution mass spectrometry (IDMS) gave a human myoglobin concentration of 2.851 mg mL-1, which is also in agreement with the results from CFCA. The performance of CFCA was evaluated by measuring various parameters, including within-day and between-day precision. The results demonstrated that the active concentration measured by CFCA is comparable with that of IDMS when the appropriate Ab is used. Recommended procedures for performing the new CFCA approach are provided. This study shows that CFCA represents a primary method for accurate protein concentration determination, which should aid the development of certified reference materials. Graphical abstract.
Collapse
Affiliation(s)
- Tingting Hu
- Beijing University of Chemical Technology, No. 15 North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Liqing Wu
- National Institute of Metrology, No. 18 North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Xiaonan Sun
- Beijing University of Chemical Technology, No. 15 North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Ping Su
- Beijing University of Chemical Technology, No. 15 North Third Ring Road, Chaoyang District, Beijing, 100029, China.
| | - Yi Yang
- Beijing University of Chemical Technology, No. 15 North Third Ring Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
7
|
Sjuts H, Schreuder H, Engel CK, Bussemer T, Gokarn Y. Matching pH values for antibody stabilization and crystallization suggest rationale for accelerated development of biotherapeutic drugs. Drug Dev Res 2019; 81:329-337. [PMID: 31758731 DOI: 10.1002/ddr.21624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/11/2022]
Abstract
Monoclonal antibodies (mAbs) are currently leading products in the global biopharmaceutical market. Multiple mAbs are in clinical development and novel biotherapeutic protein scaffolds, based on the canonical immunoglobulin G (IgG) fold, are emerging as treatment options for various medical conditions. However, fast approvals for biotherapeutics are challenging to achieve, because of difficult scientific development procedures and complex regulatory processes. Selecting molecular entities with superior physicochemical properties that proceed into clinical trials and the identification of stable formulations are crucial developability aspects. It is widely accepted that the solution pH has critical influences on both the protein's colloidal stability and its crystallization behavior. Furthermore, proteins usually crystallize best at solution conditions that enable high protein solubility, purity, stability, and monodispersity. Therefore, we hypothesize that the solution pH value is a central parameter that is linking together protein formulation, protein crystallization, and thermal protein stability. In order to experimentally test this hypothesis, we have investigated the effect of the solution pH on the thermal stabilities and crystallizabilities for three different mAbs. Combining biophysical measurements with high throughput protein (HTP) crystallization trials we observed a correlation in the buffer pH values for eminent mAb stability and successful crystallization. Specifically, differential scanning fluorimetry (DSF) was used to determine pH values that exert highest thermal mAb stabilities and additionally led to the identification of unfolding temperatures of individual mAb domains. Independently performed crystallization trials with the same mAbs resulted in their successful crystallization at pH values that displayed highest thermal stabilities. In summary, the presented results suggest a strategy how protein crystallization could be used as a screening method for the development of biotherapeutic protein formulations with improved in vitro stabilities.
Collapse
Affiliation(s)
- Hanno Sjuts
- Biologics Research, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Herman Schreuder
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Christian K Engel
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Till Bussemer
- Biologics Development, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Yatin Gokarn
- Biologics Development, Sanofi US Services Inc., Framingham, Massachusetts, US
| |
Collapse
|
8
|
|
9
|
Zhou YL, Zhang PK, Xu CH, Xu JJ, Chen HY. An improvement in scanning electrochemical microscopy based on a plasmon-accelerated electrochemical reaction. Chem Commun (Camb) 2019; 55:11275-11278. [DOI: 10.1039/c9cc04888j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A plasmon-accelerated electrochemical reaction coupled with SECM provides an opportunity to improve the performance of SECM.
Collapse
Affiliation(s)
- Yun-Lu Zhou
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Pan-Ke Zhang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Cong-Hui Xu
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|