1
|
Li B, Tai Q, Yu H, Wang J, Gao M, Zhang X. Nanoliter Plasma Sample for Disease Diagnosis by Using a Visualization Platform of Counting Extracellular Vesicle Particles. Anal Chem 2025; 97:2786-2794. [PMID: 39895388 DOI: 10.1021/acs.analchem.4c04977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Extracellular vesicles (EVs) are an excellent candidate for noninvasive diagnostic and prognostic assessments for liquid biopsy applications owing to reflecting the dynamic changes of pathological and physiological states in the body and exceptional stability in vivo. Herein, we developed a single-extracellular vesicle fluorescence visualization and counting platform containing three parts of the nanoliter-liquid operating platform for aspirating the sample, antibody-functionalized coverslip for capturing targeted EVs, and the single-molecule fluorescence labeling and imaging system for the visualization and counting of EVs. Compared to previously reported studies, our developed platform not only minimized operational complexity but also successfully detected single EVs using a minimal volume of 25 nL of plasma. Moreover, the results of fluorescence spot counts demonstrated that the developed platform exhibits a wide dynamic range and an excellent linear correlation between fluorescence intensity and particle numbers for the detection of CD9+ EVs from standard samples. Remarkably, our developed single EVs capture and analysis platform was successfully applied not only in the quantitative analysis of EpCAM+ EVs to CD9+ EVs for the diagnosis of breast cancer (BC) but also in the quantitative analysis of CD14+ EVs to CD9+ EVs for the diagnosis of type 2 diabetes (T2DM). Collectively, our work provides new ideas for the diagnosis of breast cancer and type 2 diabetes while developing a versatile method for distinguishing other diseases by simultaneous detection of multibiomarkers of Exos subtypes in trace samples due to the substitutability of antibodies.
Collapse
Affiliation(s)
- Bing Li
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Qunfei Tai
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Hailong Yu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Jiaxi Wang
- The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai 200438, China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Tripathi AD, Labh Y, Katiyar S, Chaturvedi VK, Sharma P, Mishra A. Advancements in Nano-Mediated Biosensors: Targeting Cancer Exosome Detection. J CLUST SCI 2024; 35:2195-2212. [DOI: 10.1007/s10876-024-02676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/24/2024] [Indexed: 01/05/2025]
|
3
|
Zhang G, Zhang Q, Zhu H, Ma R, Huang X, Cen S, Yang C, Su R, Zhu Z. Fast Isolation and Sensitive Multicolor Visual Detection of Small Extracellular Vesicles by Multifunctional Polydopamine Nanospheres. Anal Chem 2024. [PMID: 39155608 DOI: 10.1021/acs.analchem.4c02062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Small extracellular vesicles (sEVs) assume pivotal roles as vital messengers in intercellular communication, boasting a plethora of biological functions and promising clinical applications. However, efficient isolation and sensitive detection of sEVs continue to present formidable challenges. In this study, we report a novel method for fast isolation and highly sensitive multicolor visual detection of sEVs using aptamer-functionalized polydopamine nanospheres (SIMPLE). In the SIMPLE strategy, aptamer-functionalized polydopamine nanospheres (Apt-PDANS) with 170 nm diameters were synthesized and exhibited a remarkable ability to selectively bind to specific proteins on the surface of sEVs. The binding between sEVs and Apt-PDANS engenders an increase in the overall size of the sEVs, allowing fast isolation of sEVs by filtration (a filter membrane with a pore size of 200 nm). The fast isolation strategy not only circumvents the interference posed by unbound proteins and excessive probes as well as the intricacies associated with conventional ultracentrifugation methods but also expedites the separation of sEVs. Concurrently, the incorporation of Fe3+-doped PDANS permits the multicolor visual detection of sEVs, enabling quantitative analysis by the discernment of visual cues. The proposed strategy achieves a detection limit of 3.2 × 104 sEV mL-1 within 1 h, devoid of any reliance on instrumental apparatus. Furthermore, we showcase the potential application of this methodology in epithelial-mesenchymal transition monitoring and cancer diagnosis, while also envisioning its widespread adoption as a straightforward, rapid, sensitive, and versatile platform for disease monitoring and functional exploration.
Collapse
Affiliation(s)
- Guihua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiannan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huanghuang Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rui Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaodan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiyun Cen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Rui Su
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Lim W, Lee S, Koh M, Jo A, Park J. Recent advances in chemical biology tools for protein and RNA profiling of extracellular vesicles. RSC Chem Biol 2024; 5:483-499. [PMID: 38846074 PMCID: PMC11151817 DOI: 10.1039/d3cb00200d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicles secreted by cells that contain various cellular components such as proteins, nucleic acids, and lipids from the parent cell. EVs are abundant in body fluids and can serve as circulating biomarkers for a variety of diseases or as a regulator of various biological processes. Considering these characteristics of EVs, analysis of the EV cargo has been spotlighted for disease diagnosis or to understand biological processes in biomedical research. Over the past decade, technologies for rapid and sensitive analysis of EVs in biofluids have evolved, but detection and isolation of targeted EVs in complex body fluids is still challenging due to the unique physical and biological properties of EVs. Recent advances in chemical biology provide new opportunities for efficient profiling of the molecular contents of EVs. A myriad of chemical biology tools have been harnessed to enhance the analytical performance of conventional assays for better understanding of EV biology. In this review, we will discuss the improvements that have been achieved using chemical biology tools.
Collapse
Affiliation(s)
- Woojeong Lim
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
| | - Soyeon Lee
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University Busan 46241 Republic of Korea
| | - Ala Jo
- Center for Nanomedicine, Institute for Basic Science Seoul 03722 Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon 24341 Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
5
|
Cheng CA. Before Translating Extracellular Vesicles into Personalized Diagnostics and Therapeutics: What We Could Do. Mol Pharm 2024; 21:2625-2636. [PMID: 38771015 DOI: 10.1021/acs.molpharmaceut.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Extracellular vesicle (EV) research is rapidly advancing from fundamental science to translational applications in EV-based personalized therapeutics and diagnostics. Yet, fundamental questions persist regarding EV biology and mechanisms, particularly concerning the heterogeneous interactions between EVs and cells. While we have made strides in understanding virus delivery and intracellular vesicle transport, our comprehension of EV trafficking remains limited. EVs are believed to mediate intercellular communication through cargo transfer, but uncertainties persist regarding the occurrence and quantification of EV-cargo delivery within acceptor cells. This ambiguity is crucial to address, given the significant translational impact of EVs on therapeutics and diagnostics. This perspective article does not seek to provide exhaustive recommendations and guidance on EV-related studies, as these are well-articulated in position papers and statements by the International Society for Extracellular Vesicles (ISEV), including the 'Minimum Information for Studies of Extracellular Vesicles' (MISEV) 2014, MISEV2018, and the recent MISEV2023. Instead, recognizing the multilayered heterogeneity of EVs as both a challenge and an opportunity, this perspective emphasizes novel approaches to facilitate our understanding of diverse EV biology, address uncertainties, and leverage this knowledge to advance EV-based personalized diagnostics and therapeutics. Specifically, this perspective synthesizes current insights, identifies opportunities, and highlights exciting technological advancements in ultrasensitive single EV or "digital" profiling developed within the author's multidisciplinary group. These newly developed technologies address technical gaps in dissecting the molecular contents of EV subsets, contributing to the evolution of EVs as next-generation liquid biopsies for diagnostics and providing better quality control for EV-based therapeutics.
Collapse
Affiliation(s)
- Chi-An Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
| |
Collapse
|
6
|
Li X, Liu Y, Fan Y, Tian G, Shen B, Zhang S, Fu X, He W, Tao X, Ding X, Li X, Ding S. Advanced Nanoencapsulation-Enabled Ultrasensitive Analysis: Unraveling Tumor Extracellular Vesicle Subpopulations for Differential Diagnosis of Hepatocellular Carcinoma via DNA Cascade Reactions. ACS NANO 2024; 18:11389-11403. [PMID: 38628141 DOI: 10.1021/acsnano.4c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Tumor-derived extracellular vesicles (tEVs) hold immense promise as potential biomarkers for the precise diagnosis of hepatocellular carcinoma (HCC). However, their clinical translation is hampered by their inherent characteristics, such as small size and high heterogeneity and complex environment, including non-EV particles and normal cell-derived EVs, which prolong separation procedures and compromise detection accuracy. In this study, we devised a DNA cascade reaction-triggered individual EV nanoencapsulation (DCR-IEVN) strategy to achieve the ultrasensitive and specific detection of tEV subpopulations via routine flow cytometry in a one-pot, one-step fashion. DCR-IEVN enables the direct and selective packaging of multiple tEV subpopulations in clinical serum samples into flower-like particles exceeding 600 nm. This approach bypasses the need for EV isolation, effectively reducing interference from non-EV particles and nontumor EVs. Compared with conventional analytical technologies, DCR-IEVN exhibits superior efficacy in diagnosing HCC owing to its high selectivity for tEVs. Integration of machine learning algorithms with DCR-IEVN resulted in differential diagnosis accuracy of 96.7% for the training cohort (n = 120) and 93.3% for the validation cohort (n = 30), effectively distinguishing HCC, cirrhosis, and healthy donors. This strategy offers a streamlined workflow and rapid assay completion and requires only small-volume serum samples and routine clinical devices, facilitating the clinical translation of tEV-based tumor diagnosis.
Collapse
Affiliation(s)
- Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuanjie Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yunpeng Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400016, China
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan 646000, China
| | - Bo Shen
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400016, China
| | - Songzhi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuhuai Fu
- Department of Clinical Laboratory, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute, Chongqing 400030, China
| | - Wen He
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xingyu Tao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaojuan Ding
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinmin Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Javed A, Kong N, Mathesh M, Duan W, Yang W. Nanoarchitectonics-based electrochemical aptasensors for highly efficient exosome detection. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2345041. [PMID: 38742153 PMCID: PMC11089931 DOI: 10.1080/14686996.2024.2345041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Exosomes, a type of extracellular vesicles, have attracted considerable attention due to their ability to provide valuable insights into the pathophysiological microenvironment of the cells from which they originate. This characteristic implicates their potential use as diagnostic disease biomarkers clinically, including cancer, infectious diseases, neurodegenerative disorders, and cardiovascular diseases. Aptasensors, which are electrochemical aptamers based biosensing devices, have emerged as a new class of powerful detection technology to conventional methods like ELISA and Western analysis, primarily because of their capability for high-performance bioanalysis. This review covers the current research landscape on the detection of exosomes utilizing nanoarchitectonics strategy for the development of electrochemical aptasensors. Strategies involving signal amplification and biofouling prevention are discussed, with an emphasis on nanoarchitectonics-based bio-interfaces, showcasing their potential to enhance sensitivity and selectivity through optimal conduction and mass transport properties. The ongoing challenges to broaden the clinical applications of these biosensors are also highlighted.
Collapse
Affiliation(s)
- Aisha Javed
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Motilal Mathesh
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Wei Duan
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
8
|
Zhang XW, Qi GX, Liu MX, Yang YF, Wang JH, Yu YL, Chen S. Deep Learning Promotes Profiling of Multiple miRNAs in Single Extracellular Vesicles for Cancer Diagnosis. ACS Sens 2024; 9:1555-1564. [PMID: 38442411 DOI: 10.1021/acssensors.3c02789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Extracellular vesicle microRNAs (EV miRNAs) are critical noninvasive biomarkers for early cancer diagnosis. However, accurate cancer diagnosis based on bulk analysis is hindered by the heterogeneity among EVs. Herein, we report an approach for profiling single-EV multi-miRNA signatures by combining total internal reflection fluorescence (TIRF) imaging with a deep learning (DL) algorithm for the first time. This innovative technique allows for the precise characterization of EV miRNAs at the single-vesicle level, overcoming the challenges posed by EV heterogeneity. TIRF with high resolution and a signal-to-noise ratio can simultaneously detect multi-miRNAs in situ in individual EVs. DL algorithm avoids complicated and inaccurate artificial feature extraction, achieving automated high-resolution image analysis. Using this approach, we reveal that the main variation of EVs from 5 cancer cells and normal plasma is the triple-positive EV subpopulation, and the classification accuracy of single triple-positive EVs from 6 sources can reach above 95%. In the clinical cohort, 20 patients (5 lung cancer, 5 breast cancer, 5 cervical cancer, and 5 colon cancer) and 5 healthy controls are predicted with an overall accuracy of 100%. This single-EV strategy provides new opportunities for exploring more specific EV biomarkers to achieve cancer diagnosis and classification.
Collapse
Affiliation(s)
- Xue-Wei Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Gong-Xiang Qi
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Meng-Xian Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yan-Fei Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
9
|
Zhang J, Wu J, Wang G, He L, Zheng Z, Wu M, Zhang Y. Extracellular Vesicles: Techniques and Biomedical Applications Related to Single Vesicle Analysis. ACS NANO 2023; 17:17668-17698. [PMID: 37695614 DOI: 10.1021/acsnano.3c03172] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Extracellular vesicles (EVs) are extensively dispersed lipid bilayer membrane vesicles involved in the delivery and transportation of molecular payloads to certain cell types to facilitate intercellular interactions. Their significant roles in physiological and pathological processes make EVs outstanding biomarkers for disease diagnosis and treatment monitoring as well as ideal candidates for drug delivery. Nevertheless, differences in the biogenesis processes among EV subpopulations have led to a diversity of biophysical characteristics and molecular cargos. Additionally, the prevalent heterogeneity of EVs has been found to substantially hamper the sensitivity and accuracy of disease diagnosis and therapeutic monitoring, thus impeding the advancement of clinical applications. In recent years, the evolution of single EV (SEV) analysis has enabled an in-depth comprehension of the physical properties, molecular composition, and biological roles of EVs at the individual vesicle level. This review examines the sample acquisition tactics prior to SEV analysis, i.e., EV isolation techniques, and outlines the current state-of-the-art label-free and label-based technologies for SEV identification. Furthermore, the challenges and prospects of biomedical applications based on SEV analysis are systematically discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jiacheng Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Guanzhao Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Luxuan He
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ziwei Zheng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Minhao Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P. R. China
| | - Yuanqing Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Zhu J, Wu F, Li C, Mao J, Wang Y, Zhou X, Xie H, Wen C. Application of Single Extracellular Vesicle Analysis Techniques. Int J Nanomedicine 2023; 18:5365-5376. [PMID: 37750091 PMCID: PMC10518151 DOI: 10.2147/ijn.s421342] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid containers that are actively released by cells and contain complex molecular cargoes. These cargoes include abundant material such as genomes and proteins from cells of origin. They are involved in intercellular communication and various pathological processes, showing excellent potential for diagnosing and treating diseases. Given the significant heterogeneity of EVs in complex physiopathological processes, unveiling their composition is essential to understanding their function. Bulk detection methods have been previously used to analyze EVs, but they often mask their heterogeneity, leading to the loss of valuable information. To overcome this limitation, single extracellular vesicle (SEV) analysis techniques have been developed and advanced. These techniques allow for analyzing EVs' physical information and biometric molecules at the SEV level. This paper reviews recent advances in SEV detection methods and summarizes some clinical applications for SEV detection strategies.
Collapse
Affiliation(s)
- Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Cuifang Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
11
|
Zhai C, Long J, He J, Zheng Y, Wang B, Xu J, Yang Y, Jiang L, Yu H, Ding X. Precise Identification and Profiling of Surface Proteins of Ultra Rare Tumor Specific Extracellular Vesicle with Dynamic Quantitative Plasmonic Imaging. ACS NANO 2023; 17:16656-16667. [PMID: 37638659 DOI: 10.1021/acsnano.3c02853] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Specific detection of tumor-derived EVs (tEVs) in plasma is complicated by nontumor EVs and non-EV particles. To accurately identify tEVs and profile their surface protein expression at single tEV resolution directly with clinical plasma is still an unmet need. Here, we present a Dynamic Immunoassay for Single tEV surface protein Profiling (DISEP), a kinetic assay based on surface plasmon resonance microscopy (SPRM) for specific single tEV profiling. DISEP adopts a pair of low-affinity oligonucleotide probes to respectively label EV surface proteins and functionalize an SPRM biosensor interface. tEVs labeled with the oligonucleotide probes possess distinctive binding kinetics from nonspecific particles in plasma, which permits accurate digital plasmonic counting of single EVs. We demonstrate DISEP for recognizing target EVs among 350-fold background plasma particles with high sensitivity (4677 EVs per μL). Clinical plasma samples were analyzed to discriminate between pancreatic cancer patients (n = 40) and healthy donors (n = 45). With a panel of biomarker signatures (EpCAM, HER2, and GPC1), DISEP only requires 10 μL primary sample from each donor to classify tumor patients with an area under the curve of 0.98. DISEP provides a highly specific EV detection and surface protein profiling strategy for early cancer diagnosis.
Collapse
Affiliation(s)
- Chunhui Zhai
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Jiang Long
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Jie He
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Yan Zheng
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Boqian Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Jiaying Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Yuting Yang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Hui Yu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| |
Collapse
|
12
|
Hu X, Cheng S, Luo X, Xian Y, Zhang C. Polymerase-Driven Logic Signal Amplification for the Detection of Small Extracellular Vesicle Surface Proteins and the Identification of Breast Cancer. Anal Chem 2023. [PMID: 37366594 DOI: 10.1021/acs.analchem.3c01080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Small extracellular vesicles (sEVs) derived from tumors contain a vast amount of cellular information and are regarded as a potential diagnostic biomarker for noninvasive cancer diagnosis. Nevertheless, it remains challenging to accurately measure sEVs from clinical samples due to the low abundance of these vesicles as well as their phenotypic heterogeneity. Herein, a polymerase-driven logic signal amplification system (PLSAS) was developed for the high-sensitivity detection of sEV surface proteins and breast cancer (BC) identification. Aptamers were introduced to serve as sensing modules to specifically recognize target proteins. By changing the input DNA sequences, two polymerase-driven primer exchange reaction systems were rationally designed for DNA logic computing. This allows for autonomous targeting of a limited number of targets using "OR" and "AND" logic, leading to a significant increase in fluorescence signals and enabling the specific and ultrasensitive detection of sEV surface proteins. In this work, we investigated surface proteins of mucin 1 (MUC1) and the epithelial cell adhesion molecule (EpCAM) as model proteins. When MUC1 or EpCAM proteins were used as single signal input in the "OR" DNA logic system, the detection limit of sEVs was 24 or 58 particles/μL, respectively. And MUC1 and EpCAM proteins of sEVs can be simultaneously detected in the AND logic method, which can significantly reduce the effect of phenotypic heterogeneity of sEVs to distinguish the source of sEVs derived from various mammary cell lines, such as MCF-7, MDA MB 231, SKBR3, and MCF-10A. The approach has achieved high discrimination in serologically tested positive BC samples (AUC 98.1%) and holds significant potential in advancing the early diagnosis and prognostic assessments of BC.
Collapse
Affiliation(s)
- Xinyu Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shasha Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xianzhu Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
13
|
He Y, Xing Y, Jiang T, Wang J, Sang S, Rong H, Yu F. Fluorescence labeling of extracellular vesicles for diverse bio-applications in vitro and in vivo. Chem Commun (Camb) 2023; 59:6609-6626. [PMID: 37161668 DOI: 10.1039/d3cc00998j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles enclosed in a lipid membrane that are sustainably released by nearly all cell types. EVs have been deemed as valuable biomarkers for diagnostics and effective drug carriers, owing to the physiological function of transporting biomolecules for intercellular communication. To investigate their biological properties, efficient labeling strategies have been constructed for EV research, among which fluorescence labeling exerts a powerful function due to the capability of visualizing the nanovesicles with high sensitivity both in vitro and in vivo. In one aspect, with the help of functional fluorescence tags, EVs could be differentiated and categorized in vitro by various analytical techniques, which exert vital roles in disease diagnosis, prognosis, and treatment monitoring. Additionally, innovative EV reporters have been utilized for visualizing EVs, in combination with powerful microscopy techniques, which provide potential tools for investigating the dynamic events of EV release and intercellular communication in suitable animal models. In this feature article, we survey the latest advances regarding EV fluorescence labeling strategies and their application in biomedical application and in vivo biology investigation, highlighting the progresses in individual EV imaging. Finally, the challenges and future perspectives in unravelling EV physiological properties and further biomedical application are discussed.
Collapse
Affiliation(s)
- Yun He
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Yanlong Xing
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Juan Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Shenggang Sang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Hong Rong
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
14
|
Chen M, Lin S, Zhou C, Cui D, Haick H, Tang N. From Conventional to Microfluidic: Progress in Extracellular Vesicle Separation and Individual Characterization. Adv Healthc Mater 2023; 12:e2202437. [PMID: 36541411 DOI: 10.1002/adhm.202202437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles, which contain a wide variety of cargo such as proteins, miRNAs, and lipids. A growing body of evidence suggests that EVs are promising biomarkers for disease diagnosis and therapeutic strategies. Although the excellent clinical value, their use in personalized healthcare practice is not yet feasible due to their highly heterogeneous nature. Taking the difficulty of isolation and the small size of EVs into account, the characterization of EVs at a single-particle level is both imperative and challenging. In a bid to address this critical point, more research has been directed into a microfluidic platform because of its inherent advantages in sensitivity, specificity, and throughput. This review discusses the biogenesis and heterogeneity of EVs and takes a broad view of state-of-the-art advances in microfluidics-based EV research, including not only EV separation, but also the single EV characterization of biophysical detection and biochemical analysis. To highlight the advantages of microfluidic techniques, conventional technologies are included for comparison. The current status of artificial intelligence (AI) for single EV characterization is then presented. Furthermore, the challenges and prospects of microfluidics and its combination with AI applications in single EV characterization are also discussed. In the foreseeable future, recent breakthroughs in microfluidic platforms are expected to pave the way for single EV analysis and improve applications for precision medicine.
Collapse
Affiliation(s)
- Mingrui Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Cheng Zhou
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ning Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
15
|
Lv S, Wang H, Zhou Y, Tang D, Bi S. Recent advances in heterogeneous single-atom nanomaterials: From engineered metal-support interaction to applications in sensors. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Taylor ML, Giacalone AG, Amrhein KD, Wilson RE, Wang Y, Huang X. Nanomaterials for Molecular Detection and Analysis of Extracellular Vesicles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:524. [PMID: 36770486 PMCID: PMC9920192 DOI: 10.3390/nano13030524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a novel resource of biomarkers for cancer and certain other diseases. Probing EVs in body fluids has become of major interest in the past decade in the development of a new-generation liquid biopsy for cancer diagnosis and monitoring. However, sensitive and specific molecular detection and analysis are challenging, due to the small size of EVs, low amount of antigens on individual EVs, and the complex biofluid matrix. Nanomaterials have been widely used in the technological development of protein and nucleic acid-based EV detection and analysis, owing to the unique structure and functional properties of materials at the nanometer scale. In this review, we summarize various nanomaterial-based analytical technologies for molecular EV detection and analysis. We discuss these technologies based on the major types of nanomaterials, including plasmonic, fluorescent, magnetic, organic, carbon-based, and certain other nanostructures. For each type of nanomaterial, functional properties are briefly described, followed by the applications of the nanomaterials for EV biomarker detection, profiling, and analysis in terms of detection mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
17
|
Nikoloff J, Saucedo-Espinosa MA, Dittrich PS. Microfluidic Platform for Profiling of Extracellular Vesicles from Single Breast Cancer Cells. Anal Chem 2023; 95:1933-1939. [PMID: 36608325 PMCID: PMC9878503 DOI: 10.1021/acs.analchem.2c04106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Extracellular vesicles (EVs) are considered as valuable biomarkers to discriminate healthy from diseased cells such as cancer. Passing cytosolic and plasma membranes before their release, EVs inherit the biochemical properties of the cell. Here, we determine protein profiles of single EVs to understand how much they represent their cell of origin. We use a microfluidic platform which allows to immobilize EVs from completely isolated single cells, reducing heterogeneity of EVs as strongly seen in cell populations. After immunostaining, we employ four-color total internal reflection fluorescence microscopy to enumerate EVs and determine their biochemical fingerprint encoded in membranous or cytosolic proteins. Analyzing single cells derived from pleural effusions of two different human adenocarcinoma as well as from human embryonic kidney (SkBr3, MCF-7 and HEK293, respectively), we observed that a single cell secretes enough EVs to extract the respective tissue fingerprint. We show that overexpressed integral plasma membrane proteins are also found in EV membranes, which together with populations of colocalized proteins, provide a cell-specific, characteristic pattern. Our method highlights the potential of EVs as a diagnostic marker and can be directly employed for fundamental studies of EV biogenesis.
Collapse
Affiliation(s)
- Jonas
M. Nikoloff
- Department of Biosystems
Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | | | - Petra S. Dittrich
- Department of Biosystems
Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| |
Collapse
|
18
|
Suthar J, Taub M, Carney RP, Williams GR, Guldin S. Recent developments in biosensing methods for extracellular vesicle protein characterization. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1839. [PMID: 35999185 PMCID: PMC10078591 DOI: 10.1002/wnan.1839] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 01/31/2023]
Abstract
Research into extracellular vesicles (EVs) has grown significantly over the last few decades with EVs being widely regarded as a source of biomarkers for human health and disease with massive clinical potential. Secreted by every cell type in the body, EVs report on the internal cellular conditions across all tissue types. Their presence in readily accessible biofluids makes the potential of EV biosensing highly attractive as a noninvasive diagnostic platform via liquid biopsies. However, their small size (50-250 nm), inherent heterogeneity, and the complexity of the native biofluids introduce challenges for effective characterization, thus, limiting their clinical utility. This has led to a surge in the development of various novel EV biosensing techniques, with capabilities beyond those of conventional methods that have been directly transferred from cell biology. In this review, key detection principles used for EV biosensing are summarized, with a focus on some of the most recent and fundamental developments in the field over the last 5 years. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Jugal Suthar
- Department of Chemical Engineering, University College London, London, UK.,UCL School of Pharmacy, University College London, London, UK
| | - Marissa Taub
- UCL School of Pharmacy, University College London, London, UK
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, Davis, California, USA
| | | | - Stefan Guldin
- Department of Chemical Engineering, University College London, London, UK
| |
Collapse
|
19
|
Fan W, Ren W, Liu C. Advances in optical counting and imaging of micro/nano single-entity reactors for biomolecular analysis. Anal Bioanal Chem 2023; 415:97-117. [PMID: 36322160 PMCID: PMC9628437 DOI: 10.1007/s00216-022-04395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Ultrasensitive detection of biomarkers is of paramount importance in various fields. Superior to the conventional ensemble measurement-based assays, single-entity assays, especially single-entity detection-based digital assays, not only can reach ultrahigh sensitivity, but also possess the potential to examine the heterogeneities among the individual target molecules within a population. In this review, we summarized the current biomolecular analysis methods that based on optical counting and imaging of the micro/nano-sized single entities that act as the individual reactors (e.g., micro-/nanoparticles, microemulsions, and microwells). We categorize the corresponding techniques as analog and digital single-entity assays and provide detailed information such as the design principles, the analytical performance, and their implementation in biomarker analysis in this work. We have also set critical comments on each technique from these aspects. At last, we reflect on the advantages and limitations of the optical single-entity counting and imaging methods for biomolecular assay and highlight future opportunities in this field.
Collapse
Affiliation(s)
- Wenjiao Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi’an, 710119 Shaanxi Province People’s Republic of China ,Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi’an, 710119 Shaanxi Province People’s Republic of China ,School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710119 Shaanxi Province People’s Republic of China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi’an, 710119 Shaanxi Province People’s Republic of China ,Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi’an, 710119 Shaanxi Province People’s Republic of China ,School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710119 Shaanxi Province People’s Republic of China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi’an, 710119 Shaanxi Province People’s Republic of China ,Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi’an, 710119 Shaanxi Province People’s Republic of China ,School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710119 Shaanxi Province People’s Republic of China
| |
Collapse
|
20
|
Qian F, Huang Z, Zhong H, Lei Q, Ai Y, Xie Z, Zhang T, Jiang B, Zhu W, Sheng Y, Hu J, Brinker CJ. Analysis and Biomedical Applications of Functional Cargo in Extracellular Vesicles. ACS NANO 2022; 16:19980-20001. [PMID: 36475625 DOI: 10.1021/acsnano.2c11298] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) can facilitate essential communication among cells in a range of pathophysiological conditions including cancer metastasis and progression, immune regulation, and neuronal communication. EVs are membrane-enclosed vesicles generated through endocytic origin and contain many cellular components, including proteins, lipids, nucleic acids, and metabolites. Over the past few years, the intravesicular content of EVs has proven to be a valuable biomarker for disease diagnostics, involving cancer, cardiovascular diseases, and central nervous system diseases. This review aims to provide insight into EV biogenesis, composition, function, and isolation, present a comprehensive overview of emerging techniques for EV cargo analysis, highlighting their major technical features and limitations, and summarize the potential role of EV cargos as biomarkers in disease diagnostics. Further, progress and remaining challenges will be discussed for clinical diagnostic outlooks.
Collapse
Affiliation(s)
- Feiyang Qian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Zena Huang
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou 510970, P.R. China
| | - Hankang Zhong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yiru Ai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Zihui Xie
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Tenghua Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Bowen Jiang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yan Sheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Jiaming Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
21
|
Xu H, Ye BC. Integrated microfluidic platforms for tumor-derived exosome analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Huang R, He L, Jin L, Li Z, He N, Miao W. Recent advancements in DNA nanotechnology-enabled extracellular vesicles detection and diagnosis: A mini review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Morales RTT, Ko J. Future of Digital Assays to Resolve Clinical Heterogeneity of Single Extracellular Vesicles. ACS NANO 2022; 16:11619-11645. [PMID: 35904433 PMCID: PMC10174080 DOI: 10.1021/acsnano.2c04337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Extracellular vesicles (EVs) are complex lipid membrane vehicles with variable expressions of molecular cargo, composed of diverse subpopulations that participate in the intercellular signaling of biological responses in disease. EV-based liquid biopsies demonstrate invaluable clinical potential for overhauling current practices of disease management. Yet, EV heterogeneity is a major needle-in-a-haystack challenge to translate their use into clinical practice. In this review, existing digital assays will be discussed to analyze EVs at a single vesicle resolution, and future opportunities to optimize the throughput, multiplexing, and sensitivity of current digital EV assays will be highlighted. Furthermore, this review will outline the challenges and opportunities that impact the clinical translation of single EV technologies for disease diagnostics and treatment monitoring.
Collapse
Affiliation(s)
- Renee-Tyler T Morales
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jina Ko
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Bioprobes-regulated precision biosensing of exosomes: From the nanovesicle surface to the inside. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Lu Z, Shi Y, Ma Y, Jia B, Li X, Guan X, Li Z. Fast and specific enrichment and quantification of cancer-related exosomes by DNA-nanoweight-assisted centrifugation. Anal Chem 2022; 94:9466-9471. [PMID: 35731982 DOI: 10.1021/acs.analchem.2c01872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exosomes are nanoscale membrane vesicles actively released by cells and play an important role in the diagnosis of cancer-related diseases. However, it is challenging to efficiently enrich exosomes from extracellular fluids. In this work, we used DNA nanostructures as "nanoweights" during centrifugation to facilitate the enrichment of cancerous exosomes in human serum. Two different DNA tetrahedral nanostructures (DTNs), each carrying a specific aptamer for exosome biomarker recognition, were incubated with clinical samples simultaneously. One DTN triggered the cross-linking of multiple target exosomes and, therefore, enabled low-speed and fast centrifugation for enrichment. The other DTN further narrowed down the target exosome subtype and initiated a hybridization chain reaction (HCR) for sensitive signal amplification. The method enabled the detection of 1.8 × 102 MCF-7-derived exosomes per microliter and 5.6 × 102 HepG2-derived exosomes per microliter, with 1000-fold higher sensitivity than conventional ELISA and 10-fold higher sensitivity than some recently reported fluorescence assays. Besides, the dual-aptamer system simultaneously recognized multiple surface proteins, eliminating the interference risk from free proteins. Thus, this easy-to-operate method can enrich exosomes with excellent specificity and sensitivity and therefore will be appealing in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Zhangwei Lu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Ye Shi
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yuxuan Ma
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Bin Jia
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xintong Li
- Department of Oncology, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, People's Republic of China
| | - Xiaoxiang Guan
- Department of Oncology, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, People's Republic of China
| | - Zhe Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
26
|
Zhu F, Ji Y, Deng J, Li L, Bai X, Liu X, Lin B, Lu Y. Microfluidics-based technologies for the analysis of extracellular vesicles at the single-cell level and single-vesicle level. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Yimamumaimaiti T, Su Q, Song RB, Gao Y, Yu S, Tan T, Wang L, Zhu JJ, Zhang JR. Damage-Free and Time-Saving Platform Integrated by a Flow Membrane Separation Device and a Dual-Target Biofuel Cell-Based Biosensor for Continuous Sorting and Detection of Exosomes and Host Cells in Human Serum. Anal Chem 2022; 94:7722-7730. [PMID: 35587508 DOI: 10.1021/acs.analchem.2c01680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The growth relationship between exosomes (EXOs) and the host cells is highly desired for tumor evaluations, which puts forward high demand on the accurate and convenient acquisition of their individual quantitative information. However, the tedious and destructive separation process and the requirement of dual-channel detection make it become an extremely challenging task. Herein, we integrated an enzymatic biofuel cell (EBFC)-powered biosensor with a flow cell-supported membrane separation device (FMSC) to develop a continuous separation and detection platform for EXOs and host cancer cells in human serum. The FMSC equipped with an aluminum oxide membrane served as a size-dependent sorting unit to nondestructively extract EXOs from human serum within 5 min, representing a 99.3% reduction in isolating time compared to ultracentrifugation. The EBFC-powered biosensors modified with different aptamers on anodes and cathodes were used as a dual-channel sensing unit. By regulating the controlling valves of different fluid passages, the extracted EXOs and residual host cells could be successively inputted into EBFC-powered biosensors, which generated a segmental degradation in output performance due to the EXO-and host cell-caused increase in the steric hindrance of anodes and cathodes, respectively. Based on these degradations, we obtained the quantitative information of EXOs and host cells with a record-breaking sensitivity (EXOs: 5.59 × 103 particles/mL and host cells: 25 cells/mL). Moreover, the growth relationship between EXOs and host cells was also built, which would be beneficial for the disclosure of the growth state or even more detailed biology information of tumor.
Collapse
Affiliation(s)
- Tajiguli Yimamumaimaiti
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qiwen Su
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Rong-Bin Song
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yan Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Sha Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tingting Tan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P. R. China
| | - Linlin Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
28
|
Wang T, Xing Y, Cheng Z, Yu F. Analysis of Single Extracellular Vesicles for Biomedical Applications with Especial Emphasis on Cancer Investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Suthar J, Prieto-Simon B, Williams GR, Guldin S. Dual-Mode and Label-Free Detection of Exosomes from Plasma Using an Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring. Anal Chem 2022. [PMID: 35072456 DOI: 10.1021/acs.analchem.1c04282/suppl_file/ac1c04282_si_001.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The biomolecular contents of extracellular vesicles, such as exosomes, have been shown to be crucial in intercellular communication and disease propagation. As a result, there has been a recent surge in the exploration of novel biosensing platforms that can sensitively and specifically detect exosomal content such as proteins and nucleic acids, with a view toward application in diagnostic assays. Here, we demonstrate dual-mode and label-free detection of plasma exosomes using an electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D). The platform adopts a direct immunosensing approach to effectively capture exosomes via their surface protein expression of CD63. By combining QCM-D with a tandem in situ electrochemical impedance spectroscopy measurement, we are able to demonstrate relationships between mass, viscoelasticity and impedance inducing properties of each functional layer and analyte. In addition to lowering the limit of detection (by a factor of 2-4) to 6.71 × 107 exosome-sized particles (ESP) per mL in 25% v/v serum, the synergy between dissipation and impedance response introduces improved sensing specificity by offering further distinction between soft and rigid analytes, thereby promoting EQCM-D as an important technique for exosome analysis.
Collapse
Affiliation(s)
- Jugal Suthar
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Beatriz Prieto-Simon
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| |
Collapse
|
30
|
Suthar J, Prieto-Simon B, Williams GR, Guldin S. Dual-Mode and Label-Free Detection of Exosomes from Plasma Using an Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring. Anal Chem 2022; 94:2465-2475. [PMID: 35072456 PMCID: PMC9096790 DOI: 10.1021/acs.analchem.1c04282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The
biomolecular contents of extracellular vesicles, such as exosomes,
have been shown to be crucial in intercellular communication and disease
propagation. As a result, there has been a recent surge in the exploration
of novel biosensing platforms that can sensitively and specifically
detect exosomal content such as proteins and nucleic acids, with a
view toward application in diagnostic assays. Here, we demonstrate
dual-mode and label-free detection of plasma exosomes using an electrochemical
quartz crystal microbalance with dissipation monitoring (EQCM-D).
The platform adopts a direct immunosensing approach to effectively
capture exosomes via their surface protein expression of CD63. By
combining QCM-D with a tandem in situ electrochemical impedance spectroscopy
measurement, we are able to demonstrate relationships between mass,
viscoelasticity and impedance inducing properties of each functional
layer and analyte. In addition to lowering the limit of detection
(by a factor of 2–4) to 6.71 × 107 exosome-sized
particles (ESP) per mL in 25% v/v serum, the synergy between dissipation
and impedance response introduces improved sensing specificity by
offering further distinction between soft and rigid analytes, thereby
promoting EQCM-D as an important technique for exosome analysis.
Collapse
Affiliation(s)
- Jugal Suthar
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Beatriz Prieto-Simon
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| |
Collapse
|
31
|
Fan W, Han P, Feng Q, Sun Y, Ren W, Lawson T, Liu C. Nucleic Acid Substrate-Independent DNA Polymerization on the Exosome Membrane: A Mechanism Study and Application in Exosome Analysis. Anal Chem 2022; 94:2172-2179. [PMID: 35044159 DOI: 10.1021/acs.analchem.1c04636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As generally acknowledged, terminal deoxynucleotidyl transferase (TdT) can only elongate DNA substrates from their 3'-OH ends. Herein, for the first time, we report that TdT-catalyzed DNA polymerization can directly proceed on the exosome membrane without the mediation of any nucleic acids. We prove that both the glycosyl and phenolic hydroxyl groups on the membrane proteins can initiate the DNA polymerization. Accordingly, we have developed powerful strategies for high-sensitive exosome profiling based on a conventional flow cytometer and an emerging CRISPR/Cas system. By using our strategy, the featured membrane protein distributions of different cancer cell-derived exosomes can be figured out, which can clearly distinguish plasma samples of breast cancer patients from those of healthy people. This work paves new ways for exosome profiling and liquid biopsy and expands the understanding of TdT, holding great significance in developing TdT-based sensing systems as well as establishing protein/nucleic acid hybrid biomaterials.
Collapse
Affiliation(s)
- Wenjiao Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an 710119, Shaanxi Province, P. R. China.,Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi'an 710119, Shaanxi Province, P. R. China.,School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Pihua Han
- Shaanxi Provincial Cancer Hospital, Xi'an 710061, Shaanxi Province, P. R. China
| | - Qinya Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an 710119, Shaanxi Province, P. R. China.,Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi'an 710119, Shaanxi Province, P. R. China.,School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Yuanyuan Sun
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an 710119, Shaanxi Province, P. R. China.,Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi'an 710119, Shaanxi Province, P. R. China.,School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Thomas Lawson
- ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an 710119, Shaanxi Province, P. R. China.,Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi'an 710119, Shaanxi Province, P. R. China.,School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| |
Collapse
|
32
|
Zhang J, Huang Y, Sun M, Wan S, Yang C, Song Y. Recent Advances in Aptamer-Based Liquid Biopsy. ACS APPLIED BIO MATERIALS 2022; 5:1954-1979. [PMID: 35014838 DOI: 10.1021/acsabm.1c01202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liquid biopsy capable of noninvasive and real-time molecular profiling is considered as a breakthrough technology, endowing an opportunity for precise diagnosis of individual patients. Extracellular vesicles (EVs) and circulating tumor cells (CTCs) consisting of substantial disease-related molecular information play an important role in liquid biopsy. Therefore, it is critically significant to exploit high-performance recognition ligands for efficient isolation and analysis of EVs and CTCs from complex body fluids. Aptamers exhibit extraordinary merits of high specificity and affinity, which are considered as superior recognition ligands for liquid biopsy. In this review, we first summarize recent advanced strategies for the evolution of high-performance aptamers and the construction of various aptamer-based recognition elements. Subsequently, we mainly discuss the isolation and analysis of EVs and CTCs based on the aptamer functioned biomaterials/biointerface. Ultimately, we envision major challenges and future direction of aptamer-based liquid biopsy for clinical utilities.
Collapse
Affiliation(s)
- Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
33
|
Recent Advances in Exosome Analysis Assisted by Functional Nucleic Acid-based Signal Amplification Technologies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Guo K, Li Z, Win A, Coreas R, Adkins GB, Cui X, Yan D, Cao M, Wang SE, Zhong W. Calibration-free analysis of surface proteins on single extracellular vesicles enabled by DNA nanostructure. Biosens Bioelectron 2021; 192:113502. [PMID: 34298496 PMCID: PMC8580803 DOI: 10.1016/j.bios.2021.113502] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/03/2021] [Accepted: 07/11/2021] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are essential intercellular communicators that are of increasing interest as diagnostic biomarkers. Exploring their biological functions and clinical values, however, remains challenging due to their small sizes and high heterogeneity. Herein, we report an ultrasensitive method that employs target-initiated construction of DNA nanostructure to detect single EVs with an input as low as 100 vesicles/μL. Taking advantage of both DNA nanostructure labeling and EV membrane staining, the method can also permit calibration-free analysis of the protein profiles among different EV samples, leading to clear EV differentiation by their cell of origin. Moreover, this method allows co-localization of dual protein markers on the same EV, and the increased number of EVs carrying dual tumor proteins present in human serum could differentiate cancer patients at the early developmental stage from healthy controls. Our results demonstrate the great potential of this single-EV visualization method in non-invasive detection of the EV-based protein biomarkers for cancer diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Kaizhu Guo
- Department of Chemistry, University of California-Riverside, Riverside, CA, 92521, USA
| | - Zongbo Li
- Department of Chemistry, University of California-Riverside, Riverside, CA, 92521, USA
| | - Allison Win
- Department of Chemistry, University of California-Riverside, Riverside, CA, 92521, USA
| | - Roxana Coreas
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, CA, 92521, USA
| | - Gary Brent Adkins
- Department of Chemistry, University of California-Riverside, Riverside, CA, 92521, USA
| | - Xinping Cui
- Department of Statistics, University of California-Riverside, Riverside, CA, 92521, USA
| | - Dong Yan
- Nanofabrication Facility, University of California-Riverside, Riverside, CA, 92521, USA
| | - Minghui Cao
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shizhen Emily Wang
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside, Riverside, CA, 92521, USA; Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
35
|
Ma X, Hao Y, Liu L. Progress in Nanomaterials-Based Optical and Electrochemical Methods for the Assays of Exosomes. Int J Nanomedicine 2021; 16:7575-7608. [PMID: 34803380 PMCID: PMC8599324 DOI: 10.2147/ijn.s333969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Exosomes with diameters of 30-150 nm are small membrane-bound vesicles secreted by a variety of cells. They play an important role in many biological processes, such as tumor-related immune response and intercellular signal transduction. Exosomes have been considered as emerging and noninvasive biomarkers for cancer diagnosis. Recently, a large number of optical and electrochemical biosensors have been proposed for sensitive detection of exosomes. To meet the increasing demands for ultrasensitive detection, nanomaterials have been integrated with various techniques as powerful components. Because of their intrinsic merits of biological compatibility, excellent physicochemical features and unique catalytic ability, nanomaterials have significantly improved the analytical performances of exosome biosensors. In this review, we summarized the recent progress in nanomaterials-based biosensors for the detection of cancer-derived exosomes, including fluorescence, colorimetry, surface plasmon resonance spectroscopy, surface enhanced Raman scattering spectroscopy, electrochemistry, electrochemiluminescence and so on.
Collapse
Affiliation(s)
- Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
| | - Lin Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People’s Republic of China
| |
Collapse
|
36
|
Lee S, Crulhas BP, Suvakov S, Verkhoturov SV, Verkhoturov DS, Eller MJ, Malhi H, Garovic VD, Schweikert EA, Stybayeva G, Revzin A. Nanoparticle-Enabled Multiplexed Electrochemical Immunoassay for Detection of Surface Proteins on Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52321-52332. [PMID: 34709783 PMCID: PMC11235089 DOI: 10.1021/acsami.1c14506] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer particles secreted from various cells. EVs carry molecular information of parent cells and hold considerable promise for early disease diagnostics. This paper describes a general strategy for multiplexed immunosensing of EV surface proteins, focusing on surface markers CD63, CD81, nephrin, and podocin to prove the concept. This sensing strategy entailed functionalizing gold nanoparticles (AuNPs) with two types of antibodies and then tagging with metal ions, either Pb2+ or Cu2+. The metal ions served as redox reporters, generating unique redox peaks at -0.23 and 0.28 V (vs Ag/AgCl) during electrochemical oxidation of Pb2+ and Cu2+, respectively. Capture of EVs on the working electrode, followed by labeling with immunoprobes and square wave voltammetry, produced redox currents proportional to concentrations of EVs and levels of expression of EV surface markers. Importantly, metal-ion tagging of immunoprobes enabled detection of two EV surface markers simultaneously from the same electrode. We demonstrated dual detection of either CD63/CD81 or podocin/nephrin surface markers from urinary EVs. The NP-enabled immunoassay had a sensitivity of 2.46 × 105 particles/mL (or 40.3 pg/mL) for CD63- and 5.80 × 105 particles/mL (or 47.7 pg/mL) for CD81-expressing EVs and a linear range of four orders of magnitude. The limit of detection for podocin and nephrin was 3.1 and 3.8 pg/mL, respectively. In the future, the capacity for multiplexing may be increased by extending the repertoire of metal ions used for redox tagging of AuNPs.
Collapse
Affiliation(s)
- Seonhwa Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minesotta 55905, United States
| | - Bruno P Crulhas
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minesotta 55905, United States
| | - Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minesotta 55905, United States
| | | | - Dmitriy S Verkhoturov
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael J Eller
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, California 91330, United States
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minesotta 55905, United States
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minesotta 55905, United States
| | - Emile A Schweikert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minesotta 55905, United States
- Sersense Inc., Rochester, Minesotta 55905, United States
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minesotta 55905, United States
| |
Collapse
|
37
|
Min L, Wang B, Bao H, Li X, Zhao L, Meng J, Wang S. Advanced Nanotechnologies for Extracellular Vesicle-Based Liquid Biopsy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102789. [PMID: 34463056 PMCID: PMC8529441 DOI: 10.1002/advs.202102789] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are emerging as a new source of biomarkers in liquid biopsy because of their wide presence in most body fluids and their ability to load cargoes from disease-related cells. Owing to the crucial role of EVs in disease diagnosis and treatment, significant efforts have been made to isolate, detect, and analyze EVs with high efficiency. A recent overview of advanced EV detection nanotechnologies is discussed here. First, several key challenges in EV-based liquid biopsies are introduced. Then, the related pivotal advances in nanotechnologies for EV isolation based on physical features, chemical affinity, and the combination of nanostructures and chemical affinity are summarized. Next, a summary of high-sensitivity sensors for EV detection and advanced approaches for single EV detection are provided. Later, EV analysis is introduced in practical clinical scenarios, and the application of machine learning in this field is highlighted. Finally, future opportunities for the development of next-generation nanotechnologies for EV detection are presented.
Collapse
Affiliation(s)
- Li Min
- Department of GastroenterologyBeijing Friendship HospitalCapital Medical UniversityNational Clinical Research Center for Digestive DiseasesBeijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijing100050P. R. China
| | - Binshuai Wang
- Department of UrologyPeking University Third HospitalBeijing100191P. R. China
| | - Han Bao
- Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xinran Li
- Department of UrologyPeking University Third HospitalBeijing100191P. R. China
| | - Libo Zhao
- Echo Biotech Co., Ltd.Beijing102206P. R. China
| | - Jingxin Meng
- Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shutao Wang
- Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
38
|
Xiong H, Huang Z, Yang Z, Lin Q, Yang B, Fang X, Liu B, Chen H, Kong J. Recent Progress in Detection and Profiling of Cancer Cell-Derived Exosomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007971. [PMID: 34075696 DOI: 10.1002/smll.202007971] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/23/2021] [Indexed: 05/24/2023]
Abstract
Exosomes, known as nanometer-sized vesicles (30-200 nm), are secreted by many types of cells. Cancer-derived exosomes have great potential to be biomarkers for early clinical diagnosis and evaluation of cancer therapeutic efficacy. Conventional detection methods are limited to low sensitivity and reproducibility. There are hundreds of papers published with different detection methods in recent years to address these challenges. Therefore, in this review, pioneering researches about various detection strategies are comprehensively summarized and the analytical performance of these tests is evaluated. Furthermore, the exosome molecular composition (protein and nucleic acid) profiling, a single exosome profiling, and their application in clinical cancer diagnosis are reviewed. Finally, the principles and applications of machine learning method in exosomes researches are presented.
Collapse
Affiliation(s)
- Huiwen Xiong
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Zhipeng Huang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Zhejun Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Qiuyuan Lin
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Bin Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Xueen Fang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Hui Chen
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Jilie Kong
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
39
|
Yu Y, Guo Q, Jiang W, Zhang H, Cai C. Dual-Aptamer-Assisted AND Logic Gate for Cyclic Enzymatic Signal Amplification Electrochemical Detection of Tumor-Derived Small Extracellular Vesicles. Anal Chem 2021; 93:11298-11304. [PMID: 34369142 DOI: 10.1021/acs.analchem.1c02489] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small extracellular vesicles (sEVs), often referred to as exosomes, are potential biomarkers for noninvasive cancer diagnosis. However, because of their phenotype heterogeneity, precise detection of tumor-derived sEVs is a great challenge. Herein, a dual-aptamer-assisted AND logic gate was fabricated for sensitive electrochemical detection of tumor-derived sEVs based on a cyclic enzymatic signal amplification strategy. Four different tumor-derived sEVs were used to verify the feasibility of the AND logic gate, and CCRF-CEM sEVs were successfully detected by this assay. The electrochemical assay shows a good linear response from 4 × 103 to 8 × 107 particles/μL, with a detection limit of 920 particles/μL, for CCRF-CEM sEVs, indicating potential application in accurate cancer diagnostics.
Collapse
Affiliation(s)
- Yongqi Yu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Qunqun Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Wenli Jiang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Hui Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| |
Collapse
|
40
|
Walia S, Chandrasekaran AR, Chakraborty B, Bhatia D. Aptamer-Programmed DNA Nanodevices for Advanced, Targeted Cancer Theranostics. ACS APPLIED BIO MATERIALS 2021; 4:5392-5404. [PMID: 35006722 DOI: 10.1021/acsabm.1c00413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA has been demonstrated to be a versatile material for construction at the nanoscale. DNA nanodevices are highly programmable and allow functionalization with multiple entities such as imaging modalities (fluorophores), targeting entities (aptamers), drug conjugation (chemical linkers), and triggered release (photoresponsive molecules). These features enhance the use of DNA nanodevices in biological applications, catalyzing the rapid growth of this domain of research. In this review, we focus on recent progress in the development and use of aptamer-functionalized DNA nanodevices as theranostic agents, their characterization, applications as delivery platforms, and advantages. We provide a brief background on the development of aptamers and DNA nanodevices in biomedical applications, and we present specific applications of these entities in cancer diagnosis and therapeutics. We conclude with a perspective on the challenges and possible solutions for the clinical translation of aptamer-functionalized DNA nanodevices in the domain of cancer therapeutics.
Collapse
Affiliation(s)
- Shanka Walia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | | | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
41
|
Liang Y, Lehrich BM, Zheng S, Lu M. Emerging methods in biomarker identification for extracellular vesicle-based liquid biopsy. J Extracell Vesicles 2021; 10:e12090. [PMID: 34012517 PMCID: PMC8114032 DOI: 10.1002/jev2.12090] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/17/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are released by many cell types and distributed within various biofluids. EVs have a lipid membrane-confined structure that allows for carrying unique molecular information originating from their parent cells. The species and quantity of EV cargo molecules, including nucleic acids, proteins, lipids, and metabolites, may vary largely owing to their parent cell types and the pathophysiologic status. Such heterogeneity in EV populations provides immense challenges to researchers, yet allows for the possibility to prognosticate the pathogenesis of a particular tissue from unique molecular signatures of dispersing EVs within biofluids. However, the inherent nature of EV's small size requires advanced methods for EV purification and evaluation from the complex biofluid. Recently, the interdisciplinary significance of EV research has attracted growing interests, and the EV analytical platforms for their diagnostic prospect have markedly progressed. This review summarizes the recent advances in these EV detection techniques and methods with the intention of translating an EV-based liquid biopsy into clinical practice. This article aims to present an overview of current EV assessment techniques, with a focus on their progress and limitations, as well as an outlook on the clinical translation of an EV-based liquid biopsy that may augment current paradigms for the diagnosis, prognosis, and monitoring the response to therapy in a variety of disease settings.
Collapse
Affiliation(s)
- Yaxuan Liang
- Center for Biological Science and Technology, Advanced Institute of Natural SciencesBeijing Normal University at ZhuhaiZhuhaiChina
| | - Brandon M. Lehrich
- Medical Scientist Training ProgramUniversity of Pittsburgh School of Medicine and Carnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Siyang Zheng
- Department Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
- Department of Electrical and Computer EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Mengrou Lu
- Department Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| |
Collapse
|
42
|
Stanciu LA, Wei Q, Barui AK, Mohammad N. Recent Advances in Aptamer-Based Biosensors for Global Health Applications. Annu Rev Biomed Eng 2021; 23:433-459. [PMID: 33872519 DOI: 10.1146/annurev-bioeng-082020-035644] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since aptamers were first reported in the early 2000s, research on their use for the detection of health-relevant analytical targets has exploded. This review article provides a brief overview of the most recent developments in the field of aptamer-based biosensors for global health applications. The review provides a description of general aptasensing principles and follows up with examples of recent reports of diagnostics-related applications. These applications include detection of proteins and small molecules, circulating cancer cells, whole-cell pathogens, extracellular vesicles, and tissue diagnostics. The review also discusses the main challenges that this growing technology faces in the quest of bringing these new devices from the laboratory to the market.
Collapse
Affiliation(s)
- Lia A Stanciu
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2045, USA; .,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Amit K Barui
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2045, USA; .,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Noor Mohammad
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
43
|
Yan H, Li Y, Cheng S, Zeng Y. Advances in Analytical Technologies for Extracellular Vesicles. Anal Chem 2021; 93:4739-4774. [PMID: 33635060 DOI: 10.1021/acs.analchem.1c00693] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- He Yan
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yutao Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Shibo Cheng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.,University of Florida Health Cancer Center, Gainesville, Florida 32610, United States
| |
Collapse
|
44
|
Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C, Tan W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem Rev 2021; 121:12035-12105. [PMID: 33667075 DOI: 10.1021/acs.chemrev.0c01140] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed ongoing progress in precision medicine to improve human health. As an emerging diagnostic technique, liquid biopsy can provide real-time, comprehensive, dynamic physiological and pathological information in a noninvasive manner, opening a new window for precision medicine. Liquid biopsy depends on the sensitive and reliable detection of circulating targets (e.g., cells, extracellular vesicles, proteins, microRNAs) from body fluids, the performance of which is largely governed by recognition ligands. Aptamers are single-stranded functional oligonucleotides, capable of folding into unique tertiary structures to bind to their targets with superior specificity and affinity. Their mature evolution procedure, facile modification, and affinity regulation, as well as versatile structural design and engineering, make aptamers ideal recognition ligands for liquid biopsy. In this review, we present a broad overview of aptamer-based liquid biopsy techniques for precision medicine. We begin with recent advances in aptamer selection, followed by a summary of state-of-the-art strategies for multivalent aptamer assembly and aptamer interface modification. We will further describe aptamer-based micro-/nanoisolation platforms, aptamer-enabled release methods, and aptamer-assisted signal amplification and detection strategies. Finally, we present our perspectives regarding the opportunities and challenges of aptamer-based liquid biopsy for precision medicine.
Collapse
Affiliation(s)
- Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yidi Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bingqian Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingxia Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jialu Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuang Wan
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
45
|
Zhang H, Qiao B, Guo Q, Jiang J, Cai C, Shen J. A facile and label-free electrochemical aptasensor for tumour-derived extracellular vesicle detection based on the target-induced proximity hybridization of split aptamers. Analyst 2021; 145:3557-3563. [PMID: 32309839 DOI: 10.1039/d0an00066c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Facile detection of tumour-derived extracellular vesicles (EVs) is crucial to cancer diagnosis. Herein, a facile and label-free electrochemical aptasensor was fabricated to detect tumour-derived EVs based on the target-induced proximity hybridization of split aptamers. In this assay, two designed oligonucleotide probes containing fragments of a protein tyrosine kinase-7 (PTK7) aptamer were used to recognize and capture EVs containing PTK7. In the presence of target EVs, the aptamer-target ternary complex could induce proximity hybridization and form a DNA duplex on the electrode. The DNA duplex could bind more electroactive Ru(NH3)63+ through electrostatic attraction, resulting in an increased cathodic current signal. By virtue of the excellent electrochemical signal reporter RuHex, the specificity of the aptamer and proximity ligation, a facile EV electrochemical aptasensor with a detection limit of 6.607 × 105 particles per mL was realized. Furthermore, this aptasensor showed good selectivity to distinguish different tumour-derived EVs and was applied to detect EVs in complex biological samples. The proposed electrochemical aptasensor can be further extended to the detection of other EVs, thus showing great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Hui Zhang
- Jiangsu Key Laboratory of Biomedical Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Bin Qiao
- Jiangsu Key Laboratory of Biomedical Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Qunqun Guo
- Jiangsu Key Laboratory of Biomedical Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Juqian Jiang
- Jiangsu Key Laboratory of Biomedical Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Chenxin Cai
- Jiangsu Key Laboratory of Biomedical Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jian Shen
- Jiangsu Key Laboratory of Biomedical Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| |
Collapse
|
46
|
Jiang P, Zhang S, Cheng C, Gao S, Tang M, Lu L, Yang G, Chai R. The Roles of Exosomes in Visual and Auditory Systems. Front Bioeng Biotechnol 2020; 8:525. [PMID: 32582658 PMCID: PMC7283584 DOI: 10.3389/fbioe.2020.00525] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Exosomes are nanoscale membrane-enclosed vesicles 30-150 nm in diameter that are originated from a number of type cells by the endocytic pathway and consist of proteins, lipids, RNA, and DNA. Although, exosomes were initially considered to be cellular waste, they have gradually been recognized to join in cell-cell communication and cell signal transmission. In addition, exosomal contents can be applied as biomarkers for clinical judgment and exosomes can as potential carriers in a novel drug delivery system. Unfortunately, purification methods of exosomes remain an obstacle. We described some common purification methods and highlight Morpho Menelaus (M. Menelaus) butterfly wings can be developed as efficient methods for exosome isolation. Furthermore, the current research on exosomes mainly focused on their roles in cancer, while related studies on exosomes in the visual and auditory systems are limited. Here we reviewed the biogenesis and contents of exosomes. And more importantly, we summarized the roles of exosomes and provided prospective for exosome research in the visual and auditory systems.
Collapse
Affiliation(s)
- Pei Jiang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Shasha Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China
| | - Song Gao
- Department of Otolaryngology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Mingliang Tang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Cardiovascular Science, Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Guang Yang
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Xu L, Shoaie N, Jahanpeyma F, Zhao J, Azimzadeh M, Al Jamal KT. Optical, electrochemical and electrical (nano)biosensors for detection of exosomes: A comprehensive overview. Biosens Bioelectron 2020; 161:112222. [PMID: 32365010 DOI: 10.1016/j.bios.2020.112222] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
Exosomes are small extracellular vesicles involved in many physiological activities of cells in the human body. Exosomes from cancer cells have great potential to be applied in clinical diagnosis, early cancer detection and target identification for molecular therapy. While this field is gaining increasing interests from both academia and industry, barriers such as supersensitive detection techniques and highly-efficient isolation methods remain. In the clinical settings, there is an urgent need for rapid analysis, reliable detection and point-of-care testing (POCT). With these challenges to be addressed, this article aims to review recent developments and technical breakthroughs including optical, electrochemical and electrical biosensors for exosomes detection in the field of cancer and other diseases and demonstrate how nanobiosensors could enhance the performance of conventional sensors. Working strategies, limit of detections, advantages and shortcomings of the studies are summarized. New trends, challenges and future perspectives of exosome-driven POCT in liquid biopsy have been discussed.
Collapse
Affiliation(s)
- Lizhou Xu
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Nahid Shoaie
- Department of Biotechnology, Tarbiat Modares University of Medical Science, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Biotechnology, Tarbiat Modares University of Medical Science, Tehran, Iran
| | - Junjie Zhao
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran; Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran; Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, 8916188635, Yazd, Iran.
| | - Khuloud T Al Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| |
Collapse
|
48
|
Zhu C, Li L, Wang Z, Irfan M, Qu F. Recent advances of aptasensors for exosomes detection. Biosens Bioelectron 2020; 160:112213. [PMID: 32339150 DOI: 10.1016/j.bios.2020.112213] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/01/2023]
Abstract
Exosomes are nanoscale phospholipid bilayer membrane-enclosed vesicles released from cells with diameters of 30-150 nm. Their contents reflect significant information regarding the cancer microenvironment from their parent cells, which attracts increasing attention as potential biomarkers for noninvasive early diagnosis. Among their detection methods, aptasensor has been becoming an attractive star with its properties of affordability, easy to use, fast response, high sensitivity, remarkable specificity, and multiplexing capability. This review mainly summarizes the recent advances of single-stranded DNA (ssDNA) aptamer-based sensors for cancer and tumor-derived exosomes detection. Firstly, we present a brief overview of aptamers and exosomes. Then, we introduce the exosomal proteins used as potential biomarkers of various cancers, and their specific ssDNA aptamers used in aptasensors. We emphasize eight major types of aptasensors: fluorescent, electrochemical, colorimetric, luminescence, lateral flow strips, surface-enhanced Raman scattering, surface plasmon resonance, and giant magnetoresistance sensors, based on fabrication methods, bio-recognition mechanism, as well as detection evaluation. The future directions and challenges are finally proposed for aptamers and their more applications in exosomes research.
Collapse
Affiliation(s)
- Chao Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Zijian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Muhammad Irfan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
49
|
Wu L, Wang Y, Zhu L, Liu Y, Wang T, Liu D, Song Y, Yang C. Aptamer-Based Liquid Biopsy. ACS APPLIED BIO MATERIALS 2020; 3:2743-2764. [DOI: 10.1021/acsabm.9b01194] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yidi Wang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lin Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Teng Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanling Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
50
|
Wang S, Khan A, Huang R, Ye S, Di K, Xiong T, Li Z. Recent advances in single extracellular vesicle detection methods. Biosens Bioelectron 2020; 154:112056. [PMID: 32093894 DOI: 10.1016/j.bios.2020.112056] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 01/03/2023]
Abstract
Extracellular vesicles (EVs) are secreted by a variety of cells. They are known for their pertinent role in intercellular communication, and participation in different pathological processes, making them ideal candidate for utilization as a biomarker for diagnosis and treatment of diseases. In contemporary years, the concept of a well-established liquid biopsy technology, and detection and utilization of EVs as a biomarkers have received unprecedented attention. Many rapid and precise EVs detection methods have been proposed, however, majority of them detect EVs in a bulk. As the prevalent heterogeneity of single extracellular vesicle (SEV) plays an important role in the analysis of disease progression, therefore, to prevent information loss, increased attention has been paid to SEV detection with remarkable successes. Technologies like fluorescence labeling, micro imaging and microfluidic chip were successfully employed for EVs detection at SEV level. This review summarizes the recent advances in SEV detection methods, their potential targets, applications as well as concludes future prospects for developing new SEV detection strategies.
Collapse
Affiliation(s)
- Su Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), Southeast University, Nanjing 210096, PR China
| | - Rongrong Huang
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| | - Shiyi Ye
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Kaili Di
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| | - Tao Xiong
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| | - Zhiyang Li
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China; Department of Clinical Laboratory, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng 211900, PR China.
| |
Collapse
|