1
|
Klekowski J, Chabowski M, Krzystek-Korpacka M, Fleszar M. The Utility of Lipidomic Analysis in Colorectal Cancer Diagnosis and Prognosis-A Systematic Review of Recent Literature. Int J Mol Sci 2024; 25:7722. [PMID: 39062964 PMCID: PMC11277303 DOI: 10.3390/ijms25147722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is among the most prevalent and lethal malignancies. Lipidomic investigations have revealed numerous disruptions in lipid profiles across various cancers. Studies on CRC exhibit potential for identifying novel diagnostic or prognostic indicators through lipidomic signatures. This review examines recent literature regarding lipidomic markers for CRC. PubMed database was searched for eligible articles concerning lipidomic biomarkers of CRC. After selection, 36 articles were included in the review. Several studies endeavor to establish sets of lipid biomarkers that demonstrate promising potential to diagnose CRC based on blood samples. Phosphatidylcholine, phosphatidylethanolamine, ceramides, and triacylglycerols (TAGs) appear to offer the highest diagnostic accuracy. In tissues, lysophospholipids, ceramides, and TAGs were among the most altered lipids, while unsaturated fatty acids also emerged as potential biomarkers. In-depth analysis requires both cell culture and animal studies. CRC involves multiple lipid metabolism alterations. Although numerous lipid species have been suggested as potential diagnostic markers, the establishment of standardized methods and the conduct of large-scale studies are necessary to facilitate their clinical application.
Collapse
Affiliation(s)
- Jakub Klekowski
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Surgery, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland
- Department of Clinical Surgical Sciences, Faculty of Medicine, Wroclaw University of Science and Technology, 50-556 Wroclaw, Poland
| | - Małgorzata Krzystek-Korpacka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.-K.); (M.F.)
| | - Mariusz Fleszar
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.-K.); (M.F.)
- Omics Research Center, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
2
|
Gu JY, Li XB, Liao GQ, Wang TC, Wang ZS, Jia Q, Qian YZ, Zhang XL, Qiu J. Comprehensive analysis of phospholipid in milk and their biological roles as nutrients and biomarkers. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38556904 DOI: 10.1080/10408398.2024.2330696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Phospholipids (PL) have garnered significant attention due to their physiological activities. Milk and other dairy products are important dietary sources for humans and have been extensively used to analyze the presence of PL by various analytical techniques. In this paper, the analysis techniques of PL were reviewed with the eight trigrams of phospholipidomics and a comprehensive fingerprint of 1295 PLs covering 8 subclasses in milk and other dairy products, especially. Technology is the primary productive force. Based on phospholipidomics technology, we further review the relationship between the composition of PL and factors that may be involved in processing and experimental operation, and emphasized the significance of the biological role played by PL in dietary supplements and biomarkers (production, processing and clinical research), and providing the future research directions.
Collapse
Affiliation(s)
- Jing-Yi Gu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xia-Bing Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guang-Qin Liao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Tian-Cai Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zi-Shuang Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yong-Zhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xing-Lian Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
3
|
Gerhardtova I, Jankech T, Majerova P, Piestansky J, Olesova D, Kovac A, Jampilek J. Recent Analytical Methodologies in Lipid Analysis. Int J Mol Sci 2024; 25:2249. [PMID: 38396926 PMCID: PMC10889185 DOI: 10.3390/ijms25042249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Lipids represent a large group of biomolecules that are responsible for various functions in organisms. Diseases such as diabetes, chronic inflammation, neurological disorders, or neurodegenerative and cardiovascular diseases can be caused by lipid imbalance. Due to the different stereochemical properties and composition of fatty acyl groups of molecules in most lipid classes, quantification of lipids and development of lipidomic analytical techniques are problematic. Identification of different lipid species from complex matrices is difficult, and therefore individual analytical steps, which include extraction, separation, and detection of lipids, must be chosen properly. This review critically documents recent strategies for lipid analysis from sample pretreatment to instrumental analysis and data interpretation published in the last five years (2019 to 2023). The advantages and disadvantages of various extraction methods are covered. The instrumental analysis step comprises methods for lipid identification and quantification. Mass spectrometry (MS) is the most used technique in lipid analysis, which can be performed by direct infusion MS approach or in combination with suitable separation techniques such as liquid chromatography or gas chromatography. Special attention is also given to the correct evaluation and interpretation of the data obtained from the lipid analyses. Only accurate, precise, robust and reliable analytical strategies are able to bring complex and useful lipidomic information, which may contribute to clarification of some diseases at the molecular level, and may be used as putative biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- Ivana Gerhardtova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| | - Timotej Jankech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
| | - Juraj Piestansky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia
| | - Dominika Olesova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 05 Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 68/73, SK-041 81 Kosice, Slovakia
| | - Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| |
Collapse
|
4
|
Hwang BY, Seo JW, Muftuoglu C, Mert U, Guldaval F, Asadi M, Karakus HS, Goksel T, Veral A, Caner A, Moon MH. Salivary Lipids of Patients with Non-Small Cell Lung Cancer Show Perturbation with Respect to Plasma. Int J Mol Sci 2023; 24:14264. [PMID: 37762567 PMCID: PMC10531690 DOI: 10.3390/ijms241814264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
A comprehensive lipid profile was analyzed in patients with non-small cell lung cancer (NSCLC) using nanoflow ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. This study investigated 297 and 202 lipids in saliva and plasma samples, respectively, comparing NSCLC patients to healthy controls. Lipids with significant changes (>2-fold, p < 0.05) were further analyzed in each sample type. Both saliva and plasma exhibited similar lipid alteration patterns in NSCLC, but saliva showed more pronounced changes. Total triglycerides (TGs) increased (>2-3-fold) in plasma and saliva samples. Three specific TGs (50:2, 52:5, and 54:6) were significantly increased in NSCLC for both sample types. A common ceramide species (d18:1/24:0) and phosphatidylinositol 38:4 decreased in both plasma and saliva by approximately two-fold. Phosphatidylserine 36:1 was selectively detected in saliva and showed a subsequent decrease, making it a potential biomarker for predicting lung cancer. We identified 27 salivary and 10 plasma lipids as candidate markers for NSCLC through statistical evaluations. Moreover, this study highlights the potential of saliva in understanding changes in lipid metabolism associated with NSCLC.
Collapse
Affiliation(s)
- Bo Young Hwang
- Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea; (B.Y.H.); (J.W.S.)
| | - Jae Won Seo
- Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea; (B.Y.H.); (J.W.S.)
| | - Can Muftuoglu
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir 35040, Turkey; (C.M.); (M.A.)
- Translational Pulmonary Research Center, Ege University (EgeSAM), Izmir 35040, Turkey; (U.M.); (T.G.)
| | - Ufuk Mert
- Translational Pulmonary Research Center, Ege University (EgeSAM), Izmir 35040, Turkey; (U.M.); (T.G.)
- Ataturk Health Care Vocational School, Ege University, Izmir 35040, Turkey
| | - Filiz Guldaval
- Chest Disease Department, Izmir Dr. Suat Seren Chest Disease and Surgery Training and Research Hospital, Izmir 35170, Turkey;
| | - Milad Asadi
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir 35040, Turkey; (C.M.); (M.A.)
- Translational Pulmonary Research Center, Ege University (EgeSAM), Izmir 35040, Turkey; (U.M.); (T.G.)
| | | | - Tuncay Goksel
- Translational Pulmonary Research Center, Ege University (EgeSAM), Izmir 35040, Turkey; (U.M.); (T.G.)
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Izmir 35040, Turkey;
| | - Ali Veral
- Department of Pathology, Faculty of Medicine, Ege University, Izmir 35040, Turkey;
| | - Ayse Caner
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir 35040, Turkey; (C.M.); (M.A.)
- Translational Pulmonary Research Center, Ege University (EgeSAM), Izmir 35040, Turkey; (U.M.); (T.G.)
- Department of Parasitology, Faculty of Medicine, Ege University, Izmir 35040, Turkey
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea; (B.Y.H.); (J.W.S.)
| |
Collapse
|
5
|
Park JY, Lee HB, Son SE, Gupta PK, Park Y, Hur W, Seong GH. Determination of lysophosphatidylcholine using peroxidase-mimic PVP/PtRu nanozyme. Anal Bioanal Chem 2023; 415:1865-1876. [PMID: 36792781 DOI: 10.1007/s00216-023-04590-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Lysophosphatidylcholine (LPC) can be used as a biomarker for diseases such as cancer, diabetes, atherosclerosis, and sepsis. In this study, we demonstrated the ability of nanozymes to displace the natural derived enzyme in enzyme-based assays for the measurement of LPC. Synthesized polyvinylpyrrolidone-stabilized platinum-ruthenium nanozymes (PVP/PtRu NZs) had a uniform size of 2.48 ± 0.24 nm and superb peroxidase-mimicking activity. We demonstrated that the nanozymes had high activity over a wide pH and temperature range and high stability after long-term storage. The LPC concentration could be accurately analyzed through the absorbance and fluorescence signals generated by the peroxidation reaction using the synthesized nanozyme with substrates such as 3,3',5,5'-tetramethylbenzidine (TMB) and 10-acetyl-3,7-dihydroxyphenoxazine (Ampliflu™ Red). LPC at a concentration of 0-400 µM was used for the analysis, and the coefficient of determination (R2) was 0.977, and the limit of detection (LOD) was 23.1 µM by colorimetric assay. In the fluorometric assay, the R2 was 0.999, and the LOD was 8.97 µM. The spiked recovery values for the determination of LPC concentration in human serum samples were 102-115%. Based on these results, we declared that PVP/PtRu NZs had an ability comparable to that of the native enzyme horseradish peroxidase (HRP) in the enzyme-based LPC detection method.
Collapse
Affiliation(s)
- Ji Yeon Park
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Han Been Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Pramod K Gupta
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Yosep Park
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Won Hur
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea.
| |
Collapse
|
6
|
Accurate determination for lipidomics based on LC-tandem-MS parameters modeling, prediction, and database: Monitoring the progression of hepatocellular carcinoma. J Pharm Biomed Anal 2023; 223:115126. [DOI: 10.1016/j.jpba.2022.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
7
|
Savva KV, Das B, Antonowicz S, Hanna GB, Peters CJ. Progress with Metabolomic Blood Tests for Gastrointestinal Cancer Diagnosis-An Assessment of Biomarker Translation. Cancer Epidemiol Biomarkers Prev 2022; 31:2095-2105. [PMID: 36215181 DOI: 10.1158/1055-9965.epi-22-0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 09/30/2022] [Indexed: 12/30/2022] Open
Abstract
There is an urgent need for cost-effective, non-invasive tools to detect early stages of gastrointestinal cancer (colorectal, gastric, and esophageal cancers). Despite many publications suggesting circulating metabolites acting as accurate cancer biomarkers, few have reached the clinic. In upper gastrointestinal cancer this is critically important, as there is no test to complement gold-standard endoscopic evaluation in patients with mild symptoms that do not meet referral criteria. Therefore, this study aimed to describe and solve this translational gap. Studies reporting diagnostic accuracy of metabolomic blood-based gastrointestinal cancer biomarkers from 2007 to 2020 were systematically reviewed and progress of each biomarker along the discovery-validation-adoption pathway was mapped. Successful biomarker translation was defined as a composite endpoint, including patent protection/FDA approval/recommendation in national guidelines. The review found 77 biomarker panels of gastrointestinal cancer, including 25 with an AUROC >0.9. All but one was stalled at the discovery phase, 9.09% were patented and none were clinically approved, confirming the extent of biomarker translational gap. In addition, there were numerous "re-discoveries," including histidine, discovered in 7 colorectal studies. Finally, this study quantitatively supports the presence of a translational gap between discovery and clinical adoption, despite clear evidence of highly performing biomarkers with significant potential clinical value.
Collapse
Affiliation(s)
- Katerina-Vanessa Savva
- Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, London, United Kingdom
| | - Bibek Das
- Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, London, United Kingdom
| | - Stefan Antonowicz
- Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, London, United Kingdom
| | - George B Hanna
- Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, London, United Kingdom
| | - Christopher J Peters
- Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, London, United Kingdom
| |
Collapse
|
8
|
Yuan Z, Gan H, Jin H, Feng X, Wang M, Zhou H, Zhang J. Evaluation of characteristic metabolites of aromatic amino acids in patients with HIV infection at different stages of disease. J Clin Lab Anal 2022; 37:e24795. [PMID: 36464783 PMCID: PMC9833958 DOI: 10.1002/jcla.24795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Acquired immune deficiency syndrome (AIDS), human immunodeficiency virus (HIV) infection, and antiretroviral therapy are usually associated with metabolic disorders. Screening for biomarkers to evaluate the progression of metabolic disorders is important for the diagnosis and treatment of HIV infection. This study aimed to establish and validate a method to quantify serum aromatic amino acid (AAA) metabolites as biomarkers of metabolic disorders in patients with HIV. METHODS The AAAs and metabolites were analyzed using high-performance liquid chromatography-tandem mass spectrometry. Pearson's correlation, heatmap, and receiver operating characteristic curve analyses were used for statistical analysis. RESULTS Under optimal detection conditions, the lower limits of phenylalanine (Phe), tryptophan (Trp), kynurenine (Kyn), tyrosine, phenylacetylglutamine (PAGln), and 5-hydroxytryptamine quantification reached 0.02, 0.02, 0.01, 0.02, 0.01, and 0.002 μg/ml, respectively, and the precision of intra- and inter-day was stay below 10.30%. Serum samples were stable for at least 6 months when stored at -80°C. The inter-group differences and associations between the biomarkers exhibited a particular volatility trend in PAGln, Trp, and Kyn metabolism in HIV-infected patients with metabolic syndrome. CONCLUSIONS The developed method can be used for rapid and sensitive quantification of the AAA metabolism profile in vivo to further appraise the process of HIV infection, evaluate intervening measures, conduct mechanistic investigations, and further study the utility of PAGln, a characteristic metabolite of AAA, as a biomarker of HIV infection coupled with metabolic syndrome.
Collapse
Affiliation(s)
- Zhong‐Wen Yuan
- Department of PharmacyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina,Guangdong Provincial Key Laboratory of Major Obstetric DiseasesGuangzhou Medical UniversityGuangzhouChina,School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Hai‐Ling Gan
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Hong‐Liu Jin
- Department of PharmacyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina,Guangdong Provincial Key Laboratory of Major Obstetric DiseasesGuangzhou Medical UniversityGuangzhouChina,School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Xiao‐Ying Feng
- Department of PharmacyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina,Guangdong Provincial Key Laboratory of Major Obstetric DiseasesGuangzhou Medical UniversityGuangzhouChina,School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Ming Wang
- Department of Pharmacy, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Hua‐Ping Zhou
- Department of Pharmacy, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Jing Zhang
- Department of Pharmacy, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Liu H, Xu Y, Wang Y, Liu C, Chen J, Fan S, Xie L, Dong Y, Chen S, Zhou W, Li Y. Study on endocrine disruption effect of paclobutrazol and uniconazole on the thyroid of male and female rats based on lipidomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113386. [PMID: 35286959 DOI: 10.1016/j.ecoenv.2022.113386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The present study investigated the effects of paclobutrazol and uniconazole on thyroid endocrine system in rats. Lipidomic analysis was performed to obtain the biomarkers of thyroid endocrine disruption induced by paclobutrazol and uniconazole. Network pharmacology was further used to discover potential targets of biomarkers related to drugs and diseases. After paclobutrazol and uniconazole administration, seven and four common biomarkers related to thyroid endocrine disruption for female and male rats were obtained, respectively. Paclobutrazol and uniconazole significantly increased the biomarker levels of PG (12:0/15:0), PS (14:0/16:0), PA (20:1/15:0) and PG (13:0/17:0) in both sexes of rats. Exposure to paclobutrazol additionally caused a significant decrease of PG (22:6/20:2), PE (24:1/18:1) and PE (24:0/18:0) in female rats, while an increase in male rats. Changes of the common biomarkers for paclobutrazol and uniconazole revealed similar endocrine disruption effect, which was higher in the females. Network pharmacology and KEGG pathway analysis indicated that the thyroid endocrine disrupting effects of paclobutrazol and uniconazole may be related to V-akt murine thymoma viral oncogene homolog (Akts), mitogen-activated protein kinase (MAPKs), epidermal growth factor receptor (EGFR), Insulin-like growth factor (IGF-1), IGF-IR and V-Raf murine sarcoma viral oncogene homolog B1 (BRAF). The results demonstrated that paclobutrazol and uniconazole could cause thyroid endocrine disorders in male and female rats, which were sex-specific, thus highlighting the importance of safe and effective application of these plant growth regulators.
Collapse
Affiliation(s)
- Hui Liu
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yanyan Xu
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Chunyang Liu
- National Aquatic Germplasm Resources Conservation Area Management Office in Qinhuangdao, Daihe Fishing Port, West Beach Road, Beidaihe District, Qinhuangdao, Hebei 066000, China
| | - Jun Chen
- Animal Health Supervision Office in Qinhuangdao, No. 52, Guancheng South Road, Shanhaiguan District, Qinhuangdao, Hebei 066000, China
| | - Simiao Fan
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Lijuan Xie
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yaqian Dong
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Siyu Chen
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Wenjie Zhou
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
10
|
Zhou H, Nong Y, Zhu Y, Liang Y, Zhang J, Chen H, Zhu P, Zhang Q. Serum untargeted lipidomics by UHPLC-ESI-HRMS aids the biomarker discovery of colorectal adenoma. BMC Cancer 2022; 22:314. [PMID: 35331175 PMCID: PMC8943952 DOI: 10.1186/s12885-022-09427-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/17/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Colorectal adenoma (CA) is an important precancerous lesion and early screening target of colorectal cancer (CRC). Lipids with numerous physiological functions are proved to be involved in the development of CRC. However, there is no lipidomic study with large-scale serum samples on diagnostic biomarkers for CA. METHODS The serum lipidomics of CA patients (n = 50) and normal control (NR) (n = 50) was performed by ultra high performance liquid chromatography-high resolution mass spectrometry with electrospray ionization (UHPLC-ESI-HRMS). Univariate and multivariate statistical analyses were utilized to screen the differential lipids between groups, and combining the constituent ratio analysis and diagnostic efficiency evaluation by receiver operating characteristic (ROC) curve disclosed the potential mechanism and biomarkers for CA. RESULTS There were obvious differences in serum lipid profiles between CA and NR groups. Totally, 79 differential lipids were selected by criterion of P < 0.05 and fold change > 1.5 or < 0.67. Triacylglycerols (TAGs) and phosphatidylcholines (PCs) were the major differential lipids with ratio > 60%, indicating these two lipid metabolic pathways showed evident disequilibrium, which could contribute to CA formation. Of them, 12 differential lipids had good diagnostic ability as candidate biomarkers for CA (AUC ≥ 0.900) by ROC analysis. CONCLUSIONS To our knowledge, this is the first attempt to profile serum lipidomics and explore lipid biomarkers of CA to help early screening of CRC. 12 differential lipids are obtained to act as potential diagnostic markers of CA. PCs and fatty acids were the main dysregulated biomarkers for CA in serum.
Collapse
Affiliation(s)
- Hailin Zhou
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Yanying Nong
- Department of Gastroenterology, Ruikang Hospital Affilated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, PR China
| | - Yifan Zhu
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Yunxiao Liang
- Department of Gastroenterology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, PR China
| | - Jiahao Zhang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Hongwei Chen
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Qisong Zhang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
11
|
Yu C, Zhang Q, Zhang Y, Wang L, Xu H, Bi K, Li D, Li Q. Isotope Labelled in suit Derivatization-Extraction Integrated System for Amine/Phenol Submetabolome Analysis based on Nanoconfinement Effect: Application to Lung Cancer. J Chromatogr A 2022; 1670:462954. [DOI: 10.1016/j.chroma.2022.462954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
12
|
Hu C, Li HW, Ke JQ, Yu XC, Zhao MY, Shi XY, Wu LJ, Tang XL, Xiong YH. Metabolic profiling of lysophosphatidylcholines in chlorpromazine hydrochloride- and N-acetyl- p-amino-phenoltriptolide-induced liver injured rats based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Hum Exp Toxicol 2022; 41:9603271221108320. [PMID: 35722787 DOI: 10.1177/09603271221108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chlorpromazine hydrochloride (CH) and N-acetyl-p-amino-phenoltriptolide (APAP) are typical acentral dopamine receptor antagonists and antipyretic analgesics in clinical applications, respectively. However, it has been reported that these 2 drugs could cause liver damage. Lysophosphatidylcholines (LPCs) have multiple physiological functions and are metabolized primarily in the liver, where it undergoes significant changes when the liver is damaged. In the study, 15 LPCs in the rat serum with CH- and APAP-induced liver injury were quantified based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry, and multivariate statistical analyses including principal component analysis (PCA) and orthogonal partial least squares discriminate analysis (OPLS-DA) were combined to understand CH- and APAP-induced liver injury from the perspective of LPC metabolic profiling. The quantitative results showed that there were significant changes in 10 LPCs and 5 LPCs after CH- and APAP-administration, separately. The results of PCA and OPLS-DA indicated that CH- and APAP-induced liver injury could be well distinguished by the LPC metabolic profiling, and 7 LPCs and 1 LPC biomarkers that could characterize CH- and APAP-induced liver damage in turn had been screened. This study will not only provide a new perspective for the clinical diagnosis of CH- and APAP-induced liver injury, but also offer a reference for further study of their hepatotoxicity mechanisms.
Collapse
Affiliation(s)
- Cong Hu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Hong-Wei Li
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Jia-Qun Ke
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xue-Chun Yu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Mei-Yu Zhao
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xin-Yue Shi
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Lin-Jing Wu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xi-Lan Tang
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Yin-Hua Xiong
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| |
Collapse
|
13
|
Evaluation of lipid metabolism imbalance in HIV-infected patients with metabolic disorders using high-performance liquid chromatography-tandem mass spectrometry. Clin Chim Acta 2021; 526:30-42. [PMID: 34942169 DOI: 10.1016/j.cca.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus (HIV) infection and highly active antiretroviral therapy use are associated with the disruption of lipid and glucose metabolism. Herein, a sensitive and robust high-performance liquid chromatography-tandem mass spectrometry method for the quantitation of lysophosphatidylcholines (LPCs) and acylcarnitines (ACs) in human blood serum was developed and validated to investigate them as markers of metabolic disorders in HIV-infected patients. Under optimal extraction and detection conditions, the lower limits of quantification reached 5 ng/mL (LPCs) and 0.1 ng/mL (ACs), and precision and accuracy for both intra- and inter-day analyses were generally below 15%. Serum samples were stable for at least six months when stored at - 80 °C and for at least 12 h when stored at 4 °C or 25 °C. We investigated inter-group differences and associations between the biomarkers and observed a particular volatilitytrend of LPCs and ACs for HIV-infected patients with metabolic disorders. Thus, the developed method can be used for the rapid and sensitive quantitation of LPCs and ACs in vivo to further appraise the process of HIV infection, evaluate interveningmeasures, conduct mechanistic investigations, and further study the utility of LPCs and ACs as biomarkers of HIV infection coupled with metabolic disorders.
Collapse
|
14
|
Lee SM, Kim HU. Development of computational models using omics data for the identification of effective cancer metabolic biomarkers. Mol Omics 2021; 17:881-893. [PMID: 34608924 DOI: 10.1039/d1mo00337b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Identification of novel biomarkers has been an active area of study for the effective diagnosis, prognosis and treatment of cancers. Among various types of cancer biomarkers, metabolic biomarkers, including enzymes, metabolites and metabolic genes, deserve attention as they can serve as a reliable source for diagnosis, prognosis and treatment of cancers. In particular, efforts to identify novel biomarkers have been greatly facilitated by a rapid increase in the volume of multiple omics data generated for a range of cancer cells. These omics data in turn serve as ingredients for developing computational models that can help derive deeper insights into the biology of cancer cells, and identify metabolic biomarkers. In this review, we provide an overview of omics data generated for cancer cells, and discuss recent studies on computational models that were developed using omics data in order to identify effective cancer metabolic biomarkers.
Collapse
Affiliation(s)
- Sang Mi Lee
- Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Hyun Uk Kim
- Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. .,KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, Republic of Korea.,BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Li W, Wang X, Zhang X, Gong P, Ding D, Wang N, Wang Z. Revealing potential lipid biomarkers in clear cell renal cell carcinoma using targeted quantitative lipidomics. Lipids Health Dis 2021; 20:160. [PMID: 34774030 PMCID: PMC8590225 DOI: 10.1186/s12944-021-01572-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/29/2021] [Indexed: 10/30/2022] Open
Abstract
BACKGROUND The high drug resistance and metabolic reprogramming of clear cell renal cell carcinoma (ccRCC) are considered responsible for poor prognosis. In-depth research at multiple levels is urgently warranted to illustrate the lipid composition, distribution, and metabolic pathways of clinical ccRCC specimens. METHODS In this project, a leading-edge targeted quantitative lipidomic study was conducted using 10 pairs of cancerous and adjacent normal tissues obtained from ccRCC patients. Accurate lipid quantification was performed according to a linear equation calculated using internal standards. Qualitative and quantitative analyses of lipids were performed with multiple reaction monitoring analysis based on ultra-performance liquid chromatography (UPLC) and mass spectrometry (MS). Additionally, a multivariate statistical analysis was performed using data obtained on lipids. RESULTS A total of 28 lipid classes were identified. Among them, the most abundant were triacylglycerol (TG), diacylglycerol (DG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Cholesteryl ester (CE) was the lipid exhibiting the most considerable difference between normal samples and tumor samples. Lipid content, chain length, and chain unsaturation of acylcarnitine (CAR), CE, and DG were found to be significantly increased. Based on screening for variable importance in projection scores ≥1, as well as fold change limits between 0.5 and 2, 160 differentially expressed lipids were identified. CE was found to be the most significantly upregulated lipid, while TG was observed to be the most significantly downregulated lipid. CONCLUSION Based on the absolute quantitative analysis of lipids in ccRCC specimens, it was observed that the content and change trends varied in different lipid classes. Upregulation of CAR, CE, and DG was observed, and analysis of changes in the distribution helped clarify the causes of lipid accumulation in ccRCC and possible carcinogenic molecular mechanisms. The results and methods described herein provide a comprehensive analysis of ccRCC lipid metabolism and lay a theoretical foundation for cancer treatment.
Collapse
Affiliation(s)
- Wen Li
- Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, 518000, Guangdong, China.,Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Health Science Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Xiaobin Wang
- Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, 518000, Guangdong, China.,Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Health Science Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Xianbin Zhang
- Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, 518000, Guangdong, China.,Health Science Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China.,Department of General Surgery, Shenzhen University General Hospital, Xueyuan Road 1098, Shenzhen, 518055, China
| | - Peng Gong
- Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, 518000, Guangdong, China.,Health Science Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China.,Department of General Surgery, Shenzhen University General Hospital, Xueyuan Road 1098, Shenzhen, 518055, China
| | - Degang Ding
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou City, 450003, Henan Province, China
| | - Ning Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou City, 450003, Henan Province, China
| | - Zhifeng Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou City, 450003, Henan Province, China.
| |
Collapse
|
16
|
Yu C, Zhang Q, Zou Y, Liu R, Zhao J, Bi K, Li D, Li Q. Across-polarity quantification method for broad metabolome coverage based on consecutive nanoconfined liquid phase nanoextraction technology: Application in discovering the plasma potential biomarkers of different types of cancer. Anal Chim Acta 2021; 1167:338577. [DOI: 10.1016/j.aca.2021.338577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022]
|
17
|
Qi SA, Wu Q, Chen Z, Zhang W, Zhou Y, Mao K, Li J, Li Y, Chen J, Huang Y, Huang Y. High-resolution metabolomic biomarkers for lung cancer diagnosis and prognosis. Sci Rep 2021; 11:11805. [PMID: 34083687 PMCID: PMC8175557 DOI: 10.1038/s41598-021-91276-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the leading cause of human cancer mortality due to the lack of early diagnosis technology. The low-dose computed tomography scan (LDCT) is one of the main techniques to screen cancers. However, LDCT still has a risk of radiation exposure and it is not suitable for the general public. In this study, plasma metabolic profiles of lung cancer were performed using a comprehensive metabolomic method with different liquid chromatography methods coupled with a Q-Exactive high-resolution mass spectrometer. Metabolites with different polarities (amino acids, fatty acids, and acylcarnitines) can be detected and identified as differential metabolites of lung cancer in small volumes of plasma. Logistic regression models were further developed to identify cancer stages and types using those significant biomarkers. Using the Variable Importance in Projection (VIP) and the area under the curve (AUC) scores, we have successfully identified the top 5, 10, and 20 metabolites that can be used to differentiate lung cancer stages and types. The discrimination accuracy and AUC score can be as high as 0.829 and 0.869 using the five most significant metabolites. This study demonstrated that using 5 + metabolites (Palmitic acid, Heptadecanoic acid, 4-Oxoproline, Tridecanoic acid, Ornithine, and etc.) has the potential for early lung cancer screening. This finding is useful for transferring the diagnostic technology onto a point-of-care device for lung cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Shi-Ang Qi
- Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
- Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118, Yunnan, China
| | - Qian Wu
- Shanghai Center for Bioinformation Technology and Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, Shanghai, 201203, China
- Shanghai Fenglin Clinical Laboratory Co., Ltd, Shanghai, 200231, China
| | - Zhenpu Chen
- Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118, Yunnan, China
| | - Wei Zhang
- Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Yongchun Zhou
- Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118, Yunnan, China
| | - Kaining Mao
- Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Jia Li
- Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118, Yunnan, China
| | - Yuanyuan Li
- Shanghai Center for Bioinformation Technology and Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, Shanghai, 201203, China
| | - Jie Chen
- Electrical and Computer Engineering, University of Alberta, Edmonton, Canada.
| | - Youguang Huang
- Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118, Yunnan, China.
| | - Yunchao Huang
- Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118, Yunnan, China.
| |
Collapse
|
18
|
Zou L, Guo L, Zhu C, Lai Z, Li Z, Yang A. Serum phospholipids are potential biomarkers for the early diagnosis of gastric cancer. Clin Chim Acta 2021; 519:276-284. [PMID: 33989614 DOI: 10.1016/j.cca.2021.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Early diagnosis is key to improving the prognosis of gastric cancer. Altered phospholipid metabolism has been observed in different types of cancer. This study assessed serum phospholipid levels of patients with gastric cancer to explore biomarkers for its early diagnosis. MATERIALS AND METHODS A total of 199 participants were enrolled, including patients with early gastric cancer or precancerous gastric lesions and healthy controls. Serum phospholipids were extracted and identified using mass spectrometry. The relative abundances of these phospholipids were compared among patients at different disease stages. Twenty-four patients with early gastric cancer were followed up, and their serum phospholipid levels were compared beween before and after resection. RESULTS Fifty-four phospholipids were identified. Phosphatidylethanolamine (36:3), phosphatidylethanolamine (36:2), phosphatidylcholine (32:0), and sphingomyelin (d18:0/18:1(9Z)) were more abundant in patients with early gastric cancer than in healthy controls. The area under the receiver operating curve of sphingomyelin (d18:0/18:1(9Z)) reached 0.883 in the training set (sensitivity 81.08%, specificity 78.82%) and 0.874 in the validation set. The levels of phosphatidylethanolamine (36:2), phosphatidylcholine (32:0), and sphingomyelin (d18:0/18:1(9Z)) significantly declined after the cancerous lesions were resected. CONCLUSION Serum phospholipids can serve as potential biomarkers for the early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Long Zou
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lei Guo
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Cheng Zhu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
19
|
Lee GB, Kim YB, Lee JC, Moon MH. Optimisation of high-speed lipidome analysis by nanoflow ultrahigh-performance liquid chromatography-tandem mass spectrometry: Application to identify candidate biomarkers for four different cancers. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1175:122739. [PMID: 33991954 DOI: 10.1016/j.jchromb.2021.122739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/07/2021] [Accepted: 04/24/2021] [Indexed: 12/14/2022]
Abstract
Lipid analysis is a powerful tool that can elucidate the pathogenic roles of lipids in metabolic diseases, and facilitate the development of potential biomarkers. Lipid analysis by large-scale lipidomics requires a high-speed and high-throughput analytical platform. In the present study, a high-speed analytical method for lipid analysis using nanoflow ultrahigh-performance liquid chromatography-electrospray ionisation-tandem mass spectrometry (nUHPLC-ESI-MS/MS) was optimised by investigating the effects of column flow rate, pump flow rate, dwell time, initial binary mobile phase composition, and gradient duration on the separation efficiency of standard lipid mixtures. The minimum gradient time for high-speed lipid separation was determined by examining the time-based separation efficiency and spectral overlap of isobaric lipid species during selected reaction monitoring-based quantification of sphingomyelin and a second isotope of phosphatidylcholine, which differ in molecular weight by only 1 Da. Finally, the optimised nUHPLC-ESI-MS/MS method was applied to analyse 200 plasma samples from patients with liver, gastric, lung, and colorectal cancer to evaluate its performance by measuring previously identified candidate lipid biomarkers. About 73% of the reported marker candidates (6 out of 7 in liver, 5/9 in gastric, 4/6 in lung, and 6/7 in colorectal cancer) could be assigned using the optimised method, supporting its use for high-throughput lipid analysis.
Collapse
Affiliation(s)
- Gwang Bin Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, South Korea
| | - Young Beom Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, South Korea
| | - Jong Cheol Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, South Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, South Korea.
| |
Collapse
|
20
|
Su J, Song Q, Qasem S, O'Neill S, Lee J, Furdui CM, Pasche B, Metheny-Barlow L, Masters AH, Lo HW, Xing F, Watabe K, Miller LD, Tatter SB, Laxton AW, Whitlow CT, Chan MD, Soike MH, Ruiz J. Multi-Omics Analysis of Brain Metastasis Outcomes Following Craniotomy. Front Oncol 2021; 10:615472. [PMID: 33889540 PMCID: PMC8056216 DOI: 10.3389/fonc.2020.615472] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/18/2020] [Indexed: 01/27/2023] Open
Abstract
Background The incidence of brain metastasis continues to increase as therapeutic strategies have improved for a number of solid tumors. The presence of brain metastasis is associated with worse prognosis but it is unclear if distinctive biomarkers can separate patients at risk for CNS related death. Methods We executed a single institution retrospective collection of brain metastasis from patients who were diagnosed with lung, breast, and other primary tumors. The brain metastatic samples were sent for RNA sequencing, proteomic and metabolomic analysis of brain metastasis. The primary outcome was distant brain failure after definitive therapies that included craniotomy resection and radiation to surgical bed. Novel prognostic subtypes were discovered using transcriptomic data and sparse non-negative matrix factorization. Results We discovered two molecular subtypes showing statistically significant differential prognosis irrespective of tumor subtype. The median survival time of the good and the poor prognostic subtypes were 7.89 and 42.27 months, respectively. Further integrated characterization and analysis of these two distinctive prognostic subtypes using transcriptomic, proteomic, and metabolomic molecular profiles of patients identified key pathways and metabolites. The analysis suggested that immune microenvironment landscape as well as proliferation and migration signaling pathways may be responsible to the observed survival difference. Conclusion A multi-omics approach to characterization of brain metastasis provides an opportunity to identify clinically impactful biomarkers and associated prognostic subtypes and generate provocative integrative understanding of disease.
Collapse
Affiliation(s)
- Jing Su
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Shadi Qasem
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Stacey O'Neill
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jingyun Lee
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Cristina M Furdui
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States.,Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Boris Pasche
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Linda Metheny-Barlow
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Adrianna H Masters
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fei Xing
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Stephen B Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Adrian W Laxton
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael H Soike
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Radiation Oncology, University of Alabama-Birmingham, Birmingham, AL, United States
| | - Jimmy Ruiz
- Department of Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States.,Section of Hematology & Oncology, W.G. (Bill) Hefner Veterans Affair Medial Center (VAMC), Salisbury, NC, United States
| |
Collapse
|
21
|
Răchieriu C, Eniu DT, Moiş E, Graur F, Socaciu C, Socaciu MA, Hajjar NA. Lipidomic Signatures for Colorectal Cancer Diagnosis and Progression Using UPLC-QTOF-ESI +MS. Biomolecules 2021; 11:biom11030417. [PMID: 33799830 PMCID: PMC8035671 DOI: 10.3390/biom11030417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolomics coupled with bioinformatics may identify relevant biomolecules such as putative biomarkers of specific metabolic pathways related to colorectal diagnosis, classification and prognosis. This study performed an integrated metabolomic profiling of blood serum from 25 colorectal cancer (CRC) cases previously classified (Stage I to IV) compared with 16 controls (disease-free, non-CRC patients), using high-performance liquid chromatography and mass spectrometry (UPLC-QTOF-ESI+ MS). More than 400 metabolites were separated and identified, then all data were processed by the advanced Metaboanalyst 5.0 online software, using multi- and univariate analysis, including specificity/sensitivity relationships (area under the curve (AUC) values), enrichment and pathway analysis, identifying the specific pathways affected by cancer progression in the different stages. Several sub-classes of lipids including phosphatidylglycerols (phosphatidylcholines (PCs), phosphatidylethanolamines (PEs) and PAs), fatty acids and sterol esters as well as ceramides confirmed the “lipogenic phenotype” specific to CRC development, namely the upregulated lipogenesis associated with tumor progression. Both multivariate and univariate bioinformatics confirmed the relevance of some putative lipid biomarkers to be responsible for the altered metabolic pathways in colorectal cancer.
Collapse
Affiliation(s)
- Claudiu Răchieriu
- Surgery Department, County Hospital Alba, 510118 Alba Iulia, Romania;
- Iuliu Hatieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400015 Cluj-Napoca, Romania; (E.M.); (F.G.); (N.A.H.)
| | - Dan Tudor Eniu
- Oncology Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
| | - Emil Moiş
- Iuliu Hatieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400015 Cluj-Napoca, Romania; (E.M.); (F.G.); (N.A.H.)
| | - Florin Graur
- Iuliu Hatieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400015 Cluj-Napoca, Romania; (E.M.); (F.G.); (N.A.H.)
| | - Carmen Socaciu
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
- Correspondence: (C.S.); (M.A.S.)
| | - Mihai Adrian Socaciu
- Iuliu Hatieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400015 Cluj-Napoca, Romania; (E.M.); (F.G.); (N.A.H.)
- Correspondence: (C.S.); (M.A.S.)
| | - Nadim Al Hajjar
- Iuliu Hatieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400015 Cluj-Napoca, Romania; (E.M.); (F.G.); (N.A.H.)
| |
Collapse
|
22
|
Zhang Q, Yang X, Wang Q, Zhang Y, Gao P, Li Z, Liu R, Xu H, Bi K, Li Q. "Modeling-Prediction" Strategy for Deep Profiling of Lysophosphatidic Acids by Liquid Chromatography-Mass Spectrometry: Exploration Biomarkers of Breast Cancer. J Chromatogr A 2020; 1634:461634. [PMID: 33176220 DOI: 10.1016/j.chroma.2020.461634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 01/13/2023]
Abstract
Lysophosphatidic acids (LPAs) are important bioactive phospholipids consisting of various species involved in a wide array of physiological and pathological processes. However, LPAs were rarely identified in untargeted lipidomics studies because of the incompatibility with analytical methods. Moreover, in targeted studies, the coverages of LPAs remained unsatisfactorily low due to the limitation of reference standards. Herein, a "modeling-prediction" workflow for deep profiling of LPAs by liquid chromatography-mass spectrometry was developed. Multiple linear regression models of qualitative and quantitative parameters were established according to features of fatty acyl tails of the commercial standards to predict the corresponding parameters for unknown LPAs. Then 72 multiple reaction monitoring (MRM) transitions were monitored simultaneously and species of LPA 14:0, LPA 16:1, LPA 18:3, LPA 20:3 and LPA 20:5 were firstly characterized and quantified in plasma. Finally, the workflow was applied to explore the changes of LPAs in plasma of breast cancer patients compared with healthy volunteers. Multi-LPAs indexes with strong diagnostic ability for breast cancer were identified successfully using Student's t- test, orthogona partial least-squares discrimination analysis (OPLS-DA) and logistic regression- receiver operating characteristic (ROC) curve analysis. The proposed workflow with high sensitivity, high accuracy, high coverage and reliable identification would be a powerful complement to untargeted lipidomics and shed a light on the analysis of other lipids.
Collapse
Affiliation(s)
- Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiao Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qian Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Peng Gao
- Metabolomics Core Facility of RHLCCC, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Zuojing Li
- School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
23
|
Alves MA, Lamichhane S, Dickens A, McGlinchey A, Ribeiro HC, Sen P, Wei F, Hyötyläinen T, Orešič M. Systems biology approaches to study lipidomes in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158857. [PMID: 33278596 DOI: 10.1016/j.bbalip.2020.158857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022]
Abstract
Lipids have many important biological roles, such as energy storage sources, structural components of plasma membranes and as intermediates in metabolic and signaling pathways. Lipid metabolism is under tight homeostatic control, exhibiting spatial and dynamic complexity at multiple levels. Consequently, lipid-related disturbances play important roles in the pathogenesis of most of the common diseases. Lipidomics, defined as the study of lipidomes in biological systems, has emerged as a rapidly-growing field. Due to the chemical and functional diversity of lipids, the application of a systems biology approach is essential if one is to address lipid functionality at different physiological levels. In parallel with analytical advances to measure lipids in biological matrices, the field of computational lipidomics has been rapidly advancing, enabling modeling of lipidomes in their pathway, spatial and dynamic contexts. This review focuses on recent progress in systems biology approaches to study lipids in health and disease, with specific emphasis on methodological advances and biomedical applications.
Collapse
Affiliation(s)
- Marina Amaral Alves
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Santosh Lamichhane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Alex Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | | | - Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | - Fang Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, PR China
| | | | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden.
| |
Collapse
|
24
|
Systematic Analysis of the Whole-Body Tissue Distribution and Fatty Acid Compositions of Membrane Lipids in CD1 and NMRI Mice and Wistar Rats. Int J Anal Chem 2020. [DOI: 10.1155/2020/8819437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the tissue distribution of phospholipids and glycerolipids in animal models enables promoting the pharmacokinetic study of drugs and related PK predictions. The measurement of lipid compositions in animal models, usually mice and rats, without a standardized approach hindered the accuracy of PBPK investigation. In this work, high resolution mass spectrometry was applied to profile the tissue distribution of phospholipids and glycerolipids in 12 organs/tissues of mice and rats. Using this method, not only the amounts of phospholipids and glycerolipids in each organ/tissue but also the fatty acid compositions were acquired. In order to explore the interspecies specificity of lipid distribution in different organs/tissues, three animal species including CD1 mice, NMRI mice, and Wister rats were used in this systematic study. Globally, more organ specificity was observed. It was found that the brain is the organ containing the most abundant phosphatidylserine lipids (PSs) in all three animal models, leading to brain tissues having the most concentrated acidic phospholipids. Diverse fatty acid compositions in each lipid class were clearly revealed. Certain tissues/organs also had a specific selection of unique fatty acid compositions, for example, unreferenced FA(18 : 2) in the brain. It turned out that the access of free fatty acids affects the incorporation of acyl chain in phospholipids and glycerolipids. In the analysis, ether lipids were also profiled with the observation of dominant ePEs in brain tissues. However, little interspecies difference was found for fatty acid constituents and tissues distribution of phospholipids and glycerolipids.
Collapse
|
25
|
Lee KB, Ang L, Yau WP, Seow WJ. Association between Metabolites and the Risk of Lung Cancer: A Systematic Literature Review and Meta-Analysis of Observational Studies. Metabolites 2020; 10:E362. [PMID: 32899527 PMCID: PMC7570231 DOI: 10.3390/metabo10090362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Globally, lung cancer is the most prevalent cancer type. However, screening and early detection is challenging. Previous studies have identified metabolites as promising lung cancer biomarkers. This systematic literature review and meta-analysis aimed to identify metabolites associated with lung cancer risk in observational studies. The literature search was performed in PubMed and EMBASE databases, up to 31 December 2019, for observational studies on the association between metabolites and lung cancer risk. Heterogeneity was assessed using the I2 statistic and Cochran's Q test. Meta-analyses were performed using either a fixed-effects or random-effects model, depending on study heterogeneity. Fifty-three studies with 297 metabolites were included. Most identified metabolites (252 metabolites) were reported in individual studies. Meta-analyses were conducted on 45 metabolites. Five metabolites (cotinine, creatinine riboside, N-acetylneuraminic acid, proline and r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene) and five metabolite groups (total 3-hydroxycotinine, total cotinine, total nicotine, total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (sum of concentrations of the metabolite and its glucuronides), and total nicotine equivalent (sum of total 3-hydroxycotinine, total cotinine and total nicotine)) were associated with higher lung cancer risk, while three others (folate, methionine and tryptophan) were associated with lower lung cancer risk. Significant heterogeneity was detected across most studies. These significant metabolites should be further evaluated as potential biomarkers for lung cancer.
Collapse
Affiliation(s)
- Kian Boon Lee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (K.B.L.); (W.-P.Y.)
| | - Lina Ang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore;
| | - Wai-Ping Yau
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (K.B.L.); (W.-P.Y.)
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore;
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 119228, Singapore
| |
Collapse
|
26
|
Schmidt J, Kajtár B, Juhász K, Péter M, Járai T, Burián A, Kereskai L, Gerlinger I, Tornóczki T, Balogh G, Vígh L, Márk L, Balogi Z. Lipid and protein tumor markers for head and neck squamous cell carcinoma identified by imaging mass spectrometry. Oncotarget 2020; 11:2702-2717. [PMID: 32733643 PMCID: PMC7367650 DOI: 10.18632/oncotarget.27649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. To improve pre- and post-operative diagnosis and prognosis novel molecular markers are desirable. Here we used MALDI imaging mass spectrometry (IMS) and immunohistochemistry (IHC) to seek tumor specific expression of proteins and lipids in HNSCC samples. Among low molecular weight proteins visualized, S100A8 and S100A9 were found to be expressed in the regions of tumor tissue but not in the surrounding healthy stroma of a post-operative microdissected tissue. Marker potential of S100A8 and S100A9 was confirmed by immunohistochemistry of paraffin-embedded pathological samples. Imaging lipids showed a remarkable depletion of lysophosphatidylcholine species LPC[16:0], LPC[18:2] and, in parallel, accumulation of major glycerophospholipid species PE-P[36:4], PC[32:1], PC[34:1] in neoplastic areas. This was confirmed by shotgun lipidomics of dissected healthy and tumor tissue sections. A combination of the negative (LPC[16:0]) and positive (PC[32:1], PC[34:1]) markers was also applicable to uncover tumorous character of a pre-operative biopsy. Furthermore, marker potential of lysophospholipids was supported by elevated expression levels of the lysophospholipid degrading enzyme lysophospholipase A1 (LYPLA1) in the tumor regions of paraffin-embedded HNSCC samples. Finally, experimental evidence of 3D cell spheroid tests showed that LPC[16:0] facilitates HNSCC invasion, implying that HNSCC progression in vivo may be dependent on lysophospholipid supply. Altogether, a series of novel proteins and lipid species were identified by IMS and IHC screening, which may serve as potential molecular markers for tumor diagnosis, prognosis, and may pave the way to better understand HNSCC pathophyisiology.
Collapse
Affiliation(s)
- Janos Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Béla Kajtár
- Department of Pathology, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Juhász
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Tamás Járai
- Department of Oto-Rhino-Laryngology, Medical School, University of Pécs, Pécs, Hungary
| | - András Burián
- Department of Oto-Rhino-Laryngology, Medical School, University of Pécs, Pécs, Hungary
| | - László Kereskai
- Department of Pathology, Medical School, University of Pécs, Pécs, Hungary
| | - Imre Gerlinger
- Department of Oto-Rhino-Laryngology, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Tornóczki
- Department of Pathology, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Lászó Márk
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,MTA-PTE Human Reproduction Group, Medical School, University of Pécs, Pécs, Hungary.,Imaging Center for Life and Material Sciences, Medical School, University of Pécs, Pécs, Hungary
| | - Zsolt Balogi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
27
|
Advances in Liquid Chromatography–Mass Spectrometry-Based Lipidomics: A Look Ahead. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00135-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Silva AAR, Cardoso MR, Rezende LM, Lin JQ, Guimaraes F, Silva GRP, Murgu M, Priolli DG, Eberlin MN, Tata A, Eberlin LS, Derchain SFM, Porcari AM. Multiplatform Investigation of Plasma and Tissue Lipid Signatures of Breast Cancer Using Mass Spectrometry Tools. Int J Mol Sci 2020; 21:E3611. [PMID: 32443844 PMCID: PMC7279467 DOI: 10.3390/ijms21103611] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023] Open
Abstract
Plasma and tissue from breast cancer patients are valuable for diagnostic/prognostic purposes and are accessible by multiple mass spectrometry (MS) tools. Liquid chromatography-mass spectrometry (LC-MS) and ambient mass spectrometry imaging (MSI) were shown to be robust and reproducible technologies for breast cancer diagnosis. Here, we investigated whether there is a correspondence between lipid cancer features observed by desorption electrospray ionization (DESI)-MSI in tissue and those detected by LC-MS in plasma samples. The study included 28 tissues and 20 plasma samples from 24 women with ductal breast carcinomas of both special and no special type (NST) along with 22 plasma samples from healthy women. The comparison of plasma and tissue lipid signatures revealed that each one of the studied matrices (i.e., blood or tumor) has its own specific molecular signature and the full interposition of their discriminant ions is not possible. This comparison also revealed that the molecular indicators of tissue injury, characteristic of the breast cancer tissue profile obtained by DESI-MSI, do not persist as cancer discriminators in peripheral blood even though some of them could be found in plasma samples.
Collapse
Affiliation(s)
- Alex Ap. Rosini Silva
- Postgraduate Program of Health Sciences, São Francisco University, Bragança Paulista SP 12916-900, Brazil; (A.A.R.S.); (D.G.P.)
| | - Marcella R. Cardoso
- Department of Gynecological and Breast Oncology, Women’s Hospital (CAISM), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas SP 13083-881, Brazil; (M.R.C.); (L.M.R.); (F.G.); (S.F.M.D.)
| | - Luciana Montes Rezende
- Department of Gynecological and Breast Oncology, Women’s Hospital (CAISM), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas SP 13083-881, Brazil; (M.R.C.); (L.M.R.); (F.G.); (S.F.M.D.)
| | - John Q. Lin
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA; (J.Q.L.); (L.S.E.)
| | - Fernando Guimaraes
- Department of Gynecological and Breast Oncology, Women’s Hospital (CAISM), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas SP 13083-881, Brazil; (M.R.C.); (L.M.R.); (F.G.); (S.F.M.D.)
| | - Geisilene R. Paiva Silva
- Laboratory of Molecular and Investigative Pathology—LAPE, Women’s Hospital (CAISM), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas SP 13083-881, Brazil;
| | - Michael Murgu
- Waters Corporation, São Paulo, SP 13083-970, Brazil;
| | - Denise Gonçalves Priolli
- Postgraduate Program of Health Sciences, São Francisco University, Bragança Paulista SP 12916-900, Brazil; (A.A.R.S.); (D.G.P.)
| | - Marcos N. Eberlin
- School of Engineering, Mackenzie Presbyterian University, São Paulo SP 01302-907, Brazil;
| | - Alessandra Tata
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume 78, 36100 Vicenza, Italy;
| | - Livia S. Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA; (J.Q.L.); (L.S.E.)
| | - Sophie F. M. Derchain
- Department of Gynecological and Breast Oncology, Women’s Hospital (CAISM), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas SP 13083-881, Brazil; (M.R.C.); (L.M.R.); (F.G.); (S.F.M.D.)
| | - Andreia M. Porcari
- Postgraduate Program of Health Sciences, São Francisco University, Bragança Paulista SP 12916-900, Brazil; (A.A.R.S.); (D.G.P.)
| |
Collapse
|
29
|
Liu T, Tan Z, Yu J, Peng F, Guo J, Meng W, Chen Y, Rao T, Liu Z, Peng J. A conjunctive lipidomic approach reveals plasma ethanolamine plasmalogens and fatty acids as early diagnostic biomarkers for colorectal cancer patients. Expert Rev Proteomics 2020; 17:233-242. [PMID: 32306783 DOI: 10.1080/14789450.2020.1757443] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background: Colorectal cancer (CRC) represents a third leading cause of cancer-related death worldwide. The reliable diagnostic biomarkers for detecting CRC at early stage is critical for decreasing the mortality.Method: A conjunctive lipidomic approach was employed to investigate the differences in plasma lipid profiles of CRC patients (n = 101) and healthy volunteers (n = 52). Based on UHPLC-Q-TOF MS and UHPLC-QQQ MS platforms, a total of 236 lipids were structurally detected. Multivariate data analysis was conducted for biomarkers discovery.Results: A total of 11 lipid species, including 1 Glycerophosphoethanolamine (PE), 3 ethanolamine plasmalogens (PlsEtn), 1 plasmanyl glycerophosphatidylethanolamine (PE-O), 3 fatty acids (FFA), 1 Fatty acid ester of hydroxyl fatty acid (FAHFA) and 2 Diacylglycerophosphates (PA) were identified to distinguish the CRC patients at early stage from healthy controls. In addition, these potential lipid biomarkers achieved an estimated AUC=0.981 in a validation set for univariate ROC analysis.Conclusion: By combining Q-TOF MS and QQQ MS analysis, the 11 lipids exhibited good performance in differentiating early-stage CRC and healthy control. This study also demonstrated that lipidomics is a powerful tool in discovering new potential biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- Tong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Jing Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Feng Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Jiwei Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Wenhui Meng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Jingbo Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| |
Collapse
|
30
|
Chen Y, Hui SP, Miura Y, Kato S, Sakurai T, Chen Z, Okada E, Ukawa S, Nakagawa T, Nakamura K, Tamakoshi A, Chiba H, Minami H, Mizuta M. Multivariate Analysis for Molecular Species of Cholesteryl Ester in the Human Serum. ANAL SCI 2020; 36:373-378. [PMID: 31735761 DOI: 10.2116/analsci.19p321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cholesteryl ester (CE) is an ester of cholesterol and fatty acid (FA). Plasma CE reflects complicated metabolisms of cholesterol, phospholipids, lipoproteins, and dietary FAs. An informatics approach could be useful for analysis of the CE species. In this study, two basic dimension reduction methods, principal component analysis (PCA) and factor analysis, were applied to serum CE species determined by LC-MS/MS in a Japanese population (n = 545). PCA and factor analysis both reflected the size (concentration), food source, fat solubility, and biological aspect of the CE species. In a comparison between PCA (PC4) and factor analysis (factor 4), the latter was found to be more suggestive from a biological aspect of n-6 FAs. Cholesteryl docosahexaenoate (DHA) was found to be unique by a factor analysis, possibly relevant to the unique accumulation of DHA in the brain. An informatics approach, especially factor analysis, might be useful for the analysis of complicated metabolism of CE species in the serum.
Collapse
Affiliation(s)
- Yifan Chen
- Graduate School of Information Science and Technology, Hokkaido University
| | | | | | - Sota Kato
- Faculty of Health Sciences, Hokkaido University
| | | | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University
| | - Emiko Okada
- Department of Nutritional Epidemiology and Shokuiku, National Institute of Biomedical Innovation, Health and Nutrition
| | - Shigekazu Ukawa
- Graduate School of Human Life Science, Osaka City University
| | | | - Koshi Nakamura
- Department of Public Health and Hygiene, Graduate School of Medicine, University of the Ryukyus
| | - Akiko Tamakoshi
- Department of Public Health, Faculty of Medicine, Hokkaido University
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences
| | | | | |
Collapse
|
31
|
Zhang L, Zheng J, Ahmed R, Huang G, Reid J, Mandal R, Maksymuik A, Sitar DS, Tappia PS, Ramjiawan B, Joubert P, Russo A, Rolfo CD, Wishart DS. A High-Performing Plasma Metabolite Panel for Early-Stage Lung Cancer Detection. Cancers (Basel) 2020; 12:cancers12030622. [PMID: 32156060 PMCID: PMC7139410 DOI: 10.3390/cancers12030622] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
The objective of this research is to use metabolomic techniques to discover and validate plasma metabolite biomarkers for the diagnosis of early-stage non-small cell lung cancer (NSCLC). The study included plasma samples from 156 patients with biopsy-confirmed NSCLC along with age and gender-matched plasma samples from 60 healthy controls. A fully quantitative targeted mass spectrometry (MS) analysis (targeting 138 metabolites) was performed on all samples. The sample set was split into a discovery set and validation set. Metabolite concentration data, clinical data, and smoking history were used to determine optimal sets of biomarkers and optimal regression models for identifying different stages of NSCLC using the discovery sets. The same biomarkers and regression models were used and assessed on the validation models. Univariate and multivariate statistical analysis identified β-hydroxybutyric acid, LysoPC 20:3, PC ae C40:6, citric acid, and fumaric acid as being significantly different between healthy controls and stage I/II NSCLC. Robust predictive models with areas under the curve (AUC) > 0.9 were developed and validated using these metabolites and other, easily measured clinical data for detecting different stages of NSCLC. This study successfully identified and validated a simple, high-performing, metabolite-based test for detecting early stage (I/II) NSCLC patients in plasma. While promising, further validation on larger and more diverse cohorts is still required.
Collapse
Affiliation(s)
- Lun Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (J.R.); (R.M.)
| | - Jiamin Zheng
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (J.R.); (R.M.)
| | - Rashid Ahmed
- BioMark Diagnostics Inc., Richmond, BC V6X 2W8, Canada; (R.A.); (G.H.)
| | - Guoyu Huang
- BioMark Diagnostics Inc., Richmond, BC V6X 2W8, Canada; (R.A.); (G.H.)
| | - Jennifer Reid
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (J.R.); (R.M.)
| | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (J.R.); (R.M.)
| | - Andrew Maksymuik
- Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada;
| | - Daniel S. Sitar
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada;
- Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Paramjit S. Tappia
- Asper Clinical Research Institute & Office of Clinical Research, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada; (P.S.T.); (B.R.)
| | - Bram Ramjiawan
- Asper Clinical Research Institute & Office of Clinical Research, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada; (P.S.T.); (B.R.)
| | - Philippe Joubert
- Department of Pathology, University of Laval, Quebec, QC G1V 4G5, Canada;
| | - Alessandro Russo
- Medical Oncology Unit A.O. Papardo & Department of Human Pathology, University of Messina, 98158 Messina, Italy;
- Thoracic Medical Oncology Program Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA;
| | - Christian D. Rolfo
- Thoracic Medical Oncology Program Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA;
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (J.R.); (R.M.)
- Correspondence:
| |
Collapse
|
32
|
Zhang Q, Liu R, Xu H, Yang X, Zhang Y, Wang Q, Gao P, Bi K, Han T, Li Q. Multifunctional isotopic standards based steroidomics strategy: Exploration of cancer screening model. J Chromatogr A 2020; 1614:460723. [DOI: 10.1016/j.chroma.2019.460723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022]
|
33
|
Zhang L, Zhu B, Zeng Y, Shen H, Zhang J, Wang X. Clinical lipidomics in understanding of lung cancer: Opportunity and challenge. Cancer Lett 2019; 470:75-83. [PMID: 31655086 DOI: 10.1016/j.canlet.2019.08.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/01/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Disordered lipid metabolisms have been evidenced in lung cancer as well as its subtypes. Lipidomics with in-depth mining is considered as a critical member of the multiple omics family and a lipid-specific tool to understand disease-associated lipid metabolism and disease-specific dysfunctions of lipid species, discover biomarkers and targets for monitoring therapeutic strategies, and provide insights into lipid profiling and pathophysiological mechanisms in lung cancer. The present review describes the characters and patterns of lipidomic profiles in patients with different lung cancer subtypes, important values of comprehensive lipidomic profiles in understanding of lung cancer heterogeneity, urgent needs of standardized methodologies, potential mechanisms by lipid-associated enzymes and proteins, and the importance of integration between clinical phenomes and lipidomic profiles. The characteristics of lipidomic profiles in different lung cancer subtypes are extremely varied among study designs, objects, methods, and analyses. Preliminary data from recent studies demonstrate the specificity of lipidomic profiles specific for lung cancer stage, severity, subtype, and response to drugs. The heterogeneity of lipidomic profiles and lipid metabolism may be part of systems heterogeneity in lung cancer and be responsible for the development of drug resistance, although there are needs for direct evidence to show the existence of intra- or inter-lung cancer heterogeneity of lipidomic profiles. With an increasing understanding of expression profiles of genes and proteins, lipidomic profiles should be associated with activities of enzymes and proteins involved in the processes of lipid metabolism, which can be profiled with genomics and proteomics, and to provide the opportunity for the integration of lipidomic profiles with gene and protein expression profiles. The concept of clinical trans-omics should be emphasized to integrate data of lipidomics with clinical phenomics to identify disease-specific and phenome-specific biomarkers and targets, although there are still a large number of challenges to be overcome in the integration between clinical phenomes and lipidomic profiles.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Fudan University, Shanghai, China
| | - Bijun Zhu
- Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Fudan University, Shanghai, China
| | - Yiming Zeng
- Department of Respiratory Diseases, Clinical Center for Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Hui Shen
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Jiaqiang Zhang
- Department of Anesthesiology, Clinical Center of Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiangdong Wang
- Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
34
|
LC-MS-based lipid profile in colorectal cancer patients: TAGs are the main disturbed lipid markers of colorectal cancer progression. Anal Bioanal Chem 2019; 411:5079-5088. [DOI: 10.1007/s00216-019-01872-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
|