1
|
Yang T, Li Z, Chen S, Lan T, Lu Z, Fang L, Zhao H, Li Q, Luo Y, Yang B, Shu J. Ultra-sensitive analysis of exhaled biomarkers in ozone-exposed mice via PAI-TOFMS assisted with machine learning algorithms. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134151. [PMID: 38554517 DOI: 10.1016/j.jhazmat.2024.134151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Ground-level ozone ranks sixth among common air pollutants. It worsens lung diseases like asthma, emphysema, and chronic bronchitis. Despite recent attention from researchers, the link between exhaled breath and ozone-induced injury remains poorly understood. This study aimed to identify novel exhaled biomarkers in ozone-exposed mice using ultra-sensitive photoinduced associative ionization time-of-flight mass spectrometry and machine learning. Distinct ion peaks for acetonitrile (m/z 42, 60, and 78), butyronitrile (m/z 70, 88, and 106), and hydrogen sulfide (m/z 35) were detected. Integration of tissue characteristics, oxidative stress-related mRNA expression, and exhaled breath condensate free-radical analysis enabled a comprehensive exploration of the relationship between ozone-induced biological responses and potential biomarkers. Under similar exposure levels, C57BL/6 mice exhibited pulmonary injury characterized by significant inflammation, oxidative stress, and cardiac damage. Notably, C57BL/6 mice showed free radical signals, indicating a distinct susceptibility profile. Immunodeficient non-obese diabetic Prkdc-/-/Il2rg-/- (NPI) mice exhibited minimal biological responses to pulmonary injury, with little impact on the heart. These findings suggest a divergence in ozone-induced damage pathways in the two mouse types, leading to alterations in exhaled biomarkers. Integrating biomarker discovery with comprehensive biopathological analysis forms a robust foundation for targeted interventions to manage health risks posed by ozone exposure.
Collapse
Affiliation(s)
- Teng Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China.
| | - Siwei Chen
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Lan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongbing Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems. Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020 China
| | - Huan Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qirun Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinwei Luo
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Bo Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinian Shu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Yu Y, Jiang J, Hua L, Xu Y, Chen C, Chen Y, Li H. Manipulation of Ion Conversion in Dichloromethane-Enhanced Vacuum Ultraviolet Photoionization Mass Spectrometry of Oxygenated Volatile Organic Compounds. Anal Chem 2023; 95:12940-12947. [PMID: 37582208 DOI: 10.1021/acs.analchem.3c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The ion conversion processes in CH2Cl2-enhanced vacuum ultraviolet photoionization of oxygenated volatile organic compounds (OVOCs) have been systematically studied by regulating the pressure, humidity, and reaction time in the ionization source of a time-of-flight mass spectrometer. As the ionization source pressure increased from 100 to 1100 Pa, the main characteristic ions changed from CH2Cl+ to CH2Cl+(H2O), CH2OH+, and C2H4OH+ and then to the hydrated hydronium ions H3O+(H2O)n (n = 1, 2, 3). The total ion current (TIC) almost remained unchanged even if the humidity increased from 44 to 3120 ppmv, indicating interconversion between ions through ion-molecule reactions. The intensity of protonated methanol/ethanol (sample S) ion was almost linearly correlated with the intensity of H3O+(H2O)n, which pointed to the proton transfer reaction (PTR) mechanism. The reaction time was regulated by the electric field strength in the ionization region. The intensity variation trends of different ions with the reaction time indicated that a series of step-by-step ion-molecule reactions occurred in the ionization source, i.e., the primary ion CH2Cl+ reacted with H2O and converted to the intermediate product ions CH2OH+ and C2H4OH+, which then further reacted with H2O and led to the production of H3O+, and finally, the protonated sample ion SH+ was obtained through PTR with H3O+, as the ion-molecule reactions progressed. This study provides valuable insights into understanding the formation mechanism of some unexpected intermediate product ions and hydrated hydronium ions in dopant-enhanced VUV photoionization and also helps to optimize experimental conditions to enhance the sensitivity of OVOCs.
Collapse
Affiliation(s)
- Yi Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China
| | - Jichun Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China
| | - Lei Hua
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China
| | - Yiqian Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China
| | - Chuang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China
| | - Yi Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China
| | - Haiyang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China
| |
Collapse
|
3
|
Yan Z, Shan L, Cheng S, Yu Z, Wei Z, Wang H, Sun H, Yang B, Shu J, Li Z. A Simple High-Flux Switchable VUV Lamp Based on an Electrodeless Fluorescent Lamp for SPI/PAI Mass Spectrometry. Anal Chem 2023; 95:11859-11867. [PMID: 37474253 DOI: 10.1021/acs.analchem.3c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Single-photon ionization (SPI) is a unique soft ionization technique for organic analysis. A convenient high-flux vacuum ultraviolet (VUV) light source is a key precondition for wide application of SPI techniques. In this study, we present a novel VUV lamp by simply modifying an ordinary electrodeless fluorescent lamp. By replacing the glass bulb with a stainless steel bulb and introducing 5% Kr/He (v/v) as the excitation gas, an excellent VUV photon flux over 4.0 × 1014 photons s-1 was obtained. Due to its rapid glow characteristics, the VUV lamp can be switched on and off instantly as required by detection, ensuring the stability and service life of the lamp. To demonstrate the performance of the new lamp, the switchable VUV lamp was coupled with an SPI-mass spectrometer, which could be changed to photoinduced associative ionization (PAI) mode by doping gaseous CH2Cl2 to initiate an associative ionization reaction. Two types of volatile organic compounds sensitive to SPI and PAI, typically benzene series and oxygenated organics, respectively, were selected as samples. The instrument exhibited a high detection sensitivity for the tested compounds. With a measurement time of 11 s, the 3σ limits of detection ranged from 0.33 to 0.75 pptv in SPI mode and from 0.03 to 0.12 pptv in PAI mode. This study provides an extremely simple method to assemble a VUV lamp with many merits, e.g., portability, robustness, durability, low cost, and high flux. The VUV lamp may contribute to the development of SPI-related highly sensitive detection technologies.
Collapse
Affiliation(s)
- Zitao Yan
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Beijing 101408, People's Republic of China
| | - Lixin Shan
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Beijing 101408, People's Republic of China
| | - Shiyu Cheng
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Beijing 101408, People's Republic of China
| | - Zhangqi Yu
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Beijing 101408, People's Republic of China
| | - Zhiyang Wei
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Beijing 101408, People's Republic of China
| | - Haijie Wang
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Beijing 101408, People's Republic of China
| | - Haohang Sun
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Beijing 101408, People's Republic of China
| | - Bo Yang
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Beijing 101408, People's Republic of China
| | - Jinian Shu
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Beijing 101408, People's Republic of China
| | - Zhen Li
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Beijing 101408, People's Republic of China
| |
Collapse
|
4
|
Yu Y, Jiang J, Hua L, Chen C, Xu Y, Chen P, Wang W, Chen Y, Fan Z, Li H. Ionization of Dichloromethane by a Vacuum Ultraviolet Krypton Lamp: Competition Between Photoinduced Ion-Pair and Photodissociation-Assisted Photoionization. J Phys Chem Lett 2023; 14:1265-1271. [PMID: 36719712 DOI: 10.1021/acs.jpclett.2c03572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The photodissociation and photoionization behaviors of haloalkanes in the VUV regime are important to fully understand the mechanism of ozone depletion in the stratosphere. The ionization of dichloromethane (CH2Cl2) under the irradiation of 10.0 and 10.6 eV light was investigated. CH2Cl+ was observed at 10 Pa, while both CH2Cl+ and CHCl2+ were observed at higher pressure. The production efficiency of CH2Cl+ decreased with the increasing number density of CH2Cl2, while that of CHCl2+ increased. A kinetic model was successfully derived to quantitatively describe the variation trends of CH2Cl+ and CHCl2+, in which the competition between photoinduced ion-pair and photodissociation-assisted photoionization (PD-PI) were included. The ion-pair channel was quenched efficiently at higher pressure or concentration, which reduced its contribution. Our study proposed new insights into the complicated photoexcitation behaviors of CH2Cl2 in the VUV regime and revealed the important role of photodissociation in photoionization at low photon flux.
Collapse
Affiliation(s)
- Yi Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Jichun Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning116023, People's Republic of China
| | - Lei Hua
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning116023, People's Republic of China
| | - Chuang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning116023, People's Republic of China
| | - Yiqian Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Ping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning116023, People's Republic of China
| | - Weiguo Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning116023, People's Republic of China
| | - Yi Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Zhigang Fan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Haiyang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning116023, People's Republic of China
| |
Collapse
|
5
|
Jiang K, Yu Z, Wei Z, Cheng S, Wang H, Yan Z, Shan L, Huang J, Yang B, Shu J. Direct detection of acetonitrile at the pptv level with photoinduced associative ionization time-of-flight mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:368-376. [PMID: 36597774 DOI: 10.1039/d2ay01865a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photoionization mass spectrometry (PI-MS) has become a versatile tool in the real-time analysis of volatile organic compounds (VOCs) from the atmosphere or exhaled breath. However, some key species, e.g., acetonitrile, are hard to measure due to their higher ionization energies than photon energy. In this study, the direct and sensitive detection of gaseous acetonitrile based on a photoinduced associative ionization (PAI) reaction was investigated with a laboratory-built PAI time-of-flight mass spectrometer (PAI-TOFMS). By doping CH2Cl2 in the photoionization ion source, the mass signal of acetonitrile that cannot be effectively obtained by photoionization appeared with an extremely high intensity through the PAI reaction between acetonitrile, CH2Cl2, and residual H2O in the system. Though the moisture in the sample gas has an evident impact on the detection efficiency of acetonitrile, with a relative signal intensity decreasing from 100% under dry conditions to 60% at saturated relative humidity, excellent detection sensitivity was still obtained for gaseous acetonitrile in different matrixes. The sensitivity calibration experiment showed that the detection sensitivities of acetonitrile in N2 buffer gas, exhaled gas, and outdoor air were 682.4 ± 5.2, 17.0 ± 0.7, and 23.9 ± 0.2 counts pptv-1, respectively, with an analysis time of 10 s. The corresponding 3σ LODs reached 0.22, 8.82, and 6.28 pptv, which are equivalent to 0.40, 16.0, and 11.4 ng m-3. The performance of the PAI-TOFMS was first demonstrated by analyzing exhaled acetonitrile from healthy non-smokers and smokers and continuous monitoring of acetonitrile in outdoor air. In summary, this study provides a new and highly sensitive method for the real-time detection of acetonitrile through mass spectrometry.
Collapse
Affiliation(s)
- Kui Jiang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China.
| | - Zhangqi Yu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China.
| | - Zhiyang Wei
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China.
| | - Shiyu Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China.
| | - Haijie Wang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China.
| | - Zitao Yan
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China.
| | - Lixin Shan
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China.
| | - Jingyun Huang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China.
| | - Bo Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China.
| | - Jinian Shu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China.
| |
Collapse
|
6
|
Guo Y, Wang H, Yang B, Shu J, Jiang K, Yu Z, Zhang Z, Li Z, Huang J, Wei Z. An ultrasensitive SPI/PAI ion source based on a high-flux VUV lamp and its applications for the online mass spectrometric detection of sub-pptv sulfur ethers. Talanta 2022; 247:123558. [DOI: 10.1016/j.talanta.2022.123558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
|
7
|
Zhang Z, Wang H, Yang B, Shu J, Yu Z, Wei Z, Huang J, Jiang K, Guo Y, Li Z. Photoinduced Associative Ionization Time-of-Flight Mass Spectrometry for the Sensitive Determination of Monoterpenes. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2049284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Zuojian Zhang
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Haijie Wang
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bo Yang
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jinian Shu
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, State Key Laboratory of Environment Simulation and Pollution Control, Beijing, People’s Republic of China
| | - Zhangqi Yu
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zhiyang Wei
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jingyun Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, State Key Laboratory of Environment Simulation and Pollution Control, Beijing, People’s Republic of China
| | - Kui Jiang
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yedong Guo
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Wu L, Qi K, Xu M, Liu C, Pan Y. Effects of dopants in the imaging of mouse brain by desorption electrospray ionization/post-photoionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4813. [PMID: 35189674 DOI: 10.1002/jms.4813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Desorption electrospray ionization/post-photoionization (DESI/PI) is a newly developed ionization method by the combination of DESI and post-photoionization for the simultaneous imaging of polar and nonpolar compounds in biological tissues. Dopants are of great importance in DESI/PI for the enhancement of signal intensities through ion-molecule reactions. In this work, to evaluate the performance of dopants in DESI/PI, an efficient homogenate model was developed, and four kinds of dopants (toluene, chlorobenzene, bromobenzene, and anisole) were tested using homogenate of mouse brain tissue as target sample. The influences of the dopants on the signal enhancements of different compounds were explained reasonably by the ionization mechanism. Then, the dopants with their optimum volume contents were applied to the mass spectrometry imaging (MSI). For a comprehensive imaging of various compounds with different polarities, methanol/toluene/formic acid (7:3:0.1) was chosen as the best choice. Finally, the stronger quantitative ability of DESI/PI with toluene as dopant for a few compounds in mouse brain tissue was demonstrated.
Collapse
Affiliation(s)
- Liutian Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Keke Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Minggao Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
Wan N, Jiang J, Wang H, Chen P, Fan H, Wang W, Hua L, Li H. Sensitive detection of glyoxal by cluster-mediated CH2Br2+ chemical ionization time-of-flight mass spectrometry. Anal Chim Acta 2022; 1206:339612. [DOI: 10.1016/j.aca.2022.339612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/05/2022] [Accepted: 02/14/2022] [Indexed: 11/01/2022]
|
10
|
Li H, Jiang J, Hua L, Chen P, Xie Y, Fan Z, Tian D, Li H. Photoionization-induced NO + chemical ionization time-of-flight mass spectrometry for rapid measurement of aldehydes and benzenes in vehicles. Talanta 2021; 235:122722. [PMID: 34517590 DOI: 10.1016/j.talanta.2021.122722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022]
Abstract
In-vehicle air pollution has become a major concern to public health in recent years. The traditional analytical methods for detection of volatile organic compounds (VOCs) pollutants in air are based on gas chromatography - mass spectrometry (GC-MS) or high-performance liquid chromatography (HPLC), including complicated pretreatment and separation procedures, which are not only time-consuming and labor-intensive, but also incapable of simultaneously measuring both aldehydes and benzenes. In this work, a new photoionization-induced NO+ chemical ionization time-of-flight mass spectrometry (PNCI-TOFMS) was developed for real-time and continuous measurement of aldehydes and benzenes in vehicles. High-intensity NO+ reactant ions could be generated by photoionization of NO reagent gas, and efficient chemical ionization between NO+ reactant ions and analyte molecules occurred to produce adduct ions M·NO+ at an elevated ion source pressure of 800 Pa. Consequently, the achieved LODs for aldehydes and benzenes were down to sub-ppbv within 60 s. The analytical capacity of this system was demonstrated by continuous and online monitoring of in-vehicle VOCs in a used car, exhibiting broad potential applications of the PNCI-TOFMS in air pollutants monitoring and in-vehicle air quality analysis.
Collapse
Affiliation(s)
- Hanwei Li
- College of Instrumentation & Electrical Engineering, Jilin University, 938 Ximinzhu Road, Changchun, Jilin, 130061, People's Republic of China
| | - Jichun Jiang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China
| | - Lei Hua
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China.
| | - Ping Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China
| | - Yuanyuan Xie
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China
| | - Zhigang Fan
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Di Tian
- College of Instrumentation & Electrical Engineering, Jilin University, 938 Ximinzhu Road, Changchun, Jilin, 130061, People's Republic of China.
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China
| |
Collapse
|
11
|
Huang J, Shu J, Yang B, Guo Y, Zhang Z, Jiang K, Li Z. Ultrasensitive detection of trace chemical warfare agent-related compounds by thermal desorption associative ionization time-of-flight mass spectrometry. Talanta 2021; 235:122788. [PMID: 34517646 DOI: 10.1016/j.talanta.2021.122788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022]
Abstract
A thermal desorption associative ionization time-of-flight mass spectrometer was developed for ultrasensitive detection of semi-volatile chemical warfare agents (CWAs). The excited-state CH2Cl2-induced associative ionization method presented a soft ionization characterization and an excellent sensitivity towards CWAs. The detection sensitivities of the investigated nine CWA-related substances were 2.56 × 105-5.01 × 106 counts ng-1 in a detection cycle (30 s or 100 s). The corresponding 3σ limits of detection (LODs) were 0.08-3.90 pg. Compared with the best-documented LODs via the dielectric barrier discharge ionization (DBDI) and secondary electrospray ionization (SESI), the obtained LODs of the investigated compounds were improved by 2-76 times. Additionally, the measured sensitivity of 2-Chloroethyl ethyl, a proxy for mustard gas, is 550 counts pptv-1, which exceeds the DBDI and SESI's corresponding values (4.4 counts pptv-1 and 6.5 counts pptv-1) nearly by two orders of magnitude. A field application simulation was conducted by putting a strip of PTFE film contaminated with the CWA-related agent into the thermal desorption unit. The simulation showed that the sensitivities of the instrument via swipe surveying could achieve 2.19 × 105 to 5.23 × 106 counts ng-1. The experimental results demonstrate that the excited-state CH2Cl2-induced associative ionization is an ultrasensitive ionization method for CWAs and reveal a prospect for improving the detection of CWA species future.
Collapse
Affiliation(s)
- Jingyun Huang
- State Key Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinian Shu
- State Key Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bo Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yedong Guo
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zuojian Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kui Jiang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Exploring breath biomarkers in BLM-induced pulmonary fibrosis mice with associative ionization time-of-flight mass spectrometry. Talanta 2021; 239:123120. [PMID: 34864537 DOI: 10.1016/j.talanta.2021.123120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
Pulmonary fibrosis (PF) is a common but fatal disease that threatens human health worldwide. Developing effective diagnostic methods is of great importance for the early detection of PF in patients. In this study, bleomycin (BLM) was used in mice to mimic idiopathic pulmonary fibrosis (IPF). The exhaled breath of BLM-induced PF, PF plus DDAH1 overexpression, and healthy control mice were analyzed in real-time using a newly developed associative ionization time-of-flight mass spectrometry method (AI-TOFMS), which is uniquely sensitive, especially to oxygenated volatile organic compounds (VOCs). Multivariate data analyses and discriminant modeling analyses revealed that four exhaled compounds, i.e., acrolein, ethanol, nitric oxide, and ammonia, had a strong correlation with PF symptoms. An Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) score plot showed an excellent separation between these three groups. The area under the receiver operating characteristic (ROC) curve for these four compounds distinguished PF mice from healthy controls at 0.989. In addition, the degrees of acute inflammation and fibrosis were assessed with Hematoxylin and Eosin (H&E) staining and Masson's Trichrome staining. Finally, combined with pathological characteristics and mRNA expression levels, the formation of the above-mentioned volatile compounds was explored. The obtained experimental results indicated that these four breath compounds, acrolein, ethanol, nitric oxide, and ammonia, were potential exhaled biomarkers for pulmonary fibrosis.
Collapse
|
13
|
Wan N, Jiang J, Hu F, Chen P, Zhu K, Deng D, Xie Y, Wu C, Hua L, Li H. Nonuniform Electric Field-Enhanced In-Source Declustering in High-Pressure Photoionization/Photoionization-Induced Chemical Ionization Mass Spectrometry for Operando Catalytic Reaction Monitoring. Anal Chem 2021; 93:2207-2214. [PMID: 33410328 DOI: 10.1021/acs.analchem.0c04081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoionization mass spectrometry (PI-MS) is a powerful and highly sensitive analytical technique for online monitoring of volatile organic compounds (VOCs). However, due to the large difference of PI cross sections for different compounds and the limitation of photon energy, the ability of lamp-based PI-MS for detection of compounds with low PI cross sections and high ionization energies (IEs) is insufficient. Although the ion production rate can be improved by elevating the ion source pressure, the problem of generating plenty of cluster ions, such as [MH]+·(H2O)n (n = 1 and 2) and [M2]+, needs be solved. In this work, we developed a new nonuniform electric field high-pressure photoionization/photoionization-induced chemical ionization (NEF-HPPI/PICI) source with the abilities of both HPPI and PICI, which was accomplished through ion-molecule reactions with high-intensity H3O+ reactant ions generated by photoelectron ionization (PEI) of water molecules. By establishing a nonuniform electric field in a three-zone ionization region to enhance in-source declustering and using 99.999% helium as the carrier gas, not only the formation of cluster ions was significantly diminished, but the ion transmission efficiency was also improved. Consequently, the main characteristic ion for each analyte both in HPPI and PICI occupied more than 80%, especially [HCOOH·H]+ with a yield ratio of 99.2% for formic acid. The analytical capacity of this system was demonstrated by operando monitoring the hydrocarbons and oxygenated VOC products during the methanol-to-olefins and methane conversion catalytic reaction processes, exhibiting wide potential applications in process monitoring, reaction mechanism research, and online quality control.
Collapse
Affiliation(s)
- Ningbo Wan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Jichun Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| | - Fan Hu
- Henan Medical Instruments Testing Institute, 79 Xiongerhe Road, Zhengzhou 450018, People's Republic of China
| | - Ping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| | - Kaixin Zhu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dehui Deng
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuanyuan Xie
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| | - Chenxin Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Lei Hua
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| | - Haiyang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
| |
Collapse
|
14
|
Li Z, Shu J, Yang B, Zhang Z, Huang J, Chen Y. Emerging non-invasive detection methodologies for lung cancer. Oncol Lett 2020; 19:3389-3399. [PMID: 32269611 PMCID: PMC7115116 DOI: 10.3892/ol.2020.11460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/17/2020] [Indexed: 12/24/2022] Open
Abstract
The potential for non-invasive lung cancer (LC) diagnosis based on molecular, cellular and volatile biomarkers has been attracting increasing attention, with the development of advanced techniques and methodologies. It is standard practice to tailor the treatments of LC for certain specific genetic alterations, including the epidermal growth factor receptor, anaplastic lymphoma kinase and BRAF genes. Despite these advances, little is known about the internal mechanisms of different types of biomarkers and the involvement of their related biochemical pathways during the development of LC. The development of faster and more effective techniques is essential for the identification of different biomarkers. The present review summarizes some of the latest methods used for detecting molecular, cellular and volatile biomarkers in LC and their potential use in clinical diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Zhen Li
- Beijing Advanced Sciences and Innovation Center, Chinese Academy of Sciences, Beijing 101407, P.R. China.,National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Jinian Shu
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Bo Yang
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Zuojian Zhang
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Jingyun Huang
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Yang Chen
- Beijing Advanced Sciences and Innovation Center, Chinese Academy of Sciences, Beijing 101407, P.R. China
| |
Collapse
|