1
|
Huang Y, Chen K, Kong D, Song B, Zhang X, Liu Q, Yuan J. A Ratiometric Time-Gated Luminescence Probe for Imaging H 2O 2 in Endoplasmic Reticulum of Living Cells and Its Application to Smartphone-Guided Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407631. [PMID: 39588891 DOI: 10.1002/smll.202407631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Indexed: 11/27/2024]
Abstract
The significance of H2O2 as a marker of reactive oxygen species (ROS) and oxidative stress in living organisms has spurred growing interest in its roles in inflammation and disease progression. In this report, a ratiometric time-gated luminescence (RTGL) probe is proposed based on mixed lanthanide complexes, ER-BATTA-Tb3+/Eu3+, for imaging the H2O2 generation both in vitro and in vivo. Upon exposure to H2O2, the probe undergoes cleavage of the benzyl boric acid group, releasing hydroxyl (─OH) groups, which significantly reduces the emission of the Eu3+ complex while slightly increasing the emission of the Tb3+ complex. This response allows the I540/I610 ratio to be used as an indicator for monitoring the H2O2 level changes. The probes are capable of selectively accumulating in the endoplasmic reticulum (ER), allowing effective imaging of H2O2 in the ER of living cells and liver-injured mice under oxidative stress. Moreover, by integrating ER-BATTA-Tb3+/Eu3+ into (polyethylene glycol) PEG hydrogels, the H2O2-responsive smart sensor films, PEG-H2O2-Sensor films, are created, which enable the real-time monitoring of H2O2 levels in various wounds using a smartphone imaging platform and R/G channel evaluation. The sensor films are also innovatively applied for the in situ monitoring of H2O2 in brains of epileptic rats, facilitating the precise assessment of brain damage. This study provides a valuable tool for the quantitative detection of H2O2 in vitro and in vivo, as well as for the clinical monitoring and treatment of H2O2-related diseases in multiple scenarios.
Collapse
Affiliation(s)
- Yundi Huang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Kaiwen Chen
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Deshu Kong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xinyue Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Qi Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| |
Collapse
|
2
|
Guo L, Wang Q, Gao F, Liang Y, Ma H, Chen D, Zhang Y, Ju H, Zhang X. NIR-II Orthogonal Fluorescent Ratiometric Nanoprobe for In Situ Bioimaging of Carbon Monoxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405320. [PMID: 39301945 DOI: 10.1002/smll.202405320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Carbon monoxide (CO) functions as a significant endogenous cell signaling molecule and is strongly associated with many physiological and pathological processes. However, conventional fluorescence imaging in the visible and near-infrared (NIR) I regions suffers autofluorescence background and photon scattering, hindering the accurate detection of CO in vivo. In addition, the complexity of physiological environments leads to fluctuating fluorescence emission. To solve these problems, herein, the NIR-II fluorescent nanoprobe NP-Pd for in vivo ratiometric bioimaging of CO is developed. In the presence of CO, NP-Pd exhibits responsive enhancement in absorption at 808 nm, which amplifies the fluorescence signal of down-conversion nanoparticles (DCNP) at 1060 nm under 808 nm excitation, while the fluorescence signal of DCNP at 1525 nm under 980 nm excitation remains unchanged and serves as an internal standard. Through this orthogonally ratiometric fluorescence strategy, accurate CO bioimaging and precise diagnosis of acute liver injury diseases are achieved in the mouse model experiments, providing a novel tool for the in vivo detection of CO-related diseases.
Collapse
Affiliation(s)
- Lichao Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingyuan Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210008, China
| | - Feng Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haoyue Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Kong D, Huang Y, Song B, Zhang X, Yuan J. Novel Endoplasmic Reticulum-Targeted Luminescent Probe for Visualization of Carbon Monoxide in Drug-Induced Liver Injury. Anal Chem 2024; 96:18246-18253. [PMID: 39491487 DOI: 10.1021/acs.analchem.4c04528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Drug-induced liver injury (DILI) is a major hepatic dysfunction commonly caused by hepatotoxic drug overdose, resulting in a considerable number of fatalities worldwide. Recent studies have highlighted the regulatory and hepatoprotective effects of carbon monoxide (CO) during the liver injury process. However, precisely tracking the dynamic changes in the composition of CO in DILI is still a great challenge. In this work, leveraging the innovative "quencher-insertion" strategy, a unique endoplasmic reticulum (ER)-targetable lanthanide complex-based luminescence probe, ER-ANBTTA-Eu3+/Tb3+, has been developed for the selective and accurate monitoring of CO fluxes in live cells and laboratory animals. The new probe is composed of three covalently linked functional moieties: the terpyridine polyacid-Eu3+/Tb3+-mixed chelates as the long-lived luminophore, a p-toluenesulfonamide moiety as the ER-anchoring motif, and an allyloxy-nitrobenzyl ether moiety as the CO-specific recognition unit. Upon reaction with CO in the presence of Pd2+ ions, the Tsuji-Trost reaction leads to the cleavage of the allyloxy-nitrobenzyl group from the Eu3+/Tb3+-mixed chelates, which results in the restoration of Tb3+ emission at 538 nm and the attenuation of Eu3+ emission at 688 nm, leading to a dramatic increase of the I538/I688 ratio. In addition to the exceptional response sensitivity and selectivity toward CO, ER-ANBTTA-Eu3+/Tb3+ also exhibits the outstanding ER-locating capability, which allows the probe to be used for imaging of CO in the ER of live cells. Using this probe, combined with the time-gated luminescence imaging mode, the exogenous and endogenous CO in ER of live cells were monitored without the interference of background autofluorescence. Moreover, the upregulation of hepatic CO in DILI mice was successfully visualized. The results suggested the potential of ER-ANBTTA-Eu3+/Tb3+ for deeply exploring the functions of CO in DILI pathogenesis.
Collapse
Affiliation(s)
- Deshu Kong
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yundi Huang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Xinyue Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
4
|
Fang X, Cui L, Yu H, Qi Y. Fe(III)-Based Fluorescent Probe for High-Performance Recognition, Test Strip Analysis, and Cell Imaging of Carbon Monoxide. Anal Chem 2024; 96:11588-11594. [PMID: 38967368 DOI: 10.1021/acs.analchem.4c02438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Fluorescence sensing and imaging techniques are being widely studied for detecting carbon monoxide (CO) in living organisms due to their speed, sensitivity, and ease of use to biological systems. Most fluorescent probes used for this purpose are based on heavy metal ions like Pd, with a few using elements like Ru, Rh, Ir, Os, Tb, and Eu. However, these metals can be expensive and toxic to cells. There is a need for more affordable and biologically safe fluorescent probes for CO detection. Drawing inspiration from the robust affinity exhibited by heme iron toward CO, in this work, a rhodamine derivative called RBF was developed for imaging CO in living cells by binding to Fe(III) and could be used for CO sensing. A Fe(III)-based fluorescent probe for CO imaging in living cells offers advantages of cost effectiveness, low toxicity, and ease of use. The fluorescence detection using the RBF-Fe system showed a direct correlation with increasing levels of CORM-3 (LOD = 146 nM) or the exposure time of CO gas, displaying reduced fluorescence. A CO test paper based on RBF-Fe was created for simple on-site CO detection, where fluorescence would diminish in response to CO exposure, allowing rapid (2 min) visual identification. Imaging of CO in living cells was successfully conducted using the probe system, showing a decrease in fluorescence intensity as CORM-3 concentrations increased, indicating its effectiveness in monitoring CO levels accurately within living cells.
Collapse
Affiliation(s)
- Xinkuo Fang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Linfeng Cui
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Haitao Yu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yanyu Qi
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
| |
Collapse
|
5
|
Zhao L, Chen R, Jia C, Liu J, Liu G, Cheng T. BODIPY Based OFF-ON Fluorescent Probe for Endogenous Carbon Monoxide Imaging in Living Cells. J Fluoresc 2024; 34:1793-1799. [PMID: 37615893 DOI: 10.1007/s10895-023-03403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Carbon monoxide (CO) is one of the signaling molecules that are ubiquitous in humans, which involves in the regulation of human physiology and pathology. In this work, the probe PEC was designed and synthesized based on BODIPY fluorophore that can selectively detect CO through reducing the nitro group to amino group, resulting in a "turn-on" fluorescence response with a simultaneous increase in the concentration of CO. The response is selective over a variety of relevant reactive free radicals, ions, and amino acid species. PEC has the advantages of good stability, good water solubility, and obvious changes in fluorescence signals. In addition, PEC can be used to detect and track endogenous CO in living cells.
Collapse
Affiliation(s)
- Lei Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Rui Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Cheng Jia
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Jiandong Liu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guohua Liu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Tanyu Cheng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
6
|
Wang M, Kitagawa Y, Hasegawa Y. Current Development of Lanthanide Complexes for Biomedical Applications. Chem Asian J 2024; 19:e202400038. [PMID: 38348520 DOI: 10.1002/asia.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Luminescent molecule-based bioimaging system is widely used for precise localization and distinction of cancer/tumor cells. Luminescent lanthanide (Ln(III)) complexes offer long-lived (sub-millisecond time scale) and sharp (FWHM <10 nm) emission, arising from the forbidden 4f-4f electronic transitions. Luminescent Ln(III) complex-based bioimaging has emerged as a promising option for both in vitro and in vivo visualizations. In this mini-review, the historical development and recent significant progress of luminescent Ln(III) probes for bioapplications are introduced. The recent studies are mainly focused on three points: (i) the structural modifications of Ln(III) complexes in both macrocyclic and small ligands, (ii) the acquirement of high resolution luminescence images of cancer/tumor cells and (iii) the constructions of ratiometric biosensors. Furthermore, our recent study is explained as a new Cancer GPS (cancer grade probing for determining tumor grade through photophysical property analyses of intracellular Eu(III) complex.
Collapse
Affiliation(s)
- Mengfei Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yuichi Kitagawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yasuchika Hasegawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
7
|
Su M, Ji X, Liu F, Li Z, Yan D. Chemical Strategies Toward Prodrugs and Fluorescent Probes for Gasotransmitters. Mini Rev Med Chem 2024; 24:300-329. [PMID: 37102481 DOI: 10.2174/1389557523666230427152234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 04/28/2023]
Abstract
Three gaseous molecules are widely accepted as important gasotransmitters in mammalian cells, namely NO, CO and H2S. Due to the pharmacological effects observed in preclinical studies, these three gasotransmitters represent promising drug candidates for clinical translation. Fluorescent probes of the gasotransmitters are also in high demand; however, the mechanisms of actions or the roles played by gasotransmitters under both physiological and pathological conditions remain to be answered. In order to bring these challenges to the attention of both chemists and biologists working in this field, we herein summarize the chemical strategies used for the design of both probes and prodrugs of these three gasotransmitters.
Collapse
Affiliation(s)
- Ma Su
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou University, China
| | - Xingyue Ji
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Suzhou University, China
| | - Feng Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Suzhou University, China
| | - Zhang Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou University, China
| | - Duanyang Yan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou University, China
| |
Collapse
|
8
|
Zhu B, Xing X, Kim J, Rha H, Liu C, Zhang Q, Zeng L, Lan M, Kim JS. Endogenous CO imaging in bacterial pneumonia with a NIR fluorescent probe. Biomaterials 2024; 304:122419. [PMID: 38071848 DOI: 10.1016/j.biomaterials.2023.122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Bacterial pneumonia is a serious respiratory illness that poses a great threat to human life. Rapid and precise diagnosis of bacterial pneumonia is crucial for symptomatic clinical treatment. Endogenous carbon monoxide (CO) is regarded as a significant indicator of bacterial pneumonia; herein, we developed a near-infrared (NIR) probe for fluorescence and photoacoustic (PA) dual-mode imaging of endogenous CO in bacterial pneumonia. NO2-BODIPY could rapidly and specifically react with CO to produce strong NIR fluorescence as well as ratiometric PA signals. NO2-BODIPY has outstanding features including fast response, fluorescence/PA dual mode signals, good specificity, and a low limit of detection (LOD = 20.3 nM), which enables it to image endogenous CO in cells and bacterial pneumonia mice with high sensitivity and high contrast ratio. In particular, NO2-BODIPY has two-photon excited (1340 nm, σ1 = 1671 GM) NIR fluorescence and has been utilized to image endogenous CO in bacterial pneumonia mice with deep tissue penetration. NO2-BODIPY has been demonstrated a good capability of fluorescence/PA dual-mode imaging of CO in bacterial pneumonia mice, providing a precise manner to diagnose bacterial pneumonia.
Collapse
Affiliation(s)
- Beitong Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xuejian Xing
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jungryun Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Hyeonji Rha
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Chun Liu
- Department of Respirology & Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410083, China
| | - Qiang Zhang
- Department of Respirology & Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410083, China
| | - Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
9
|
Han S, Zeng Y, Li Y, Li H, Yang L, Ren X, Lan M, Wang B, Song X. Carbon Monoxide: A Second Biomarker to Couple with Viscosity for the Construction of "Dual-Locked" Near-Infrared Fluorescent Probes for Accurately Diagnosing Non-Alcoholic Fatty Liver Disease. Anal Chem 2023; 95:18619-18628. [PMID: 38054238 DOI: 10.1021/acs.analchem.3c04676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) can progress to cirrhosis and liver cancer if left untreated. Therefore, it is of great importance to develop useful tools for the noninvasive and accurate diagnosis of NAFLD. Increased microenvironmental viscosity was considered as a biomarker of NAFLD, but the occurrence of increased viscosity in other liver diseases highly reduces the diagnosis accuracy of NAFLD by a single detection of viscosity. Hence, it is very necessary to seek a second biomarker of NAFLD. It has been innovatively proposed that the overexpressed heme oxygenase-1 enzyme in NAFLD would produce abnormally high concentrations of CO in hepatocytes and that CO could serve as a potential biomarker. In this work, we screened nine lactam Changsha dyes (HCO-1-HCO-9) with delicate structures to obtain near-infrared (NIR), metal-free, and "dual-locked" fluorescent probes for the simultaneous detection of CO and viscosity. Changsha dyes with a 2-pyridinyl hydrazone substituent could sense CO, and the 5-position substituents on the 2-pyridinyl moiety had a great electron effect on the reaction rate. The double bond in these dyes served as the sensing group for viscosity. Probe HCO-9 was utilized for precise diagnosis of NAFLD by simultaneous detection of CO and viscosity. Upon reacting with CO in a high-viscosity microenvironment, strong fluorescence at 745 nm of probe HCO-9 was turned on with NIR excitation at 700 nm. Probe HCO-9 was proven to be an effective tool for imaging CO and viscosity. Due to the advantages of NIR absorption and low toxicity, probe HCO-9 was successfully applied to image NAFLD in a mouse model.
Collapse
Affiliation(s)
- Shaohui Han
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yuyang Zeng
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yiling Li
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Haipu Li
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry & Chemical Engineering, Linyi University, Linyi, Shandong 276000, China
| | - Xiaojie Ren
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- Department of Chemistry and Centre of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Minhuan Lan
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
10
|
Cai W, Chen X, Xie L, Yu Y, Liu G, Fan C, Pu S. Development of europium(III) complex fluorescent probe for hydrogen sulfide detection and its application in water samples. LUMINESCENCE 2023. [PMID: 37975337 DOI: 10.1002/bio.4628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
Hydrogen sulfide (H2 S) is a crucial endogenous signaling component in organisms that is involved in redox homeostasis and numerous biological processes. Modern medical research has confirmed that hydrogen sulfide plays an important role in the pathogenesis of many diseases. Herein, a fluorescent probe Eu(ttbd)3 abt based on europium(III) complex was designed and synthesized for the detection of H2 S. Eu(ttbd)3 abt exhibited significant quenching for H2 S at long emission wavelength (625 nm), with rapid detection ability (less than 2 min), high sensitivity [limit of detection (LOD) = 0.41 μM], and massive Stokes shift (300 nm). Additionally, this probe showed superior selectivity for H2 S despite the presence of other possible interference species such as biothiols. Furthermore, the probe Eu(ttbd)3 abt was successfully applied to detect H2 S in water samples.
Collapse
Affiliation(s)
- Wenjuan Cai
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaoxia Chen
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Ling Xie
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yanhong Yu
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Shouzhi Pu
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, China
| |
Collapse
|
11
|
Liu H, Liu T, Qin Q, Li B, Li F, Zhang B, Sun W. The importance of and difficulties involved in creating molecular probes for a carbon monoxide gasotransmitter. Analyst 2023; 148:3952-3970. [PMID: 37522849 DOI: 10.1039/d3an00849e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
As one of the triumvirate of recognized gasotransmitter molecules, namely NO, H2S, and CO, the physiological effects of CO and its potential as a biomarker have been widely investigated, garnering particular attention due to its reported hypotensive, anti-inflammatory, and cytoprotective properties, making it a promising therapeutic agent. However, the development of CO molecular probes has remained relatively stagnant in comparison with the fluorescent probes for NO and H2S, owing to its inert molecular state under physiological conditions. In this review, starting from elucidating the definition and significance of CO as a gasotransmitter, the imperative for the advancement of CO probes, especially fluorescent probes, is expounded. Subsequently, the current state of development of CO probe methodologies is comprehensively reviewed, with an overview of the challenges and prospects in this burgeoning field of research.
Collapse
Affiliation(s)
- Huanying Liu
- School of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China
| | - Ting Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Qian Qin
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Bingyu Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
12
|
Biswas B, Deka S, Mondal P, Ghosh S. The emergence and advancement of Tsuji-Trost reaction triggered carbon monoxide recognition and bioimaging. Org Biomol Chem 2023; 21:6263-6288. [PMID: 37522382 DOI: 10.1039/d3ob00444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Considering that carbon monoxide is both a vital gasotransmitter and an obnoxious gas, tremendous efforts have been dedicated toward its recognition through various methods. However, the fluorescent light-up approach through the exploration of optical markers remains one of the most convenient methods owing to its several advantages. Amongst the different approaches towards the development of CO responsive optically active molecular markers, the Tsuji-Trost reaction-based CO recognition strategy has remained one of the most significant areas of interest across researchers working in this field. However, there have been no attempts to exclusively summarize the commendable work done in this area yet. The current review, therefore, attempts to summarize the developments of various optical probes following this reaction strategy until the year 2022. This review provides detailed mechanistic insights into the Tsuji-Trost mediated CO detection strategy. Besides, discussions on the strategic development and employment of probes based on various allyl derivatives - allyl carbamate/carbonate/ethers - will provide a thorough understanding of the detection method. The significant advancements of the Tsuji-Trost reaction as an interesting strategy that is accepted and extensively explored for monitoring CO in various media including air, aqueous solutions and living systems have been elaborately discussed. Various potential applications and utilization of these developed fluorogenic probes for tracing CO in different living systems have been examined systematically. Moreover, monitoring of exogenous/endogenous CO levels, modulation of intracellular CO concentration under various induced conditions and bioimaging of CO in in vivo models have also been detailed here. Briefly, this review summarizes the current prospects of this detection method and the future directions in related fields.
Collapse
Affiliation(s)
- Bidisha Biswas
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.
| | - Snata Deka
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.
| | - Prosenjit Mondal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.
| | - Subrata Ghosh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.
| |
Collapse
|
13
|
Huang Y, Song B, Chen K, Tang Z, Ma H, Kong D, Liu Q, Yuan J. Mitochondria-Targetable Ratiometric Time-Gated Luminescence Probe Activated by Selenocysteine for the Visual Monitoring of Liver Injuries. Anal Chem 2023; 95:4024-4032. [PMID: 36799513 DOI: 10.1021/acs.analchem.2c04409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Liver injury can result from various risk factors including diabetes, virus, alcohol, drugs, and other toxins, which is mainly responsible for global mortality and morbidity. Selenocysteine (Sec), as the main undertaker of selenium function in the life system, features prominently in a series of hepatic injuries and has close association with the pathological progression of liver injuries. Here, we report a mitochondria-targetable lanthanide complex-based probe, Mito-NPTTA-Tb3+/Eu3+, that can be used for accurately determining Sec in live cells and laboratory animals via the ratiometric time-gated luminescence (TGL) technique. This probe is composed of 2,2':6',2″-terpyridine-Tb3+/Eu3+ mixed complexes as the luminophore, 2,4-dinitrophenyl (DNP) as the responsive moiety and a lipophilic triphenylphosphonium cation (PPh3+) as the mitochondria-targeting moiety. Upon reaction with Sec, accompanied by the cleavage of DNP from the probe molecule, the I540/I690 ratio of the probe increased by 55 times, which enabled Sec to be detected with the ratiometric TGL method. After being incubated with living cells, the probe molecules were selectively accumulated in mitochondria to allow the mitochondrial Sec to be successfully imaged under the ratiometric TGL mode. Importantly, using this probe coupled with the ratiometric TGL imaging technique, the fluctuations of liver Sec in various liver injuries of model mice induced by diabetes, drug, toxin, and alcohol were precisely monitored, revealing that Sec plays an important antioxidant role during the oxidative stress process in liver injury, and the Sec levels have a close interrelationship with the degree of liver injury. All the results suggest that the new probe Mito-NPTTA-Tb3+/Eu3+ could be a potential tool for the accurate diagnosis of liver injury.
Collapse
Affiliation(s)
- Yundi Huang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kaiwen Chen
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhixin Tang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hua Ma
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Deshu Kong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Yang X, Yuan Z, Lu W, Yang C, Wang M, Tripathi R, Fultz Z, Tan C, Wang B. De Novo Construction of Fluorophores via CO Insertion-Initiated Lactamization: A Chemical Strategy toward Highly Sensitive and Highly Selective Turn-On Fluorescent Probes for Carbon Monoxide. J Am Chem Soc 2023; 145:78-88. [PMID: 36548940 PMCID: PMC10287542 DOI: 10.1021/jacs.2c07504] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extensive studies in the last few decades have led to the establishment of CO as an endogenous signaling molecule and subsequently to the exploration of CO's therapeutic roles. In the current state, there is a critical conundrum in CO-related research: the extensive knowledge of CO's biological effects and yet an insufficient understanding of the quantitative correlations between the CO concentration and biological responses of various natures. This conundrum is partially due to the difficulty in examining precise concentration-response relationships of a gaseous molecule. Another reason is the need for appropriate tools for the sensitive detection and concentration determination of CO in the biological system. We herein report a new chemical approach to the design of fluorescent CO probes through de novo construction of fluorophores by a CO insertion-initiated lactamization reaction, which allows for ultra-low background and exclusivity in CO detection. Two series of CO detection probes have been designed and synthesized using this strategy. Using these probes, we have extensively demonstrated their utility in quantifying CO in blood, tissue, and cell culture and in cellular imaging of CO from exogenous and endogenous sources. The probes described will enable many biology and chemistry labs to study CO's functions in a concentration-dependent fashion with very high sensitivity and selectivity. The chemical and design principles described will also be applicable in designing fluorescent probes for other small molecules.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Minjia Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677 USA
| | - Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zach Fultz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
15
|
Xie C, Luo K, Tan L, Yang Q, Zhao X, Zhou L. A Review for In Vitro and In Vivo Detection and Imaging of Gaseous Signal Molecule Carbon Monoxide by Fluorescent Probes. Molecules 2022; 27:8842. [PMID: 36557981 PMCID: PMC9784967 DOI: 10.3390/molecules27248842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Carbon monoxide (CO) is a vital endogenous gaseous transmitter molecule involved in the regulation of various physiological and pathological processes in living biosystems. In order to investigate the biological function of CO, many technologies have been developed to monitor the level of endogenous CO in biosystems. Among them, the fluorescence detection technology based on the fluorescent probe has the advantages of high sensitivity, excellent selectivity, simple operation, especially non-invasive damage to biological samples, and the possibility of real-time in situ detection, etc., which is considered to be one of the most effective and applicable detection techniques. Therefore, in the last few years, a lot of work has been carried out on the design, synthesis and in vivo fluorescence imaging studies of CO fluorescent probes. Furthermore, using fluorescent probes to detect the changes in CO concentrations in living cells and tissues as well as in organisms has been one of the hot research topics in recent years. However, it is still a challenge to rationally design CO fluorescent probe with excellent optical performance, structural stability, low background interference, good biocompatibility, and excellent water solubility. Therefore, this review focuses on the research progress of CO fluorescent probes in the detection mechanism and biological applications in recent years. However, this popular and leading topic has rarely been summarized comprehensively to date. Thus, the research progress of CO fluorescent probes in recent years is reviewed in terms of their design concept, detection mechanism, and their biological applications. In addition, the relationship between the structure and performance of the probes was also discussed. More significantly, we hope that more excellent optical properties fluorescent probes for gaseous transmitter molecule CO detection and imaging will overcome the current problems of high biotoxicity and limited water solubility in future.
Collapse
Affiliation(s)
- Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Libin Tan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiaomei Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiongjie Zhao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
16
|
Ye M, Tan Q, Jiang D, Li J, Yao C, Zhou Y. Deep-Depth Imaging of Hepatic Ischemia/Reperfusion Injury Using a Carbon Monoxide-Activated Upconversion Luminescence Nanosystem. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52659-52669. [PMID: 36377946 DOI: 10.1021/acsami.2c15960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Exploring a chemical imaging tool for visualizing the endogenous CO biosignaling molecule is of great importance in understanding the pathophysiological functions of CO in complex biological systems. Most of the existing CO fluorescent probes show excitation and emission in the region of ultraviolet and visible light, which are not suitable for application in in vivo deep-depth imaging of CO. Herein, a new near-infrared (NIR) to NIR upconversion luminescence (UCL) nanosystem for in vivo visualization of CO was developed, which possesses the merits of high selectivity and sensitivity, a deep tissue penetration depth, and a high signal-to-noise ratio. In this design, upon interaction with CO, the maxima absorption peak of the nanosystem showed a significant blue shift from 795 nm to 621 nm and triggered a remarkable turn-on NIR UCL signal due to the luminescence resonance energy transfer process. Leveraging this nanosystem, we achieved an NIR UCL visualization of the generation of CO biosignals caused by hypoxic, acute inflammation, or ischemic injury in living cells, zebrafish, and mice. Moreover, the protective effect of CO in zebrafish models of oxygen and glucose deprivation/reperfusion (OGD/R) and mice models of lipopolysaccharide-induced oxidative stress (LOS) and hepatic ischemia/reperfusion (HI/R) was also further verified. Therefore, this work discloses that the nanosystem not only serves as a promising nanoplatform to study biological signaling pathways of CO in pathophysiological events, but may also provide a powerful tool for HI/R injury diagnosis.
Collapse
Affiliation(s)
- Minan Ye
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Qi Tan
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Detao Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jingyun Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yi Zhou
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
17
|
Yan L, Yang H, Zhang S, Zhou C, Lei C. A Critical Review on Organic Small Fluorescent Probes for Monitoring Carbon Monoxide in Biology. Crit Rev Anal Chem 2022; 53:1792-1806. [PMID: 35238724 DOI: 10.1080/10408347.2022.2042670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Endogenous carbon monoxide (CO) is an important intracellular gas messenger that is intimately involved in many physiological and pathological processes. The abnormal concentration of CO in living organisms can cause many diseases. Therefore, it is of great significance to monitor CO in biological samples. Fluorescent probe technology provides an effective and convenient method for CO monitoring, with the advantages of high selectivity and sensitivity, fast response time and in situ fluorescence imaging in biological tissues, which is favored by the majority of researchers. In this paper, the research progress of CO fluorescent probes since 2018 is reviewed, and the design, detection mechanism and biological application of the related fluorescent probes are summarized. And the relationship between the structure and performance of the probes is discussed. Furthermore, the development trend and application prospect of CO fluorescent probes are prospected.
Collapse
Affiliation(s)
- Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, PR China
| | - Hong Yang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, PR China
| | - Shiqing Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, PR China
| | - Cuiping Zhou
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, PR China
| | - Chenghong Lei
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, PR China
| |
Collapse
|
18
|
Ma DL, Wu C, Liu H, Wu KJ, Leung CH. Luminescence approaches for the rapid detection of disease-related receptor proteins using transition metal-based probes. J Mater Chem B 2021; 8:3249-3260. [PMID: 31647090 DOI: 10.1039/c9tb01889a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein biomarkers, particularly abnormally expressed receptor proteins, have been proved to be one of the crucial biomarkers for the rapid assessment, diagnosis, prognosis and prediction of specific human diseases. Transition metal based strategies in particular possess delightful strengths in the in-field and real-time visualization of receptor proteins owing to their unique photophysical properties. In this review, we highlight recent advances in the development of detection methods for receptor protein biomarkers using transition metal based approaches, particularly those employing transition metal complexes. We first discuss the strengths and weaknesses of various strategies used for protein biomarker monitoring in live cells. We then describe the principles of the various sensing platforms and their application for receptor protein detection. Finally, we discuss the challenges and future inspirations in this specific field.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China.
| | | | | | | | | |
Collapse
|
19
|
Du F, Qu Y, Li M, Tan X. Mitochondria-targetable ratiometric fluorescence probe for carbon monoxide based on naphthalimide derivatives. Anal Bioanal Chem 2021; 413:1395-1403. [PMID: 33404745 DOI: 10.1007/s00216-020-03103-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/28/2023]
Abstract
The design of ratiometric probes for imaging of carbon monoxide (CO) in subcellular organelles is critical to elucidate its biological and pathological functions. In this work, we establish a ratiometric fluorescent probe (Mito-NIB-CO) for imaging of CO in mitochondria. The mitochondria-targeting unit (triphenylphosphonium moiety) and CO-responsive unit (allyl ether moiety) are covalently linking into the single molecule (Mito-NIB-CO) to achieve the multifunctional effect. Upon being treated with CO, Mito-NIB-CO underwent the cleavage of allyl ether element in the presence of PdCl2, resulting in the structural and spectral conversion. This characteristic afforded Mito-NIB-CO to be a ratiometric probe for CO with two fluorescent emission bands. Additionally, the probe Mito-NIB-CO exhibited other distinct merits, including preeminent selectivity and sensitivity. What's more, profiting from triphenylphosphonium moiety, the probe Mito-NIB-CO can specifically target the mitochondria and realize quantitative detection of exogenous/endogenous CO in mitochondria. Graphical abstract.
Collapse
Affiliation(s)
- Fangkai Du
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008, People's Republic of China.
| | - Yunting Qu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008, People's Republic of China
| | - Mengru Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008, People's Republic of China
| | - Xuecai Tan
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008, People's Republic of China.
| |
Collapse
|
20
|
Jiang WL, Wang WX, Mao GJ, Yan L, Du Y, Li Y, Li CY. Construction of NIR and Ratiometric Fluorescent Probe for Monitoring Carbon Monoxide under Oxidative Stress in Zebrafish. Anal Chem 2021; 93:2510-2518. [DOI: 10.1021/acs.analchem.0c04537] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Ling Yan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Yan Du
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
21
|
Fritzen DL, Giordano L, Rodrigues LCV, Monteiro JHSK. Opportunities for Persistent Luminescent Nanoparticles in Luminescence Imaging of Biological Systems and Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2015. [PMID: 33066063 PMCID: PMC7600618 DOI: 10.3390/nano10102015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
The use of luminescence in biological systems allows us to diagnose diseases and understand cellular processes. Persistent luminescent materials have emerged as an attractive system for application in luminescence imaging of biological systems; the afterglow emission grants background-free luminescence imaging, there is no need for continuous excitation to avoid tissue and cell damage due to the continuous light exposure, and they also circumvent the depth penetration issue caused by excitation in the UV-Vis. This review aims to provide a background in luminescence imaging of biological systems, persistent luminescence, and synthetic methods for obtaining persistent luminescent materials, and discuss selected examples of recent literature on the applications of persistent luminescent materials in luminescence imaging of biological systems and photodynamic therapy. Finally, the challenges and future directions, pointing to the development of compounds capable of executing multiple functions and light in regions where tissues and cells have low absorption, will be discussed.
Collapse
Affiliation(s)
- Douglas L. Fritzen
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | - Luidgi Giordano
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | - Lucas C. V. Rodrigues
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | | |
Collapse
|
22
|
Mukhopadhyay S, Sarkar A, Chattopadhyay P, Dhara K. Recent Advances in Fluorescence Light-Up Endogenous and Exogenous Carbon Monoxide Detection in Biology. Chem Asian J 2020; 15:3162-3179. [PMID: 33439547 DOI: 10.1002/asia.202000892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Indexed: 11/08/2022]
Abstract
Considerable attention has been paid by the scientific community to detect toxic carbon monoxide (CO) in sub-cellular organelles like mitochondria, lysosomes, nuclei, etc. due to their generation and accumulation through numerous biological processes and their role as signal transducer, therapeutics, etc. Various methods are also available for detection of CO, but fluorescence light-up detection is considered the best due to its easy and accurate sensing capability. As of now, no review is available in the literature dedicated to fluorescent detection of only CO both in vitro and in vivo, but considering the huge amount of work reporting every year, it is necessary to have an account of all the recent significant works devoted to it. This review will give special attention to the most noteworthy development of fluorescent light-up probes for the detection of cellular and sub-cellular targetable CO starting from 2012 and emphasizing also the mechanism of action and the applications.
Collapse
Affiliation(s)
- Sujay Mukhopadhyay
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India
| | - Arnab Sarkar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India
| | - Pabitra Chattopadhyay
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India
| | - Koushik Dhara
- Department of Chemistry, Sambhu Nath College, Labpur, Birbhum, 731303, West Bengal, India
| |
Collapse
|
23
|
Alday J, Mazzeo A, Suarez S. Selective detection of gasotransmitters using fluorescent probes based on transition metal complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Hong J, Xia Q, Zhou E, Feng G. NIR fluorescent probe based on a modified rhodol-dye with good water solubility and large Stokes shift for monitoring CO in living systems. Talanta 2020; 215:120914. [DOI: 10.1016/j.talanta.2020.120914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023]
|
25
|
Cho U, Chen JK. Lanthanide-Based Optical Probes of Biological Systems. Cell Chem Biol 2020; 27:921-936. [PMID: 32735780 DOI: 10.1016/j.chembiol.2020.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/28/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
The unique photophysical properties of lanthanides, such as europium, terbium, and ytterbium, make them versatile molecular probes of biological systems. In particular, their long-lived photoluminescence, narrow bandwidth emissions, and large Stokes shifts enable experiments that are infeasible with organic fluorophores and fluorescent proteins. The ability of these metal ions to undergo luminescence resonance energy transfer, and photon upconversion further expands the capabilities of lanthanide probes. In this review, we describe recent advances in the design of lanthanide luminophores and their application in biological research. We also summarize the latest detection systems that have been developed to fully exploit the optical properties of lanthanide luminophores. We conclude with a discussion of remaining challenges and new frontiers in lanthanide technologies. The unprecedented levels of sensitivity and multiplexing afforded by rare-earth elements illustrate how chemistry can enable new approaches in biology.
Collapse
Affiliation(s)
- Ukrae Cho
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Zhang R, Yuan J. Responsive Metal Complex Probes for Time-Gated Luminescence Biosensing and Imaging. Acc Chem Res 2020; 53:1316-1329. [PMID: 32574043 DOI: 10.1021/acs.accounts.0c00172] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of reliable bioanalytical probes for selective and sensitive detection of particular analytes in biological systems is essential for better understanding the roles of the analytes in their native contexts. In the last two decades, luminescent metal complexes have greatly contributed to the development of such probes for biosensing and imaging due to their unique spectral and temporal properties, controllable cell membrane permeability, and cytotoxicity. Conjugating an analyte-activatable moiety to the metal complex luminophores allows the production of responsive metal complex probes for this analyte detection. Owing to their long-lifetime emissions, the responsive metal complex probes are accessible to the technique of time-gated luminescence (TGL) detection and imaging. With a delay time after pulsed excitation, the TGL technique allows for collection of only long-lived luminescence from responsive metal complex probes, while filtering out short-lived background autofluorescence, providing a background-free approach for the detection and imaging of the analyte at subcellular and/or molecular levels. Responsive metal complex probes, therefore, have emerged as complementary sensing and imaging tools of organic dye-based fluorescent probes for the in situ detection of analytes in complicated biological environments.In this Account, we describe the advances in the development of metal complex probes and their applications for TGL bioassays with particular focus on our efforts made in this field. We first introduce the photophysical/-chemical properties of luminescent metal complexes, including lanthanide (europium and terbium) and transition metal (ruthenium and iridium) complexes. The luminescence lifetimes (τ) of lanthanide and transition metal complexes are at micro/millisecond (μs/ms) and hundreds/thousands nanosecond (ns) levels, respectively. The emission lifetimes are significantly longer than the autofluorescence lifetime (τ < 10 ns) of biological samples. Such long-lived luminescence of these metal complexes enables our research on demonstrating responsive probes for background-free TGL detection of some reactive biomolecules, such as reactive oxygen/nitrogen species (ROS/RNS) and biothiols.We conclude this Account by outlining the future directions to further develop new generation responsive TGL probes for promoting their practical applications. The responsive TGL probes are expected to be translated for biomedical and/or (pre)clinical investigations of biomolecules in situ. Reversibility, lower toxicity, ability of excitation at longer wavelength, and potential to be translated are key criteria for the development of next-generation probes. We also anticipate that further development of responsive TGL probes will contribute to the bioassay in more challenging biological systems, such as plants that have significant higher background autofluorescence than animals.
Collapse
Affiliation(s)
- Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
27
|
Popova M, Soboleva T, Benninghoff AD, Berreau LM. CO Sense and Release Flavonols: Progress toward the Development of an Analyte Replacement PhotoCORM for Use in Living Cells. ACS OMEGA 2020; 5:10021-10033. [PMID: 32391490 PMCID: PMC7203955 DOI: 10.1021/acsomega.0c00409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/08/2020] [Indexed: 05/08/2023]
Abstract
Carbon monoxide (CO) is a signaling molecule in humans. Prior research suggests that therapeutic levels of CO can have beneficial effects in treating a variety of physiological and pathological conditions. To facilitate understanding of the role of CO in biology, molecules that enable fluorescence detection of CO in living systems have emerged as an important class of chemical tools. A key unmet challenge in this field is the development of fluorescent analyte replacement probes that replenish the CO that is consumed during detection. Herein, we report the first examples of CO sense and release molecules that involve combining a common CO-sensing motif with a light-triggered CO-releasing flavonol scaffold. A notable advantage of the flavonol-based CO sense and release motif is that it is trackable via fluorescence in both its pre- and postsensing (pre-CO release) forms. In vitro studies revealed that the PdCl2 and Ru(II)-containing CORM-2 used in the CO sensing step can result in metal coordination to the flavonol, which minimizes the subsequent CO release reactivity. However, CO detection followed by CO release is demonstrated in living cells, indicating that a cellular environment mitigates the flavonol/metal interactions.
Collapse
Affiliation(s)
- Marina Popova
- Department
of Chemistry & Biochemistry, Utah State
University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States
| | - Tatiana Soboleva
- Department
of Chemistry & Biochemistry, Utah State
University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States
| | - Abby D. Benninghoff
- Department
of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322-4815, United States
| | - Lisa M. Berreau
- Department
of Chemistry & Biochemistry, Utah State
University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States
| |
Collapse
|
28
|
Monteiro JHSK. Recent Advances in Luminescence Imaging of Biological Systems Using Lanthanide(III) Luminescent Complexes. Molecules 2020; 25:E2089. [PMID: 32365719 PMCID: PMC7248892 DOI: 10.3390/molecules25092089] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
The use of luminescence in biological systems allows one to diagnose diseases and understand cellular processes. Molecular systems, particularly lanthanide(III) complexes, have emerged as an attractive system for application in cellular luminescence imaging due to their long emission lifetimes, high brightness, possibility of controlling the spectroscopic properties at the molecular level, and tailoring of the ligand structure that adds sensing and therapeutic capabilities. This review aims to provide a background in luminescence imaging and lanthanide spectroscopy and discuss selected examples from the recent literature on lanthanide(III) luminescent complexes in cellular luminescence imaging, published in the period 2016-2020. Finally, the challenges and future directions that are pointing for the development of compounds that are capable of executing multiple functions and the use of light in regions where tissues and cells have low absorption will be discussed.
Collapse
|
29
|
Yang M, Fan J, Du J, Peng X. Small-molecule fluorescent probes for imaging gaseous signaling molecules: current progress and future implications. Chem Sci 2020; 11:5127-5141. [PMID: 34122970 PMCID: PMC8159392 DOI: 10.1039/d0sc01482f] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Endogenous gaseous signaling molecules including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) have been demonstrated to perform significant physiological and pharmacological functions and are associated with various diseases in biological systems. In order to obtain a deeper insight into their roles and mechanisms of action, it is desirable to develop novel techniques for effectively detecting gaseous signaling molecules. Small-molecule fluorescent probes have been proven to be a powerful approach for the detection and imaging of biological messengers by virtue of their non-invasiveness, high selectivity, and real-time in situ detection capability. Based on the intrinsic properties of gaseous signaling molecules, numerous fluorescent probes have been constructed to satisfy various demands. In this perspective, we summarize the recent advances in the field of fluorescent probes for the detection of NO, CO and H2S and illustrate the design strategies and application examples of these probes. Moreover, we also emphasize the challenges and development directions of gasotransmitter-responsive fluorescent probes, hoping to provide a general implication for future research.
Collapse
Affiliation(s)
- Mingwang Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology No. 2 Linggong Road Dalian 116024 P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology No. 2 Linggong Road Dalian 116024 P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology No. 2 Linggong Road Dalian 116024 P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology No. 2 Linggong Road Dalian 116024 P. R. China
| |
Collapse
|
30
|
Liu X, Li N, Li M, Chen H, Zhang N, Wang Y, Zheng K. Recent progress in fluorescent probes for detection of carbonyl species: Formaldehyde, carbon monoxide and phosgene. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213109] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Madea D, Martínek M, Muchová L, Váňa J, Vítek L, Klán P. Structural Modifications of Nile Red Carbon Monoxide Fluorescent Probe: Sensing Mechanism and Applications. J Org Chem 2020; 85:3473-3489. [DOI: 10.1021/acs.joc.9b03217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Dominik Madea
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marek Martínek
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lucie Muchová
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Na Bojišti 3, 121 08 Praha 2, Czech Republic
| | - Jiří Váňa
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Na Bojišti 3, 121 08 Praha 2, Czech Republic
| | - Petr Klán
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
32
|
Gupta K, Verma M, Srivastava P, Sivakumar S, Patra AK. A luminescent pH-sensitive lysosome targeting Eu(iii) probe. NEW J CHEM 2020. [DOI: 10.1039/c9nj05561d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pH-responsive, water soluble luminescent Eu(iii) probe is designed to target lysosomes via intrinsic f–f emission from the Eu(iii) centre.
Collapse
Affiliation(s)
- Kritika Gupta
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Madhu Verma
- Department of Chemical Engineering and Centre for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Priyanka Srivastava
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sri Sivakumar
- Department of Chemical Engineering and Centre for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Ashis K. Patra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
33
|
Qin X, Si Y, Wu Z, Zhang K, Li J, Yin Y. Alkyne/Ruthenium(II) Complex-Based Ratiometric Surface-Enhanced Raman Scattering Nanoprobe for In Vitro and Ex Vivo Tracking of Carbon Monoxide. Anal Chem 2019; 92:924-931. [DOI: 10.1021/acs.analchem.9b03769] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiaojie Qin
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yanmei Si
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhaoyang Wu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ke Zhang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Jishan Li
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yadong Yin
- Department of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
34
|
Tang Z, Song B, Zhang W, Guo L, Yuan J. Precise Monitoring of Drug-Induced Kidney Injury Using an Endoplasmic Reticulum-Targetable Ratiometric Time-Gated Luminescence Probe for Superoxide Anions. Anal Chem 2019; 91:14019-14028. [DOI: 10.1021/acs.analchem.9b03602] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhixin Tang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lianying Guo
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning 116044, P. R. China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
35
|
Wang J, Li C, Chen Q, Li H, Zhou L, Jiang X, Shi M, Zhang P, Jiang G, Tang BZ. An Easily Available Ratiometric Reaction-Based AIE Probe for Carbon Monoxide Light-up Imaging. Anal Chem 2019; 91:9388-9392. [DOI: 10.1021/acs.analchem.9b02691] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, China
| | - Chunbin Li
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, China
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qingqing Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, China
| | - Hongfeng Li
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lihua Zhou
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xing Jiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengxue Shi
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology (HKUST), Clear
Water Bay, Kowloon, China
- HKUST Shenzhen Research Institute, No. 9 Yuexing First RD, South Area Hi-tech Park,
Nanshan, Shenzhen 518057, China
| |
Collapse
|