1
|
Zhao L, Wang L, Huang J, Chen H, Liu L, Shi M, Zhang M. Label-Free Imaging of Mesenchymal Stem Cell Spheroid Differentiation with Flexible-Probe SECM and a Microfluidic Device. Anal Chem 2024; 96:13473-13481. [PMID: 39122667 DOI: 10.1021/acs.analchem.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Mesenchymal stem cells (MSCs) have emerged as an indispensable source for stem cell research and preclinical studies due to their capacity for in vitro proliferation and their potential to differentiate into mesodermal lineages, particularly into osteoblasts. This capability has propelled their application in the fields of bone regeneration and osteochondral repair. Traditional methodologies for assessing the differentiation status of MSCs necessitate invasive procedures such as cell lysis or fixation. In this study, we introduce a nondestructive technique that utilizes an integrated label-free approach to evaluate the osteogenic maturation of MSC spheroid aggregates. This method employs scanning electrochemical microscopy (SECM) with a flexible probe in conjunction with a top-removable microfluidic device designed for easy SECM access. By tracking the production rate of p-aminophenol (PAP) in the generation/collection mode and assessing morphological changes via the negative feedback mode using [Ru(NH3)6]Cl3 (Ruhex), we can discern variations in the alkaline phosphatase (ALP) activity indicative of osteogenic differentiation. This innovative strategy enables the direct evaluation of osteogenic differentiation in MSC spheroids cultured within microwell arrays without necessitating any labeling procedures. The utilization of a flexible microelectrode as the probe that scans in contact mode (with probe-substrate distances potentially as minimal as 0 μm) affords enhanced resolution compared to the traditional stiff-probe technique. Furthermore, this method is compatible with subsequent molecular biology assays, including gene expression analysis and immunofluorescence, thereby confirming the electrochemical findings and establishing the validity of this integrative approach.
Collapse
Affiliation(s)
- Liang Zhao
- Center of Excellence for Environmental Safety and Biological Effects, College of Chemistry and Life Science, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Lin Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Jing Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Hongyu Chen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Lu Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Mi Shi
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Meiqin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
2
|
Ino K, Wachi M, Utagawa Y, Konno A, Takinoue M, Abe H, Shiku H. Scanning electrochemical microscopy for determining oxygen consumption rates of cells in hydrogel fibers fabricated using an extrusion 3D bioprinter. Anal Chim Acta 2024; 1304:342539. [PMID: 38637037 DOI: 10.1016/j.aca.2024.342539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Three-dimensional (3D)-cultured cells have attracted the attention of researchers in tissue engineering- and drug screening-related fields. Among them, 3D cellular fibers have attracted significant attention because they can be stacked to prepare more complex tissues and organs. Cellular fibers are widely fabricated using extrusion 3D bioprinters. For these applications, it is necessary to evaluate cellular activities, such as the oxygen consumption rate (OCR), which is one of the major metabolic activities. We previously reported the use of scanning electrochemical microscopy (SECM) to evaluate the OCRs of cell spheroids. However, the SECM approach has not yet been applied to hydrogel fibers prepared using the bioprinters. To the best of our knowledge, this is the first study to evaluate the OCR of cellular fibers printed by extrusion 3D bioprinters. First, the diffusion theory was discussed to address this issue. Next, diffusion models were simulated to compare realistic models with this theory. Finally, the OCRs of MCF-7 cells in the printed hydrogel fibers were evaluated as a proof of concept. Our proposed approach could potentially be used to evaluate the OCRs of tissue-engineered fibers for organ transplantation and drug screening using in-vitro models.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan.
| | - Mana Wachi
- School of Engineering, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Yoshinobu Utagawa
- Graduate School of Engineering, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - An Konno
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hiroya Abe
- Graduate School of Engineering, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki-aza Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
3
|
González-Martínez E, Moran-Mirabal J. Shrinking Devices: Shape-Memory Polymer Fabrication of Micro-and Nanostructured Electrodes. Chemphyschem 2024; 25:e202300535. [PMID: 38060839 DOI: 10.1002/cphc.202300535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Since their discovery in the 1940s, shape memory polymers (SMPs) have been used in a broad spectrum of applications for research and industry.[1] SMPs can adopt a temporary shape and promptly return to their original form when submitted to an external stimulus. They have proven useful in fields such as wearable and stretchable electronics,[2] biomedicine,[3] and aerospace..[4] These materials are attractive and unique due to their ability to "remember" a shape after being submitted to elastic deformation. By combining the properties of SMPs with the advantages of electrochemistry, opportunities have emerged to develop structured sensing devices through simple and inexpensive fabrication approaches. The use of electrochemistry for signal transduction provides several advantages, including the translation into inexpensive sensing devices that are relatively easy to miniaturize, extremely low concentration requirements for detection, rapid sensing, and multiplexed detection. Thus, electrochemistry has been used in biosensing,[5] pollutant detection,[6] and pharmacological[7] applications, among others. To date, there is no review that summarizes the literature addressing the use of SMPs in the fabrication of structured electrodes for electrochemical sensing. This review aims to fill this gap by compiling the research that has been done on this topic over the last decade.
Collapse
Affiliation(s)
- Eduardo González-Martínez
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4M1
| | - Jose Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4M1
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4M1
- Centre for Advanced Light Microscopy, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4M1
- Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4 M1
| |
Collapse
|
4
|
Thind S, Lima D, Booy E, Trinh D, McKenna SA, Kuss S. Cytochrome c oxidase deficiency detection in human fibroblasts using scanning electrochemical microscopy. Proc Natl Acad Sci U S A 2024; 121:e2310288120. [PMID: 38154062 PMCID: PMC10769844 DOI: 10.1073/pnas.2310288120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Cytochrome c oxidase deficiency (COXD) is an inherited disorder characterized by the absence or mutation in the genes encoding for the cytochrome c oxidase protein (COX). COX deficiency results in severe muscle weakness, heart, liver, and kidney disorders, as well as brain damage in infants and adolescents, leading to death in many cases. With no cure for this disorder, finding an efficient, inexpensive, and early means of diagnosis is essential to minimize symptoms and long-term disabilities. Furthermore, muscle biopsy, the traditional detection method, is invasive, expensive, and time-consuming. This study demonstrates the applicability of scanning electrochemical microscopy to quantify COX activity in living human fibroblast cells. Taking advantage of the interaction between the redox mediator N, N, N', N'-tetramethyl-para-phenylene-diamine, and COX, the enzymatic activity was successfully quantified by monitoring current changes using a platinum microelectrode and determining the apparent heterogeneous rate constant k0 using numerical modeling. This study provides a foundation for developing a diagnostic method for detecting COXD in infants, which has the potential to increase treatment effectiveness and improve the quality of life of affected individuals.
Collapse
Affiliation(s)
- Shubhneet Thind
- Laboratory for Bioanalytics and Electrochemical Sensing, Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Dhésmon Lima
- Laboratory for Bioanalytics and Electrochemical Sensing, Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Evan Booy
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Dao Trinh
- Laboratoire des Sciences de l’Ingénieur Pour l’Environnement, UMR CNRS 7356, Université de La Rochelle, Pôle Sciences et Technologie17042, La Rochelle, Cedex 1, France
| | - Sean A. McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Sabine Kuss
- Laboratory for Bioanalytics and Electrochemical Sensing, Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| |
Collapse
|
5
|
Ino K, Utagawa Y, Shiku H. Microarray-Based Electrochemical Biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:317-338. [PMID: 37306698 DOI: 10.1007/10_2023_229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microarrays are widely utilized in bioanalysis. Electrochemical biosensing techniques are often applied in microarray-based assays because of their simplicity, low cost, and high sensitivity. In such systems, the electrodes and sensing elements are arranged in arrays, and the target analytes are detected electrochemically. These sensors can be utilized for high-throughput bioanalysis and the electrochemical imaging of biosamples, including proteins, oligonucleotides, and cells. In this chapter, we summarize recent progress on these topics. We categorize electrochemical biosensing techniques for array detection into four groups: scanning electrochemical microscopy, electrode arrays, electrochemiluminescence, and bipolar electrodes. For each technique, we summarize the key principles and discuss the advantages, disadvantages, and bioanalysis applications. Finally, we present conclusions and perspectives about future directions in this field.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
| | - Yoshinobu Utagawa
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
6
|
Chen H, Tian L, Sun X, Liu L, Ma R, Zhang M. Alkaline Phosphatase for Estimating the Time since Deposition of Blood Fingerprints by Scanning Electrochemical Microscopy. Anal Chem 2023; 95:18470-18478. [PMID: 38051701 DOI: 10.1021/acs.analchem.3c03692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Blood is one of the most frequent and valuable traces encountered at crime scenes, where knowing the time since deposition (TSD) of bloodstains tremendously assists forensic experts to screen out crime-related evidence and aids in the reconstruction of the event sequence. Although increasing proof-of-concept methodologies for investigating the TSD of bloodstains have been reported, there is still no accepted strategy in forensic practice as the aging mechanism involves complex components, leading to the inaccuracy of the estimation results. Herein, an endogenous biomarker of alkaline phosphatase (ALP) was chosen to investigate the TSD by scanning electrochemical microscopy (SECM). Results demonstrate that the ALP activity acquired via SECM lateral scan assay exhibited a clear decrease over time, and a similar trend was observed on both poly(vinylidene fluoride) (PVDF) membrane and glass, with the aging kinetics on PVDF membrane being faster than glass. By means of quantitatively calculating the flux of generated p-aminophenol (PAP), we established the aging curve and realized the TSD estimation of blood fingerprints (BFPs) that was unable to be distinguished via optical measurements. Intriguingly, the as-obtained estimation accuracy ranged from 74.6 to 93.7%, proving the possibility of using an ALP biomarker and SECM. More appealingly, the predicted TSDs were capable of accurately differentiating the deposition sequence of overlapping BFPs, which was hardly achieved by optical means. Therefore, this proof-of-concept strategy demonstrates the value of SECM as a forensic tool and opens possibilities for revealing multidimensional information about crime.
Collapse
Affiliation(s)
- Hongyu Chen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Lu Tian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Xiangyu Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Lu Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Rongliang Ma
- Ministry of Public Security, Institute of Forensic Science, Beijing 100038, China
| | - Meiqin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
7
|
Wang T, Wu M, Cao L, Liu B. Organic functional substance engineered living materials for biomedical applications. Biomaterials 2023; 301:122248. [PMID: 37487360 DOI: 10.1016/j.biomaterials.2023.122248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Modifying living materials with organic functional substances (OFS) is a convenient and effective strategy to control and monitor the transport, engraftment, and secretion processes in living organisms. OFSs, including small organic molecules and organic polymers, own the merit of design flexibility, satisfying performance, and excellent biocompatibility, which allow for living materials functionalization to realize real-time sensing, controlled drug release, enhanced biocompatibility, accurate diagnosis, and precise treatment. In this review, we discuss the different principles of OFS modification on living materials and demonstrate the applications of engineered living materials in health monitoring, drug delivery, wound healing, and tissue regeneration.
Collapse
Affiliation(s)
- Tongtong Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Min Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
| | - Lei Cao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Bin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
8
|
Nano-Electrochemical Characterization of a 3D Bioprinted Cervical Tumor Model. Cancers (Basel) 2023; 15:cancers15041327. [PMID: 36831668 PMCID: PMC9954750 DOI: 10.3390/cancers15041327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Current cancer research is limited by the availability of reliable in vivo and in vitro models that are able to reproduce the fundamental hallmarks of cancer. Animal experimentation is of paramount importance in the progress of research, but it is becoming more evident that it has several limitations due to the numerous differences between animal tissues and real, in vivo human tissues. 3D bioprinting techniques have become an attractive tool for many basic and applied research fields. Concerning cancer, this technology has enabled the development of three-dimensional in vitro tumor models that recreate the characteristics of real tissues and look extremely promising for studying cancer cell biology. As 3D bioprinting is a relatively recently developed technique, there is still a lack of characterization of the chemical cellular microenvironment of 3D bioprinted constructs. In this work, we fabricated a cervical tumor model obtained by 3D bioprinting of HeLa cells in an alginate-based matrix. Characterization of the spheroid population obtained as a function of culturing time was performed by phase-contrast and confocal fluorescence microscopies. Scanning electrochemical microscopy and platinum nanoelectrodes were employed to characterize oxygen concentrations-a fundamental characteristic of the cellular microenvironment-with a high spatial resolution within the 3D bioprinted cervical tumor model; we also demonstrated that the diffusion of a molecular model of drugs in the 3D bioprinted construct, in which the spheroids were embedded, could be measured quantitatively over time using scanning electrochemical microscopy.
Collapse
|
9
|
Chen H, Kong X, Wang D, Zhang M. Flexible Disk Ultramicroelectrode for High-Resolution and Substrate-Tolerable Scanning Electrochemical Microscopy Imaging. Anal Chem 2022; 94:17320-17327. [PMID: 36448925 DOI: 10.1021/acs.analchem.2c04465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A simple and universal strategy for fabricating flexible 25 μm platinum (Pt) disk ultramicroelectrodes (UMEs) was proposed, where a pulled borosilicate glass micropipette acted as a mold for shaping the flexible tip with flexible epoxy resin. The whole preparation procedure was highly efficient, enabling 10 or more probes to be manually fabricated within 10 h. Intriguingly, this technique permits an adjustable RG ratio, tip length, and stiffness, which could be tuned according to varying experimental demands. Besides, the electroactive area of the probe could be exposed and made renewable with a thin blade, allowing its reuse in multiple experiments. The flexibility characterization was then employed to optimize the resin/hardener mass ratio of epoxy resin and the tip position during HF etching in the fabrication process, suggesting that more hardener, a larger RG value, or a longer tip length obtained stronger deformation resistance. Subsequently, the as-prepared probe was examined by optical microscopy, cyclic voltammetry, and SECM approach curves. The results demonstrated the probe possessed good geometry with a small RG ratio of less than 3 and exceptional electrochemical properties, and its insulating sheath remained undeformed after blade cutting. Owing to the tip's flexibility, it could be operated in contactless mode with an extremely low working distance and even in contact mode scanning to achieve high spatial resolution and high sensitivity while guaranteeing that the tip and samples would suffer minimal damage if the tip crashed. Finally, the flexible probe was successfully employed in three scanning scenarios where tilted and 3D structured PDMS microchips, a latent fingerprint deposited on the stiff copper sheet, and soft egg white were included. In all, the flexible probe encompasses the advantages of traditional disk UMEs and circumvents their principal drawbacks of tip crash and causing sample scratches, which is thus more compatible with large specimens of 3D structured, stiff, or even soft topography.
Collapse
Affiliation(s)
- Hongyu Chen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing100083, China
| | - Xiangyi Kong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing100083, China
| | - Dongrui Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing100083, China
| | - Meiqin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing100083, China
| |
Collapse
|
10
|
Zhao L, Wang X. 3D printed microfluidics for cell biological applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Wu Y, Zhou Y, Qin X, Liu Y. From cell spheroids to vascularized cancer organoids: Microfluidic tumor-on-a-chip models for preclinical drug evaluations. BIOMICROFLUIDICS 2021; 15:061503. [PMID: 34804315 PMCID: PMC8589468 DOI: 10.1063/5.0062697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/16/2021] [Indexed: 05/14/2023]
Abstract
Chemotherapy is one of the most effective cancer treatments. Starting from the discovery of new molecular entities, it usually takes about 10 years and 2 billion U.S. dollars to bring an effective anti-cancer drug from the benchtop to patients. Due to the physiological differences between animal models and humans, more than 90% of drug candidates failed in phase I clinical trials. Thus, a more efficient drug screening system to identify feasible compounds and pre-exclude less promising drug candidates is strongly desired. For their capability to accurately construct in vitro tumor models derived from human cells to reproduce pathological and physiological processes, microfluidic tumor chips are reliable platforms for preclinical drug screening, personalized medicine, and fundamental oncology research. This review summarizes the recent progress of the microfluidic tumor chip and highlights tumor vascularization strategies. In addition, promising imaging modalities for enhancing data acquisition and machine learning-based image analysis methods to accurately quantify the dynamics of tumor spheroids are introduced. It is believed that the microfluidic tumor chip will serve as a high-throughput, biomimetic, and multi-sensor integrated system for efficient preclinical drug evaluation in the future.
Collapse
Affiliation(s)
- Yue Wu
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yuyuan Zhou
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Xiaochen Qin
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yaling Liu
- Author to whom correspondence should be addressed:
| |
Collapse
|
12
|
Nashimoto Y, Abe M, Fujii R, Taira N, Ida H, Takahashi Y, Ino K, Ramon‐Azcon J, Shiku H. Topography and Permeability Analyses of Vasculature-on-a-Chip Using Scanning Probe Microscopies. Adv Healthc Mater 2021; 10:e2101186. [PMID: 34409770 DOI: 10.1002/adhm.202101186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/22/2021] [Indexed: 11/08/2022]
Abstract
Microphysiological systems (MPS) or organs-on-chips (OoC) can emulate the physiological functions of organs in vitro and are effective tools for determining human drug responses in preclinical studies. However, the analysis of MPS has relied heavily on optical tools, resulting in difficulties in real-time and high spatial resolution imaging of the target cell functions. In this study, the role of scanning probe microscopy (SPM) as an analytical tool for MPS is evaluated. An access hole is made in a typical MPS system with stacked microchannels to insert SPM probes into the system. For the first study, a simple vascular model composed of only endothelial cells is prepared for SPM analysis. Changes in permeability and local chemical flux are quantitatively evaluated during the construction of the vascular system. The morphological changes in the endothelial cells after flow stimulation are imaged at the single-cell level for topographical analysis. Finally, the possibility of adapting the permeability and topographical analysis using SPM for the intestinal vascular system is further evaluated. It is believed that this study will pave the way for an in situ permeability assay and structural analysis of MPS using SPM.
Collapse
Affiliation(s)
- Yuji Nashimoto
- Frontier Research Institute for Interdisciplinary Sciences (FRIS) Tohoku University Miyagi 980‐8578 Japan
- Graduate School of Engineering Tohoku University Miyagi 980‐8579 Japan
- Graduate School of Environmental Studies Tohoku University Miyagi 980‐8579 Japan
| | - Minori Abe
- Graduate School of Environmental Studies Tohoku University Miyagi 980‐8579 Japan
| | - Ryota Fujii
- Graduate School of Environmental Studies Tohoku University Miyagi 980‐8579 Japan
| | - Noriko Taira
- Graduate School of Environmental Studies Tohoku University Miyagi 980‐8579 Japan
| | - Hiroki Ida
- Frontier Research Institute for Interdisciplinary Sciences (FRIS) Tohoku University Miyagi 980‐8578 Japan
- Graduate School of Environmental Studies Tohoku University Miyagi 980‐8579 Japan
- WPI‐Advanced Institute for Materials Research Tohoku University Miyagi 980‐8577 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Science and Technology Agency (JST) Saitama 332‐0012 Japan
| | - Yasufumi Takahashi
- Precursory Research for Embryonic Science and Technology (PRESTO) Science and Technology Agency (JST) Saitama 332‐0012 Japan
- WPI‐Nano Life Science Institute Kanazawa University Ishikawa 920‐1192 Japan
| | - Kosuke Ino
- Graduate School of Engineering Tohoku University Miyagi 980‐8579 Japan
| | - Javier Ramon‐Azcon
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology Barcelona 08028 Spain
- Institució Catalana de Reserca I Estudis Avançats (ICREA) Passeig de Lluís Companys, 23 Barcelona E08010 Spain
| | - Hitoshi Shiku
- Graduate School of Engineering Tohoku University Miyagi 980‐8579 Japan
- Graduate School of Environmental Studies Tohoku University Miyagi 980‐8579 Japan
| |
Collapse
|
13
|
Zhang P, Shao N, Qin L. Recent Advances in Microfluidic Platforms for Programming Cell-Based Living Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005944. [PMID: 34270839 DOI: 10.1002/adma.202005944] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Indexed: 06/13/2023]
Abstract
Cell-based living materials, including single cells, cell-laden fibers, cell sheets, organoids, and organs, have attracted intensive interests owing to their widespread applications in cancer therapy, regenerative medicine, drug development, and so on. Significant progress in materials, microfabrication, and cell biology have promoted the development of numerous promising microfluidic platforms for programming these cell-based living materials with a high-throughput, scalable, and efficient manner. In this review, the recent progress of novel microfluidic platforms for programming cell-based living materials is presented. First, the unique features, categories, and materials and related fabrication methods of microfluidic platforms are briefly introduced. From the viewpoint of the design principles of the microfluidic platforms, the recent significant advances of programming single cells, cell-laden fibers, cell sheets, organoids, and organs in turns are then highlighted. Last, by providing personal perspectives on challenges and future trends, this review aims to motivate researchers from the fields of materials and engineering to work together with biologists and physicians to promote the development of cell-based living materials for human healthcare-related applications.
Collapse
Affiliation(s)
- Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Ning Shao
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| |
Collapse
|
14
|
Shi M, Wang L, Xie Z, Zhao L, Zhang X, Zhang M. High-Content Label-Free Single-Cell Analysis with a Microfluidic Device Using Programmable Scanning Electrochemical Microscopy. Anal Chem 2021; 93:12417-12425. [PMID: 34464090 DOI: 10.1021/acs.analchem.1c02507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cellular heterogeneity and plasticity are often overlooked due to the averaged bulk assay in conventional methods. Optical imaging-based single-cell analysis usually requires specific labeling of target molecules inside or on the surface of the cell membrane, interfering with the physiological homeostasis of the cell. Scanning electrochemical microscopy (SECM), as an alternative approach, enables label-free imaging of single cells, which still confronts the challenge that the long-time scanning process is not feasible for large-scale analysis at the single-cell level. Herein, we developed a methodology combining a programmable SECM (P-SECM) with an addressable microwell array, which dramatically shortened the time consumption for the topography detection of the micropits array occupied by the polystyrene beads as well as the evaluation of alkaline phosphatase (ALP) activity of the 82 single cells compared with the traditional SECM imaging. This new arithmetic was based on the line scanning approach, enabling analysis of over 900 microwells within 1.2 h, which is 10 times faster than conventional SECM imaging. By implementing this configuration with the dual-mediator-based voltage-switching (VSM) mode, we investigated the activity of ALP, a promising marker for cancer stem cells, in hundreds of tumor and stromal cells on a single microwell device. The results discovered that not only a higher ALP activity is presented in cancer cells but also the heterogeneous distribution of kinetic constant (kf value) of ALP activity can be obtained at the single-cell level. By directly relating large numbers of addressed cells on the scalable microfluidic device to the deterministic routing of the above SECM tip, our platform holds potential as a high-content screening tool for label-free single-cell analysis.
Collapse
Affiliation(s)
- Mi Shi
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lin Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhenda Xie
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Liang Zhao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.,Centre of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.,School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Meiqin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
15
|
Olofsson K, Carannante V, Takai M, Önfelt B, Wiklund M. Single cell organization and cell cycle characterization of DNA stained multicellular tumor spheroids. Sci Rep 2021; 11:17076. [PMID: 34426602 PMCID: PMC8382712 DOI: 10.1038/s41598-021-96288-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Multicellular tumor spheroids (MCTSs) can serve as in vitro models for solid tumors and have become widely used in basic cancer research and drug screening applications. The major challenges when studying MCTSs by optical microscopy are imaging and analysis due to light scattering within the 3-dimensional structure. Herein, we used an ultrasound-based MCTS culture platform, where A498 renal carcinoma MCTSs were cultured, DAPI stained, optically cleared and imaged, to connect nuclear segmentation to biological information at the single cell level. We show that DNA-content analysis can be used to classify the cell cycle state as a function of position within the MCTSs. We also used nuclear volumetric characterization to show that cells were more densely organized and perpendicularly aligned to the MCTS radius in MCTSs cultured for 96 h compared to 24 h. The method presented herein can in principle be used with any stochiometric DNA staining protocol and nuclear segmentation strategy. Since it is based on a single counter stain a large part of the fluorescence spectrum is free for other probes, allowing measurements that correlate cell cycle state and nuclear organization with e.g., protein expression or drug distribution within MCTSs.
Collapse
Affiliation(s)
- Karl Olofsson
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Valentina Carannante
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Madoka Takai
- Department of Bioengineering, University of Tokyo, Tokyo, Japan
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Martin Wiklund
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
16
|
Bērziņa S, Harrison A, Taly V, Xiao W. Technological Advances in Tumor-On-Chip Technology: From Bench to Bedside. Cancers (Basel) 2021; 13:cancers13164192. [PMID: 34439345 PMCID: PMC8394443 DOI: 10.3390/cancers13164192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Various 3D in vitro tumor models are rapidly advancing cancer research. Unlike animal models, they can be produced quickly and are amenable to high-throughput studies. Growing tumor spheroids in microfluidic tumor-on-chip platforms has particularly elevated the capabilities of such models. Tumor-on-chip devices can mimic multiple aspects of the dynamic in vivo tumor microenvironment in a precisely controlled manner. Moreover, new technologies for the on- and off-chip analysis of these tumor mimics are continuously emerging. There is thus an urgent need to review the latest developments in this rapidly progressing field. Here, we present an overview of the technological advances in tumor-on-chip technology by reviewing state-of-the-art tools for on-chip analysis. In particular, we evaluate the potential for tumor-on-chip technology to guide personalized cancer therapies. We strive to appeal to cancer researchers and biomedical engineers alike, informing on current progress, while provoking thought on the outstanding developments needed to achieve clinical-stage research. Abstract Tumor-on-chip technology has cemented its importance as an in vitro tumor model for cancer research. Its ability to recapitulate different elements of the in vivo tumor microenvironment makes it promising for translational medicine, with potential application in enabling personalized anti-cancer therapies. Here, we provide an overview of the current technological advances for tumor-on-chip generation. To further elevate the functionalities of the technology, these approaches need to be coupled with effective analysis tools. This aspect of tumor-on-chip technology is often neglected in the current literature. We address this shortcoming by reviewing state-of-the-art on-chip analysis tools for microfluidic tumor models. Lastly, we focus on the current progress in tumor-on-chip devices using patient-derived samples and evaluate their potential for clinical research and personalized medicine applications.
Collapse
|
17
|
Song K, Zu X, Du Z, Hu Z, Wang J, Li J. Diversity Models and Applications of 3D Breast Tumor-on-a-Chip. MICROMACHINES 2021; 12:mi12070814. [PMID: 34357224 PMCID: PMC8306159 DOI: 10.3390/mi12070814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022]
Abstract
Breast disease is one of the critical diseases that plague females, as is known, breast cancer has high mortality, despite significant pathophysiological progress during the past few years. Novel diagnostic and therapeutic approaches are needed to break the stalemate. An organ-on-chip approach is considered due to its ability to repeat the real conditions found in the body on microfluidic chips, offsetting the shortcomings of traditional 2D culture and animal tests. In recent years, the organ-on-chip approach has shown diversity, recreating the structure and functional units of the real organs/tissues. The applications were also developed rapidly from the laboratory to the industrialized market. This review focuses on breast tumor-on-a-chip approaches concerning the diversity models and applications. The models are summarized and categorized by typical biological reconstitution, considering the design and fabrication of the various breast models. The breast tumor-on-a-chip approach is a typical representative of organ chips, which are one of the precedents in the market. The applications are roughly divided into two categories: fundamental mechanism research and biological medicine. Finally, we discuss the prospect and deficiencies of the emerging technology. It has excellent prospects in all of the application fields, however there exist some deficiencies for promotion, such as the stability of the structure and function, and uniformity for quantity production.
Collapse
|
18
|
Kronemberger GS, Miranda GASC, Tavares RSN, Montenegro B, Kopke ÚDA, Baptista LS. Recapitulating Tumorigenesis in vitro: Opportunities and Challenges of 3D Bioprinting. Front Bioeng Biotechnol 2021; 9:682498. [PMID: 34239860 PMCID: PMC8258101 DOI: 10.3389/fbioe.2021.682498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is considered one of the most predominant diseases in the world and one of the principal causes of mortality per year. The cellular and molecular mechanisms involved in the development and establishment of solid tumors can be defined as tumorigenesis. Recent technological advances in the 3D cell culture field have enabled the recapitulation of tumorigenesis in vitro, including the complexity of stromal microenvironment. The establishment of these 3D solid tumor models has a crucial role in personalized medicine and drug discovery. Recently, spheroids and organoids are being largely explored as 3D solid tumor models for recreating tumorigenesis in vitro. In spheroids, the solid tumor can be recreated from cancer cells, cancer stem cells, stromal and immune cell lineages. Organoids must be derived from tumor biopsies, including cancer and cancer stem cells. Both models are considered as a suitable model for drug assessment and high-throughput screening. The main advantages of 3D bioprinting are its ability to engineer complex and controllable 3D tissue models in a higher resolution. Although 3D bioprinting represents a promising technology, main challenges need to be addressed to improve the results in cancer research. The aim of this review is to explore (1) the principal cell components and extracellular matrix composition of solid tumor microenvironment; (2) the recapitulation of tumorigenesis in vitro using spheroids and organoids as 3D culture models; and (3) the opportunities, challenges, and applications of 3D bioprinting in this area.
Collapse
Affiliation(s)
- Gabriela S. Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | - Guilherme A. S. C. Miranda
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Renata S. N. Tavares
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Bianca Montenegro
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | - Úrsula de A. Kopke
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Leandra S. Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
19
|
Tan Y, Suarez A, Garza M, Khan AA, Elisseeff J, Coon D. Human fibroblast-macrophage tissue spheroids demonstrate ratio-dependent fibrotic activity for in vitro fibrogenesis model development. Biomater Sci 2020; 8:1951-1960. [PMID: 32057054 DOI: 10.1039/c9bm00900k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibrosis is a pathological accumulation of excessive collagen that underlies many of the most common diseases, representing dysfunction of the essential processes of normal tissue healing. Fibrosis research aims to limit this response without ameliorating the essential role of fibrogenesis in organ function. However, the absence of a realistic in vitro model has hindered investigation into mechanisms and potential interventions because the standard 2D monolayer culture of fibroblasts has limited applicability. We sought to develop and optimize fibrosis spheroids: a scaffold-free three-dimensional human fibroblast-macrophage spheroid system representing an improved benchtop model of human fibrosis. We created, characterized and optimized human fibroblast-only spheroids, demonstrating increased collagen deposition compared to monolayer fibroblasts, while spheroids larger than 300 μm suffered from progressively increasing apoptosis. Next, we improved the spheroid system with the addition of human macrophages to more precisely recapitulate the environment during fibrogenesis, creating a hybrid spheroid system with different ratios of fibroblasts and macrophages ranging from 2 : 1 to 64 : 1. We found that in the hybrid spheroids (particularly the 16 : 1 [F16] ratio) more fibroblasts were activated, with greater macrophage polarization towards a pro-inflammatory M1 phenotype. Hybrid spheroids containing higher ratios of macrophages showed greater macrophage heterogeneity and less fibrogenesis, while low macrophage ratios limited macrophage-induced effects and yielded less collagen deposition. The F16 group also had the highest expression levels of fibrosis-related genes (Col-1a1, Col-3a1 and TGF-β) and inflammation-related genes (TNF, IL1β and IL6). IF staining demonstrated that F16 spheroids had the highest levels of αSMA, collagen-1 and collagen-3 deposition among all groups as well as formation of a dense collagen rim surrounding the spheroid. Future studies exploring the greater fibrotic activity of F16 spheroids may provide new mechanistic insights into diseases involving excessive fibrotic activity. Microtissue fibrosis models capable of achieving greater clinical fidelity have the potential to combine the relevance of animal models with the scale, cost and throughput of in vitro testing.
Collapse
Affiliation(s)
- Yu Tan
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA and Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Allister Suarez
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA and Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Matthew Garza
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA and Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Aadil A Khan
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK and Department of Plastic Surgery, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Devin Coon
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA and Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Zhao L, Liu Y, Liu Y, Zhang M, Zhang X. Microfluidic Control of Tumor and Stromal Cell Spheroids Pairing and Merging for Three-Dimensional Metastasis Study. Anal Chem 2020; 92:7638-7645. [PMID: 32374153 DOI: 10.1021/acs.analchem.0c00408] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three-dimensional cell culture provides an efficient way to simulate the in vivo tumorigenic microenvironment where tumor-stroma interaction intrinsically plays a pivotal role. Conventional three-dimensional (3D) culture is inadequate to address precise coexistential heterogeneous pairing and quantitative measurement in a parallel algorithm format. Herein, we implemented a set of microwell array microfluidic devices to study the cell spheroids-based tumor-stromal metastatic process in vitro. This approach enables accurate one-to-one pairing between tumor and fibroblast spheroid for dissecting 3D tumor invasion in the manner of high-content imaging. On one single device, 240 addressable tumor-stroma pairings can be formed with convenient pipetting and centrifugation within a small area of 1 cm2. Consequential confocal imaging analysis disclosed that the tumor spheroid could envelop the fibroblast spheroid. Specific chemicals can effectively hamper or promote this 3D metastasis. Due to the addressable time-resolved measurements of the merging process of hundreds of doublets, our approach allows us to decipher the metastatic phenotype between different tumor spheroids. Compared with traditional protocols, massive heterogeneous cellular spheroids pairing and merging using this method is well-defined with microfluidic control, which leads to a favorable high-content tumor-stroma doublet metastasis analysis. This simple technique will be a useful tool for investigating heterotypic spheroid-spheroid interactions.
Collapse
Affiliation(s)
- Liang Zhao
- Institute of Precision Medicine and Health, Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China, 100083
| | - Yingying Liu
- Institute of Precision Medicine and Health, Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China, 100083
| | - Yang Liu
- Institute of Precision Medicine and Health, Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China, 100083
| | - Meiqin Zhang
- Institute of Precision Medicine and Health, Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China, 100083
| | - Xueji Zhang
- Institute of Precision Medicine and Health, Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China, 100083
| |
Collapse
|
21
|
Electrochemical measurement of respiratory activity for evaluation of fibroblast spheroids containing endothelial cell networks. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Zhao L, Xiu J, Liu Y, Zhang T, Pan W, Zheng X, Zhang X. A 3D Printed Hanging Drop Dripper for Tumor Spheroids Analysis Without Recovery. Sci Rep 2019; 9:19717. [PMID: 31873199 PMCID: PMC6928160 DOI: 10.1038/s41598-019-56241-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Compared with traditional monolayer cell culture, the three-dimensional tumor spheroid has emerged as an essential in vitro model for cancer research due to the recapitulation of the architecture and physiology of solid human tumors. Herein, by implementing the rapid prototyping of a benchtop 3D printer, we developed a new strategy to generate and analyze tumor spheroids on a commonly used multi-well plate. In this method, the printed artifact can be directly mounted on a 96/384-well plate, enables hanging drop-based spheroid formation, avoiding the tedious fabrication process from micromechanical systems. Besides long-term spheroid culture (20 days), this method supports subsequent analysis of tumor spheroid by seamlessly dripping from the printed array, thereby eliminating the need for spheroids retrieval for downstream characterization. We demonstrated several tumor spheroid-based assays, including tumoroid drug testing, metastasis on or inside extracellular matrix gel, and tumor transendothelial (TEM) assay. Based on quantitative phenotypical and molecular analysis without any precarious retrieval and transfer, we found that the malignant breast cancer (MDA-MB-231) cell aggregate presents a more metastatic morphological phenotype than the non-malignant breast cancer (MCF-7) and colonial cancer (HCT-116) cell spheroid, and shows an up-regulation of epithelial-mesenchymal transition (EMT) relevant genes (fold change > 2). Finally, we validated this tumor malignancy by the TEM assay, which could be easily performed using our approach. This methodology could provide a useful workflow for expediting tumoroid modeled in vitro assay, allowing the “Lab-on-a-Cloud” scenario for routine study.
Collapse
Affiliation(s)
- Liang Zhao
- Institute of Precision Medicine and Health, University of Science and Technology Beijing, Beijing, 100083, China. .,Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, China. .,Beijing Key Laboratory for Bioengineering and Sensing Technology University of Science and Technology Beijing, Beijing, 100083, China. .,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jidong Xiu
- Institute of Precision Medicine and Health, University of Science and Technology Beijing, Beijing, 100083, China.,Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Beijing Key Laboratory for Bioengineering and Sensing Technology University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang Liu
- Institute of Precision Medicine and Health, University of Science and Technology Beijing, Beijing, 100083, China.,Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Beijing Key Laboratory for Bioengineering and Sensing Technology University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianye Zhang
- Institute of Precision Medicine and Health, University of Science and Technology Beijing, Beijing, 100083, China.,Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Beijing Key Laboratory for Bioengineering and Sensing Technology University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenjie Pan
- Institute of Precision Medicine and Health, University of Science and Technology Beijing, Beijing, 100083, China.,Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Beijing Key Laboratory for Bioengineering and Sensing Technology University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaonan Zheng
- Institute of Precision Medicine and Health, University of Science and Technology Beijing, Beijing, 100083, China.,Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Beijing Key Laboratory for Bioengineering and Sensing Technology University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xueji Zhang
- Institute of Precision Medicine and Health, University of Science and Technology Beijing, Beijing, 100083, China. .,Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, China. .,Beijing Key Laboratory for Bioengineering and Sensing Technology University of Science and Technology Beijing, Beijing, 100083, China. .,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|