1
|
Nyenhuis J, Heuer C, Bahnemann J. 3D Printing in Biocatalysis and Biosensing: From General Concepts to Practical Applications. Chem Asian J 2024; 19:e202400717. [PMID: 39340791 PMCID: PMC11639642 DOI: 10.1002/asia.202400717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 09/30/2024]
Abstract
3D printing has matured into a versatile technique that offers researchers many different printing methods and materials with varying properties. Nowadays, 3D printing is deployed within a myriad of different applications, ranging from chemistry to biotechnology -including bioanalytics, biocatalysis or biosensing. Due to its inherent design flexibility (which enables rapid prototyping) and ease of use, 3D printing facilitates the relatively quick and easy creation of new devices with unprecedented functions.. This review article describes how 3D printing can be employed for research in the fields of biochemistry and biotechnology, and specifically for biocatalysis and biosensor applications. We survey different relevant 3D printing techniques, as well as the surface activation and functionalization of 3D-printed materials. Finally, we show how 3D printing is used for the fabrication of reaction ware and enzymatic assays in biocatalysis research, as well as for the generation of biosensors using aptamers, antibodies, and enzymes as recognition elements.
Collapse
Affiliation(s)
- Jonathan Nyenhuis
- Institute of PhysicsChair of Technical BiologyUniversity of AugsburgUniversitätsstr. 1Augsburg86159Germany
| | - Christopher Heuer
- Institute of PhysicsChair of Technical BiologyUniversity of AugsburgUniversitätsstr. 1Augsburg86159Germany
- Institute of PhysicsCentre for Advanced Analytics and Predictive SciencesUniversity of AugsburgUniversitätsstr. 1Augsburg86159Germany
| | - Janina Bahnemann
- Institute of PhysicsChair of Technical BiologyUniversity of AugsburgUniversitätsstr. 1Augsburg86159Germany
- Institute of PhysicsCentre for Advanced Analytics and Predictive SciencesUniversity of AugsburgUniversitätsstr. 1Augsburg86159Germany
| |
Collapse
|
2
|
Rein C, Hambitzer L, Soraya Z, Zhang H, Jessen HJ, Kotz-Helmer F, Rapp BE. Fused Deposition Modeling of Chemically Resistant Microfluidic Chips in Polyvinylidene Fluoride. MICROMACHINES 2024; 15:1391. [PMID: 39597203 PMCID: PMC11596735 DOI: 10.3390/mi15111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Fused deposition modeling (FDM) is well suited for microfluidic prototyping due to its low investment cost and a wide range of accessible materials. Nevertheless, most commercial FDM materials exhibit low chemical and thermal stability. This reduces the scope of applications and limits their use in research and development, especially for on-chip chemical synthesis. In this paper, we present FDM fabrication of microfluidic chips with polyvinylidene fluoride (PVDF) for applications that require high thermal or chemical resistance. Embedded microchannels with a minimum channel width and heights of ~200 µm × 200 µm were fabricated, and the resistance against common solvents was analyzed. A procedure was developed to increase the optical transmission to result in translucent components by printing on glass. Chips for fluid mixing were printed, as well as microreactors that were packed with a catalytically active phase and used for acetal deprotection with a conversion of more than 99%. By expanding the use of fluorinated polymers to FDM printing, previously challenging microfluidic applications will be conducted with ease at the lab scale.
Collapse
Affiliation(s)
- Christof Rein
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (C.R.); (L.H.); (Z.S.); (B.E.R.)
| | - Leonhard Hambitzer
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (C.R.); (L.H.); (Z.S.); (B.E.R.)
| | - Zahra Soraya
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (C.R.); (L.H.); (Z.S.); (B.E.R.)
| | - Han Zhang
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (H.Z.); (H.J.J.)
| | - Henning J. Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg im Breisgau, Germany; (H.Z.); (H.J.J.)
- Centre of Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Frederik Kotz-Helmer
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (C.R.); (L.H.); (Z.S.); (B.E.R.)
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Bastian E. Rapp
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (C.R.); (L.H.); (Z.S.); (B.E.R.)
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- FIT Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| |
Collapse
|
3
|
Selemani MA, Cenhrang K, Azibere S, Singhateh M, Martin RS. 3D printed microfluidic devices with electrodes for electrochemical analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6941-6953. [PMID: 39403769 DOI: 10.1039/d4ay01701c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A review with 93 references describing various 3D printing approaches that have been used to create microfluidic devices containing electrodes for electrochemical detection. The use of 3D printing to fabricate microfluidic devices is a rapidly growing area. One significant research area is how to detect analytes in the devices for quantitation purposes. This review article is focused on methods used to integrate electrodes into the devices for electrochemical detection. The review is organized in terms of the methodology for integrating the electrode within the device. This includes (1) external coupling of traditional electrode materials with 3D printed devices; (2) printing conductive electrode materials as part of device printing; and (3) integrating traditional electrodes into the device as part of the print process. Example applications are given and some future directions are also outlined.
Collapse
Affiliation(s)
| | | | | | | | - R Scott Martin
- Department of Chemistry, Saint Louis University, USA.
- Center for Additive Manufacturing, Saint Louis University, USA
| |
Collapse
|
4
|
Debruille K, Mai Y, Hortin P, Bluett S, Murray E, Gupta V, Paull B. Portable IC system enabled with dual LED-based absorbance detectors and 3D-printed post-column heated micro-reactor for the simultaneous determination of ammonium, nitrite and nitrate. Anal Chim Acta 2024; 1304:342556. [PMID: 38637040 DOI: 10.1016/j.aca.2024.342556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The on-site and simultaneous determination of anionic nitrite (NO2-) and nitrate (NO3-), and cationic ammonium (NH4+), in industrial and natural waters, presents a significant analytical challenge. Toward this end, herein a 3D-printed micro-reactor with an integrated heater chip was designed and optimised for the post-column colorimetric detection of NH4+ using a modified Berthelot reaction. The system was integrated within a portable and field deployable ion chromatograph (Aquamonitrix) designed to separate and detect NO2- and NO3-, but here enabled with dual LED-based absorbance detectors, with the aim to provide the first system capable of simultaneous determination of both anions and NH4+ in industrial and natural waters. RESULTS Incorporating a 0.750 mm I.D. 3D-printed serpentine-based microchannel for sample-reagent mixing and heating, the resultant micro-reactor had a total reactor channel length of 1.26 m, which provided for a reaction time of 1.42 min based upon a total flow rate of 0.27 mL min-1, within a 40 mm2 printed area. The colorimetric reaction was performed within the micro-reactor, which was then coupled to a dedicated 660 nm LED-based absorbance detector. By rapidly delivering a reactor temperature of 70 °C in just 40 s, the optimal conditions to improve reaction kinetics were achieved to provide for limits of detection of 0.1 mg L-1 for NH4+, based upon an injection volume of just 10 μL. Linearity for NH4+ was observed over the range 0-50 mg L-1, n = 3, R2 = 0.9987. The reactor was found to deliver excellent reproducibility when included as a post-column reactor within the Aquamonitrix analyser, with an overall relative standard deviation below 1.2 % for peak height and 0.3 % for peak residence time, based upon 6 repeat injections. SIGNIFICANCE The printed post-column reactor assembly was integrated into a commercial portable ion chromatograph developed for the separation and detection of NO2- and NO3-, thus providing a fully automated system for the remote and simultaneous analysis of NO2-, NO3-, and NH4+ in natural and industrial waters. The fully automated system was deployed externally within a greenhouse facility to demonstrate this capability.
Collapse
Affiliation(s)
- Kurt Debruille
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Sandy Bay, Hobart, 7001, Tasmania, Australia
| | - Yonglin Mai
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Sandy Bay, Hobart, 7001, Tasmania, Australia
| | - Philip Hortin
- Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, Tasmania, 7001, Australia
| | - Simon Bluett
- Research & Development, Aquamonitrix Ltd, Tullow, Carlow, Ireland
| | - Eoin Murray
- Research & Development, Aquamonitrix Ltd, Tullow, Carlow, Ireland
| | - Vipul Gupta
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Sandy Bay, Hobart, 7001, Tasmania, Australia
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Sandy Bay, Hobart, 7001, Tasmania, Australia.
| |
Collapse
|
5
|
Pradela Filho LA, Paixão TRLC, Nordin GP, Woolley AT. Leveraging the third dimension in microfluidic devices using 3D printing: no longer just scratching the surface. Anal Bioanal Chem 2024; 416:2031-2037. [PMID: 37470814 PMCID: PMC10799186 DOI: 10.1007/s00216-023-04862-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
3D printers utilize cutting-edge technologies to create three-dimensional objects and are attractive tools for engineering compact microfluidic platforms with complex architectures for chemical and biochemical analyses. 3D printing's popularity is associated with the freedom of creating intricate designs using inexpensive instrumentation, and these tools can produce miniaturized platforms in minutes, facilitating fabrication scaleup. This work discusses key challenges in producing three-dimensional microfluidic structures using currently available 3D printers, addressing considerations about printer capabilities and software limitations encountered in the design and processing of new architectures. This article further communicates the benefits of using three-dimensional structures, including the ability to scalably produce miniaturized analytical systems and the possibility of combining them with multiple processes, such as mixing, pumping, pre-concentration, and detection. Besides increasing analytical applicability, such three-dimensional architectures are important in the eventual design of commercial devices since they can decrease user interferences and reduce the volume of reagents or samples required, making assays more reliable and rapid. Moreover, this manuscript provides insights into research directions involving 3D-printed microfluidic devices. Finally, this work offers an outlook for future developments to provide and take advantage of 3D microfluidic functionality in 3D printing. Graphical abstract Creating three-dimensional microfluidic structures using 3D printing will enable key advances and novel applications in (bio)chemical analysis.
Collapse
Affiliation(s)
- Lauro A Pradela Filho
- Department of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | | - Gregory P Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
6
|
Roy Barman S, Gavit P, Chowdhury S, Chatterjee K, Nain A. 3D-Printed Materials for Wastewater Treatment. JACS AU 2023; 3:2930-2947. [PMID: 38034974 PMCID: PMC10685417 DOI: 10.1021/jacsau.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023]
Abstract
The increasing levels of water pollution pose an imminent threat to human health and the environment. Current modalities of wastewater treatment necessitate expensive instrumentation and generate large amounts of waste, thus failing to provide ecofriendly and sustainable solutions for water purification. Over the years, novel additive manufacturing technology, also known as three-dimensional (3D) printing, has propelled remarkable innovation in different disciplines owing to its capability to fabricate customized geometric objects rapidly and cost-effectively with minimal byproducts and hence undoubtedly emerged as a promising alternative for wastewater treatment. Especially in membrane technology, 3D printing enables the designing of ultrathin membranes and membrane modules layer-by-layer with different morphologies, complex hierarchical structures, and a wide variety of materials otherwise unmet using conventional fabrication strategies. Extensive research has been dedicated to preparing membrane spacers with excellent surface properties, potentially improving the membrane filtration performance for water remediation. The revolutionary developments in membrane module fabrication have driven the utilization of 3D printing approaches toward manufacturing advanced membrane components, including biocarriers, sorbents, catalysts, and even whole membranes. This perspective highlights recent advances and essential outcomes in 3D printing technologies for wastewater treatment. First, different 3D printing techniques, such as material extrusion, selective laser sintering (SLS), and vat photopolymerization, emphasizing membrane fabrication, are briefly discussed. Importantly, in this Perspective, we focus on the unique 3D-printed membrane modules, namely, feed spacers, biocarriers, sorbents, and so on. The unparalleled advantages of 3D printed membrane components in surface area, geometry, and thickness and their influence on antifouling, removal efficiency, and overall membrane performance are underlined. Moreover, the salient applications of 3D printing technologies for water desalination, oil-water separation, heavy metal and organic pollutant removal, and nuclear decontamination are also outlined. This Perspective summarizes the recent works, current limitations, and future outlook of 3D-printed membrane technologies for wastewater treatment.
Collapse
Affiliation(s)
- Snigdha Roy Barman
- Department
of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Pratik Gavit
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore, Karnataka 560012, India
| | - Saswat Chowdhury
- Department
of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Kaushik Chatterjee
- Department
of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore, Karnataka 560012, India
| | - Amit Nain
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
7
|
Saitta L, Cutuli E, Celano G, Tosto C, Sanalitro D, Guarino F, Cicala G, Bucolo M. Projection Micro-Stereolithography to Manufacture a Biocompatible Micro-Optofluidic Device for Cell Concentration Monitoring. Polymers (Basel) 2023; 15:4461. [PMID: 38006185 PMCID: PMC10675802 DOI: 10.3390/polym15224461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
In this work, a 3D printed biocompatible micro-optofluidic (MoF) device for two-phase flow monitoring is presented. Both an air-water bi-phase flow and a two-phase mixture composed of micrometric cells suspended on a liquid solution were successfully controlled and monitored through its use. To manufacture the MoF device, a highly innovative microprecision 3D printing technique was used named Projection Microstereolithography (PμSL) in combination with the use of a novel 3D printable photocurable resin suitable for biological and biomedical applications. The concentration monitoring of biological fluids relies on the absorption phenomenon. More precisely, the nature of the transmission of the light strictly depends on the cell concentration: the higher the cell concentration, the lower the optical acquired signal. To achieve this, the microfluidic T-junction device was designed with two micrometric slots for the optical fibers' insertion, needed to acquire the light signal. In fact, both the micro-optical and the microfluidic components were integrated within the developed device. To assess the suitability of the selected biocompatible transparent resin for optical detection relying on the selected working principle (absorption phenomenon), a comparison between a two-phase flow process detected inside a previously fully characterized micro-optofluidic device made of a nonbiocompatible high-performance resin (HTL resin) and the same made of the biocompatible one (BIO resin) was carried out. In this way, it was possible to highlight the main differences between the two different resin grades, which were further justified with proper chemical analysis of the used resins and their hydrophilic/hydrophobic nature via static water contact angle measurements. A wide experimental campaign was performed for the biocompatible device manufactured through the PμSL technique in different operative conditions, i.e., different concentrations of eukaryotic yeast cells of Saccharomyces cerevisiae (with a diameter of 5 μm) suspended on a PBS (phosphate-buffered saline) solution. The performed analyses revealed that the selected photocurable transparent biocompatible resin for the manufactured device can be used for cell concentration monitoring by using ad hoc 3D printed micro-optofluidic devices. In fact, by means of an optical detection system and using the optimized operating conditions, i.e., the optimal values of the flow rate FR=0.1 mL/min and laser input power P∈{1,3} mW, we were able to discriminate between biological fluids with different concentrations of suspended cells with a robust working ability R2=0.9874 and Radj2=0.9811.
Collapse
Affiliation(s)
- Lorena Saitta
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (G.C.); (C.T.); (G.C.)
| | - Emanuela Cutuli
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (D.S.); (M.B.)
| | - Giovanni Celano
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (G.C.); (C.T.); (G.C.)
| | - Claudio Tosto
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (G.C.); (C.T.); (G.C.)
| | - Dario Sanalitro
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (D.S.); (M.B.)
| | - Francesca Guarino
- Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy;
| | - Gianluca Cicala
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (G.C.); (C.T.); (G.C.)
- INSTM-UDR CT, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Maide Bucolo
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (D.S.); (M.B.)
| |
Collapse
|
8
|
Elumalai A, Nayak Y, Ganapathy AK, Chen D, Tappa K, Jammalamadaka U, Bishop G, Ballard DH. Reverse Engineering and 3D Printing of Medical Devices for Drug Delivery and Drug-Embedded Anatomic Implants. Polymers (Basel) 2023; 15:4306. [PMID: 37959986 PMCID: PMC10647997 DOI: 10.3390/polym15214306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, 3D printing (3DP) has advanced traditional medical treatments. This review explores the fusion of reverse engineering and 3D printing of medical implants, with a specific focus on drug delivery applications. The potential for 3D printing technology to create patient-specific implants and intricate anatomical models is discussed, along with its ability to address challenges in medical treatment. The article summarizes the current landscape, challenges, benefits, and emerging trends of using 3D-printed formulations for medical implantation and drug delivery purposes.
Collapse
Affiliation(s)
- Anusha Elumalai
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Yash Nayak
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Aravinda K. Ganapathy
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - David Chen
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas, 7000 Fannin Street, Houston, TX 77030, USA;
| | | | - Grace Bishop
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - David H. Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
9
|
Chu CH, Burentugs E, Lee D, Owens JM, Liu R, Frazier AB, Sarioglu AF. Centrifugation-Assisted Three-Dimensional Printing of Devices Embedded with Fully Enclosed Microchannels. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:609-618. [PMID: 37609578 PMCID: PMC10440665 DOI: 10.1089/3dp.2021.0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The challenges in reliably removing the sacrificial material from fully enclosed microfluidic channels hinder the use of three-dimensional (3D) printing to create microfluidic devices with intricate geometries. With advances in printer resolution, the etching of sacrificial materials from increasingly smaller channels is poised to be a bottleneck using the existing techniques. In this study, we introduce a microfabrication approach that utilizes centrifugation to effortlessly and efficiently remove the sacrificial materials from 3D-printed microfluidic devices with densely packed microfeatures. We characterize the process by measuring the etch rate under different centrifugal forces and developed a theoretical model to estimate process parameters for a given geometry. The effect of the device layout on the centrifugal etching process is also investigated. We demonstrate the applicability of our approach on devices fabricated using inkjet 3D printing and stereolithography. Finally, the advantages of the introduced approach over commonly used injection-based etching of sacrificial material are experimentally demonstrated in direct comparisons. A robust method to postprocess additively manufactured geometries composed of intricate microfluidic channels can help utilize both the large printing volume and high spatial resolution afforded by 3D printing in creating a variety of devices ranging from scaffolds to large-scale microfluidic assays.
Collapse
Affiliation(s)
- Chia-Heng Chu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Enerelt Burentugs
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Dohwan Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jacob M. Owens
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ruxiu Liu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Albert B. Frazier
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - A. Fatih Sarioglu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Tony A, Badea I, Yang C, Liu Y, Wells G, Wang K, Yin R, Zhang H, Zhang W. The Additive Manufacturing Approach to Polydimethylsiloxane (PDMS) Microfluidic Devices: Review and Future Directions. Polymers (Basel) 2023; 15:1926. [PMID: 37112073 PMCID: PMC10147032 DOI: 10.3390/polym15081926] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
This paper presents a comprehensive review of the literature for fabricating PDMS microfluidic devices by employing additive manufacturing (AM) processes. AM processes for PDMS microfluidic devices are first classified into (i) the direct printing approach and (ii) the indirect printing approach. The scope of the review covers both approaches, though the focus is on the printed mold approach, which is a kind of the so-called replica mold approach or soft lithography approach. This approach is, in essence, casting PDMS materials with the mold which is printed. The paper also includes our on-going effort on the printed mold approach. The main contribution of this paper is the identification of knowledge gaps and elaboration of future work toward closing the knowledge gaps in fabrication of PDMS microfluidic devices. The second contribution is the development of a novel classification of AM processes from design thinking. There is also a contribution in clarifying confusion in the literature regarding the soft lithography technique; this classification has provided a consistent ontology in the sub-field of the fabrication of microfluidic devices involving AM processes.
Collapse
Affiliation(s)
- Anthony Tony
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.T.); (C.Y.); (Y.L.)
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Chun Yang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.T.); (C.Y.); (Y.L.)
| | - Yuyi Liu
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.T.); (C.Y.); (Y.L.)
| | - Garth Wells
- Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source, Saskatoon, SK S7N 2V3, Canada;
| | - Kemin Wang
- School of Mechatronics and Automation, Shanghai University, Shanghai 200444, China;
| | - Ruixue Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.T.); (C.Y.); (Y.L.)
| |
Collapse
|
11
|
Su R, Wang F, McAlpine MC. 3D printed microfluidics: advances in strategies, integration, and applications. LAB ON A CHIP 2023; 23:1279-1299. [PMID: 36779387 DOI: 10.1039/d2lc01177h] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to construct multiplexed micro-systems for fluid regulation could substantially impact multiple fields, including chemistry, biology, biomedicine, tissue engineering, and soft robotics, among others. 3D printing is gaining traction as a compelling approach to fabricating microfluidic devices by providing unique capabilities, such as 1) rapid design iteration and prototyping, 2) the potential for automated manufacturing and alignment, 3) the incorporation of numerous classes of materials within a single platform, and 4) the integration of 3D microstructures with prefabricated devices, sensing arrays, and nonplanar substrates. However, to widely deploy 3D printed microfluidics at research and commercial scales, critical issues related to printing factors, device integration strategies, and incorporation of multiple functionalities require further development and optimization. In this review, we summarize important figures of merit of 3D printed microfluidics and inspect recent progress in the field, including ink properties, structural resolutions, and hierarchical levels of integration with functional platforms. Particularly, we highlight advances in microfluidic devices printed with thermosetting elastomers, printing methodologies with enhanced degrees of automation and resolution, and the direct printing of microfluidics on various 3D surfaces. The substantial progress in the performance and multifunctionality of 3D printed microfluidics suggests a rapidly approaching era in which these versatile devices could be untethered from microfabrication facilities and created on demand by users in arbitrary settings with minimal prior training.
Collapse
Affiliation(s)
- Ruitao Su
- School of Mechanical and Power Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Fujun Wang
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455, USA.
| | - Michael C McAlpine
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
12
|
Spherical covalent organic framework and gold nanoparticles modified 3D-printed nanocarbon electrode for the sensor of acetaminophen. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
13
|
Combining 3D Printing and Microfluidic Techniques: A Powerful Synergy for Nanomedicine. Pharmaceuticals (Basel) 2023; 16:ph16010069. [PMID: 36678566 PMCID: PMC9867206 DOI: 10.3390/ph16010069] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Nanomedicine has grown tremendously in recent years as a responsive strategy to find novel therapies for treating challenging pathological conditions. As a result, there is an urgent need to develop novel formulations capable of providing adequate therapeutic treatment while overcoming the limitations of traditional protocols. Lately, microfluidic technology (MF) and additive manufacturing (AM) have both acquired popularity, bringing numerous benefits to a wide range of life science applications. There have been numerous benefits and drawbacks of MF and AM as distinct techniques, with case studies showing how the careful optimization of operational parameters enables them to overcome existing limitations. Therefore, the focus of this review was to highlight the potential of the synergy between MF and AM, emphasizing the significant benefits that this collaboration could entail. The combination of the techniques ensures the full customization of MF-based systems while remaining cost-effective and less time-consuming compared to classical approaches. Furthermore, MF and AM enable highly sustainable procedures suitable for industrial scale-out, leading to one of the most promising innovations of the near future.
Collapse
|
14
|
3D printed microfluidics for bioanalysis: A review of recent advancements and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Qiu B, Chen X, Xu F, Wu D, Zhou Y, Tu W, Jin H, He G, Chen S, Sun D. Nanofiber self-consistent additive manufacturing process for 3D microfluidics. MICROSYSTEMS & NANOENGINEERING 2022; 8:102. [PMID: 36119377 PMCID: PMC9477890 DOI: 10.1038/s41378-022-00439-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 06/13/2023]
Abstract
3D microfluidic devices have emerged as powerful platforms for analytical chemistry, biomedical sensors, and microscale fluid manipulation. 3D printing technology, owing to its structural fabrication flexibility, has drawn extensive attention in the field of 3D microfluidics fabrication. However, the collapse of suspended structures and residues of sacrificial materials greatly restrict the application of this technology, especially for extremely narrow channel fabrication. In this paper, a 3D printing strategy named nanofiber self-consistent additive manufacturing (NSCAM) is proposed for integrated 3D microfluidic chip fabrication with porous nanofibers as supporting structures, which avoids the sacrificial layer release process. In the NSCAM process, electrospinning and electrohydrodynamic jet (E-jet) writing are alternately employed. The porous polyimide nanofiber mats formed by electrospinning are ingeniously applied as both supporting structures for the suspended layer and percolating media for liquid flow, while the polydimethylsiloxane E-jet writing ink printed on the nanofiber mats (named construction fluid in this paper) controllably permeates through the porous mats. After curing, the resultant construction fluid-nanofiber composites are formed as 3D channel walls. As a proof of concept, a microfluidic pressure-gain valve, which contains typical features of narrow channels and movable membranes, was fabricated, and the printed valve was totally closed under a control pressure of 45 kPa with a fast dynamic response of 52.6 ms, indicating the feasibility of NSCAM. Therefore, we believe NSCAM is a promising technique for manufacturing microdevices that include movable membrane cavities, pillar cavities, and porous scaffolds, showing broad applications in 3D microfluidics, soft robot drivers or sensors, and organ-on-a-chip systems.
Collapse
Affiliation(s)
- Bin Qiu
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Xiaojun Chen
- School of Mechanical and Electrical Engineering, Lingnan Normal University, Zhanjiang, 524000 China
| | - Feng Xu
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Dongyang Wu
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Yike Zhou
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Wenchang Tu
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Hang Jin
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Gonghan He
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Songyue Chen
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| | - Daoheng Sun
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
16
|
Lim J, Lee S. Influence of Light-Intensity-Dependent Droplet Directionality on Dimensions of Structures Constructed Using an In Situ Light-Guided 3D Printing Method. Polymers (Basel) 2022; 14:3839. [PMID: 36145989 PMCID: PMC9502263 DOI: 10.3390/polym14183839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
As an alternative to conventional 3D printing methods that require supports, a new 3D printing strategy that utilizes guided light in situ has been developed for fabricating freestanding overhanging structures without supports. Light intensity has been found to be a crucial factor in modifying the dimensions of structures printed using this method; however, the underlying mechanism has not been clearly identified. Therefore, the light-intensity-dependent changes in the structure dimensions were analyzed in this study to elucidate the associated mechanism. Essentially, the entire process of deposition was monitored by assessing the behavior of photocurable droplets prior to their collision with the structure using imaging analysis tools such as a high-speed camera and MATLAB®. With increasing light intensity, the instability of the ejected falling droplets increased, and the droplet directionality deteriorated. This increased the dispersion of the droplet midpoints, which caused the average midpoints of the deposited single layers to shift further away from the center of the structure. Consequently, the diameter of the structure formed by successive stacking of single layers increased, and the layer thickness per droplet decreased. These led to light-intensity-dependent differences in the diameter and height of structures that were created from the same number of droplets.
Collapse
Affiliation(s)
- Jongkyeong Lim
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Sangmin Lee
- Division of Mechanical, Automotive and Robot Component Engineering, Dong-Eui University, Busan 47340, Korea
| |
Collapse
|
17
|
Hayter EA, Azibere S, Skrajewski LA, Soule LD, Spence DM, Martin RS. A 3D-printed, multi-modal microfluidic device for measuring nitric oxide and ATP release from flowing red blood cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3171-3179. [PMID: 35959771 PMCID: PMC10227723 DOI: 10.1039/d2ay00931e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper, a 3D-printed multi-modal device was designed and fabricated to simultaneously detect nitric oxide (NO) and adenosine triphosphate (ATP) in red blood cell suspensions prepared from whole blood. Once a sample was injected into the device, NO was first detected (via amperometry) using a three-electrode, dual-opposed, electrode configuration with a platinum-black/Nafion coated gold working electrode. After in-line amperometric detection of NO, ATP was detected via a chemiluminescence reaction, with a luciferin/luciferase solution continuously pumped into an integrated mixing T and the resulting light being measured with a PMT underneath the channel. The device was optimized for mixing/reaction conditions, limits of detection (40 nM for NO and 30 nM for ATP), and sensitivity. This device was used to determine the basal (normoxic) levels of NO and ATP in red blood cells, as well as an increase in concentration of both analytes under hypoxic conditions. Finally, the effect of storing red blood cells in a commonly used storage solution was also investigated by monitoring the production of NO and ATP over a three-week storage time.
Collapse
Affiliation(s)
- Elizabeth A Hayter
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave St. Louis, MO, USA, 63103.
| | - Samuel Azibere
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave St. Louis, MO, USA, 63103.
| | - Lauren A Skrajewski
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, USA
| | - Logan D Soule
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, USA
| | - Dana M Spence
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, USA
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave St. Louis, MO, USA, 63103.
- Center for Additive Manufacturing, Saint Louis University, USA
| |
Collapse
|
18
|
Ganapathy A, Chen D, Elumalai A, Albers B, Tappa K, Jammalamadaka U, Hoegger MJ, Ballard DH. Guide for starting or optimizing a 3D printing clinical service. Methods 2022; 206:41-52. [PMID: 35964862 DOI: 10.1016/j.ymeth.2022.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022] Open
Abstract
Three-dimensional (3D) printing has applications in many fields and has gained substantial traction in medicine as a modality to transform two-dimensional scans into three-dimensional renderings. Patient-specific 3D printed models have direct patient care uses in surgical and procedural specialties, allowing for increased precision and accuracy in developing treatment plans and guiding surgeries. Medical applications include surgical planning, surgical guides, patient and trainee education, and implant fabrication. 3D printing workflow for a laboratory or clinical service that produces anatomic models and guides includes optimizing imaging acquisition and post-processing, segmenting the imaging, and printing the model. Quality assurance considerations include supervising medical imaging expert radiologists' guidance and self-implementing in-house quality control programs. The purpose of this review is to provide a workflow and guide for starting or optimizing laboratories and clinical services that 3D-print anatomic models or guides for clinical use.
Collapse
Affiliation(s)
- Aravinda Ganapathy
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - David Chen
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Anusha Elumalai
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Brian Albers
- 3D Printing Center, Barnes Jewish Hospital, St. Louis, MO, USA.
| | - Karthik Tappa
- Anatomic 3D Printing and Visualization Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | - Mark J Hoegger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - David H Ballard
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
19
|
Monia Kabandana GK, Zhang T, Chen C. Emerging 3D printing technologies and methodologies for microfluidic development. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2885-2906. [PMID: 35866586 DOI: 10.1039/d2ay00798c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This review paper examines recent (mostly 2018 or later) advancements in 3D printed microfluidics. Microfluidic devices are widely applied in various fields such as drug delivery, point-of-care diagnosis, and bioanalytical research. In addition to soft lithography, 3D printing has become an appealing technology to develop microfluidics recently. In this work, three main 3D printing technologies, stereolithography, fused filament deposition, and polyjet, which are commonly used to fabricate microfluidic devices, are thoroughly discussed. The advantages, limitations, and recent microfluidic applications are analyzed. New technical advancements within these technology frameworks are also summarized, which are especially suitable for microfluidic development. Next, new emerging 3D-printing technologies are introduced, including the direct printing of polydimethylsiloxane (PDMS), glass, and biopolymers. Although limited microfluidic applications based on these technologies can be found in the literature, they show high potential to revolutionize the next generation of 3D-printed microfluidic apparatus.
Collapse
Affiliation(s)
- Giraso Keza Monia Kabandana
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| | - Tao Zhang
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| | - Chengpeng Chen
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
20
|
Niculescu AG, Mihaiescu DE, Grumezescu AM. A Review of Microfluidic Experimental Designs for Nanoparticle Synthesis. Int J Mol Sci 2022; 23:8293. [PMID: 35955420 PMCID: PMC9368202 DOI: 10.3390/ijms23158293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Microfluidics is defined as emerging science and technology based on precisely manipulating fluids through miniaturized devices with micro-scale channels and chambers. Such microfluidic systems can be used for numerous applications, including reactions, separations, or detection of various compounds. Therefore, due to their potential as microreactors, a particular research focus was noted in exploring various microchannel configurations for on-chip chemical syntheses of materials with tailored properties. Given the significant number of studies in the field, this paper aims to review the recently developed microfluidic devices based on their geometry particularities, starting from a brief presentation of nanoparticle synthesis and mixing within microchannels, further moving to a more detailed discussion of different chip configurations with potential use in nanomaterial fabrication.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
21
|
Esene JE, Boaks M, Bickham AV, Nordin GP, Woolley AT. 3D printed microfluidic device for automated, pressure-driven, valve-injected microchip electrophoresis of preterm birth biomarkers. Mikrochim Acta 2022; 189:204. [PMID: 35484354 PMCID: PMC10079432 DOI: 10.1007/s00604-022-05303-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
A 3D printed, automated, pressure-driven injection microfluidic system for microchip electrophoresis (µCE) of preterm birth (PTB)-related peptides and proteins has been developed. Functional microvalves were formed, either with a membrane thickness of 5 µm and a layer exposure time of 450 ms or with a membrane thickness of 10 µm and layer exposure times of 300-350 ms. These valves allowed for control of fluid flow in device microchannels during sample injection for µCE separation. Device design and µCE conditions using fluorescently labeled amino acids were optimized. A sample injection time of 0.5 s and a separation voltage of 450 V (460 V/cm) yielded the best separation efficiency and resolution. We demonstrated the first µCE separation with pressure-driven injection in a 3D printed microfluidic device using fluorescently labeled PTB biomarkers and 532 nm laser excitation. Detection limits for two PTB biomarkers, peptide 1 and peptide 2, for an injection time of 1.5 s were 400 pM and 15 nM, respectively, and the linear detection range for peptide 2 was 50-400 nM. This 3D printed microfluidic system holds promise for future integration of on-chip sample preparation processes with µCE, offering promising possibilities for PTB risk assessment.
Collapse
Affiliation(s)
- Joule E Esene
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Mawla Boaks
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Anna V Bickham
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Gregory P Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
22
|
Selemani M, Castiaux AD, Martin RS. PolyJet-Based 3D Printing against Micromolds to Produce Channel Structures for Microchip Electrophoresis. ACS OMEGA 2022; 7:13362-13370. [PMID: 35474767 PMCID: PMC9026087 DOI: 10.1021/acsomega.2c01265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In this work, we demonstrate the ability to use micromolds along with a stacked three-dimensional (3D) printing process on a commercially available PolyJet printer to fabricate microchip electrophoresis devices that have a T-intersection, with channel cross sections as small as 48 × 12 μm2 being possible. The fabrication process involves embedding removable materials or molds during the printing process, with various molds being possible (wires, brass molds, PDMS molds, or sacrificial materials). When the molds are delaminated/removed, recessed features complementary to the molds are left in the 3D prints. A thermal lab press is used to bond the microchannel layer that also contains printed reservoirs against another solid 3D-printed part to completely seal the microchannels. The devices exhibited cathodic electroosmotic flow (EOF), and mixtures of fluorescein isothiocyanate isomer I (FITC)-labeled amino acids were successfully separated on these 3D-printed devices using both gated and pinched electrokinetic injections. While this application is focused on microchip electrophoresis, the ability to 3D-print against molds that can subsequently be removed is a general methodology to decrease the channel size for other applications as well as to possibly integrate 3D printing with other production processes.
Collapse
Affiliation(s)
- Major
A. Selemani
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Andre D. Castiaux
- Center
for Additive Manufacturing, Saint Louis
University, 240 N Grand
Blvd, Saint Louis, Missouri 63103, United States
| | - R. Scott Martin
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
- Center
for Additive Manufacturing, Saint Louis
University, 240 N Grand
Blvd, Saint Louis, Missouri 63103, United States
| |
Collapse
|
23
|
Currens ER, Armbruster MR, Castiaux AD, Edwards JL, Martin RS. Evaluation and optimization of PolyJet 3D-printed materials for cell culture studies. Anal Bioanal Chem 2022; 414:3329-3339. [PMID: 35274156 PMCID: PMC9018575 DOI: 10.1007/s00216-022-03991-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/22/2022]
Abstract
Use of 3D printing for microfluidics is a rapidly growing area, with applications involving cell culture in these devices also becoming of interest. 3D printing can be used to create custom-designed devices that have complex features and integrate different material types in one device; however, there are fewer studies studying the ability to culture cells on the various substrates that are available. This work describes the effect of PolyJet 3D-printing technology on cell culture of two cell lines, bovine pulmonary artery endothelial cells (BPAECs) and Madin-Darby Canine Kidney (MDCK) cells, on two different types of printed materials (VeroClear or MED610). It was found that untreated devices, when used for studies of 1 day or more, led to unsuccessful culture. A variety of device treatment methodologies were investigated, with the most success coming from the use of sodium hydroxide/sodium metasilicate solution. Devices treated with this cleaning step resulted in culture of BPAECs and MDCK cells that were more similar to what is obtained in traditional culture flasks (in terms of cell morphology, viability, and cell density). LC-MS/MS analysis (via Orbitrap MS) was used to determine potential leachates from untreated devices. Finally, the use of a fiber scaffold in the devices was utilized to further evaluate the treatment methodology and to also demonstrate the ability to perform 3D culture in such devices. This study will be of use for researchers wanting to utilize these or other cell types in PolyJet-based 3D-printed devices.
Collapse
Affiliation(s)
- Emily R Currens
- Department of Chemistry, Saint Louis University, St. Louis, MO, 63103, USA
| | | | - Andre D Castiaux
- Department of Chemistry, Saint Louis University, St. Louis, MO, 63103, USA.,Center for Additive Manufacturing, Saint Louis University, 3501 Laclede Ave, St. Louis, MO, 63103, USA
| | - James L Edwards
- Department of Chemistry, Saint Louis University, St. Louis, MO, 63103, USA
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, St. Louis, MO, 63103, USA. .,Center for Additive Manufacturing, Saint Louis University, 3501 Laclede Ave, St. Louis, MO, 63103, USA.
| |
Collapse
|
24
|
Cong H, Zhang N. Perspectives in translating microfluidic devices from laboratory prototyping into scale-up production. BIOMICROFLUIDICS 2022; 16:021301. [PMID: 35350441 PMCID: PMC8933055 DOI: 10.1063/5.0079045] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/23/2022] [Indexed: 05/05/2023]
Abstract
Transforming lab research into a sustainable business is becoming a trend in the microfluidic field. However, there are various challenges during the translation process due to the gaps between academia and industry, especially from laboratory prototyping to industrial scale-up production, which is critical for potential commercialization. In this Perspective, based on our experience in collaboration with stakeholders, e.g., biologists, microfluidic engineers, diagnostic specialists, and manufacturers, we aim to share our understanding of the manufacturing process chain of microfluidic cartridge from concept development and laboratory prototyping to scale-up production, where the scale-up production of commercial microfluidic cartridges is highlighted. Four suggestions from the aspect of cartridge design for manufacturing, professional involvement, material selection, and standardization are provided in order to help scientists from the laboratory to bring their innovations into pre-clinical, clinical, and mass production and improve the manufacturability of laboratory prototypes toward commercialization.
Collapse
Affiliation(s)
- Hengji Cong
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin 4, Ireland
| | - Nan Zhang
- Author to whom correspondence should be addressed:
| |
Collapse
|
25
|
Kuang S, Singh NM, Wu Y, Shen Y, Ren W, Tu L, Yong KT, Song P. Role of microfluidics in accelerating new space missions. BIOMICROFLUIDICS 2022; 16:021503. [PMID: 35497325 PMCID: PMC9033306 DOI: 10.1063/5.0079819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Numerous revolutionary space missions have been initiated and planned for the following decades, including plans for novel spacecraft, exploration of the deep universe, and long duration manned space trips. Compared with space missions conducted over the past 50 years, current missions have features of spacecraft miniaturization, a faster task cycle, farther destinations, braver goals, and higher levels of precision. Tasks are becoming technically more complex and challenging, but also more accessible via commercial space activities. Remarkably, microfluidics has proven impactful in newly conceived space missions. In this review, we focus on recent advances in space microfluidic technologies and their impact on the state-of-the-art space missions. We discuss how micro-sized fluid and microfluidic instruments behave in space conditions, based on hydrodynamic theories. We draw on analyses outlining the reasons why microfluidic components and operations have become crucial in recent missions by categorically investigating a series of successful space missions integrated with microfluidic technologies. We present a comprehensive technical analysis on the recently developed in-space microfluidic applications such as the lab-on-a-CubeSat, healthcare for manned space missions, evaluation and reconstruction of the environment on celestial bodies, in-space manufacturing of microfluidic devices, and development of fluid-based micro-thrusters. The discussions in this review provide insights on microfluidic technologies that hold considerable promise for the upcoming space missions, and also outline how in-space conditions present a new perspective to the microfluidics field.
Collapse
Affiliation(s)
| | - Nishtha Manish Singh
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore
| | - Yichao Wu
- College of Resources & Environment of Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, People's Republic of China
| | - Yan Shen
- School of Aeronautics and Astronautics, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
| | - Weijia Ren
- SPACETY, No.9 Dengzhuang South Road, Haidian District, Beijing, People's Republic of China
| | - Liangcheng Tu
- School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, People's Republic of China
| | - Ken-Tye Yong
- Faculty of Engineering, School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Peiyi Song
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
26
|
Xu Y, Qi F, Mao H, Li S, Zhu Y, Gong J, Wang L, Malmstadt N, Chen Y. In-situ transfer vat photopolymerization for transparent microfluidic device fabrication. Nat Commun 2022; 13:918. [PMID: 35177598 PMCID: PMC8854570 DOI: 10.1038/s41467-022-28579-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/21/2022] [Indexed: 11/10/2022] Open
Abstract
While vat photopolymerization has many advantages over soft lithography in fabricating microfluidic devices, including efficiency and shape complexity, it has difficulty achieving well-controlled micrometer-sized (smaller than 100 μm) channels in the layer building direction. The considerable light penetration depth of transparent resin leads to over-curing that inevitably cures the residual resin inside flow channels, causing clogs. In this paper, a 3D printing process - in-situ transfer vat photopolymerization is reported to solve this critical over-curing issue in fabricating microfluidic devices. We demonstrate microchannels with high Z-resolution (within 10 μm level) and high accuracy (within 2 μm level) using a general method with no requirements on liquid resins such as reduced transparency nor leads to a reduced fabrication speed. Compared with all other vat photopolymerization-based techniques specialized for microfluidic channel fabrication, our universal approach is compatible with commonly used 405 nm light sources and commercial photocurable resins. The process has been verified by multifunctional devices, including 3D serpentine microfluidic channels, microfluidic valves, and particle sorting devices. This work solves a critical barrier in 3D printing microfluidic channels using the high-speed vat photopolymerization process and broadens the material options. It also significantly advances vat photopolymerization's use in applications requiring small gaps with high accuracy in the Z-direction.
Collapse
Affiliation(s)
- Yang Xu
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, 90007, USA
- Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fangjie Qi
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, 90007, USA
- Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Huachao Mao
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, 90007, USA
- School of Engineering Technology, Purdue University, West Lafayette, IN, 47907, USA
| | - Songwei Li
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, 90007, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yizhen Zhu
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, 90007, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jingwen Gong
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, 90007, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lu Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Noah Malmstadt
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yong Chen
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, 90007, USA.
- Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
27
|
Zuchowicz NC, Belgodere JA, Liu Y, Semmes I, Monroe WT, Tiersch TR. Low-Cost Resin 3-D Printing for Rapid Prototyping of Microdevices: Opportunities for Supporting Aquatic Germplasm Repositories. FISHES 2022; 7:49. [PMID: 36644437 PMCID: PMC9838218 DOI: 10.3390/fishes7010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Germplasm repositories can benefit sustainable aquaculture by supporting genetic improvement, assisted reproduction, and management of valuable genetic resources. Lack of reliable quality management tools has impeded repository development in the past several decades. Microfabricated open-hardware devices have emerged as a new approach to assist repository development by providing standardized quality assessment capabilities to enable routine quality control. However, prototyping of microfabricated devices (microdevices) traditionally relies on photolithography techniques that are costly, time intensive, and accessible only through specialized engineering laboratories. Although resin 3-D printing has been introduced into the microfabrication domain, existing publications focus on customized or high-cost (>thousands of USD) printers. The goal of this report was to identify and call attention to the emerging opportunities to support innovation in microfabrication by use of low-cost (
Collapse
Affiliation(s)
- Nikolas C. Zuchowicz
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA
| | - Jorge A. Belgodere
- Department of Biological and Agricultural Engineering, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yue Liu
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA
- Department of Biological and Agricultural Engineering, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Ignatius Semmes
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - William Todd Monroe
- Department of Biological and Agricultural Engineering, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Terrence R. Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA
| |
Collapse
|
28
|
Geiger M, Hayter E, Martin R, Spence D. Red blood cells in type 1 diabetes and multiple sclerosis and technologies to measure their emerging roles. J Transl Autoimmun 2022; 5:100161. [PMID: 36039310 PMCID: PMC9418496 DOI: 10.1016/j.jtauto.2022.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- M. Geiger
- Institute of Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - E. Hayter
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - R.S. Martin
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - D. Spence
- Institute of Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Corresponding author. 775 Woodlot Drive, East Lansing, MI 48824, USA.
| |
Collapse
|
29
|
Garcia-Cardosa M, Granados-Ortiz FJ, Ortega-Casanova J. A Review on Additive Manufacturing of Micromixing Devices. MICROMACHINES 2021; 13:73. [PMID: 35056237 PMCID: PMC8778246 DOI: 10.3390/mi13010073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 01/31/2023]
Abstract
In recent years, additive manufacturing has gained importance in a wide range of research applications such as medicine, biotechnology, engineering, etc. It has become one of the most innovative and high-performance manufacturing technologies of the moment. This review aims to show and discuss the characteristics of different existing additive manufacturing technologies for the construction of micromixers, which are devices used to mix two or more fluids at microscale. The present manuscript discusses all the choices to be made throughout the printing life cycle of a micromixer in order to achieve a high-quality microdevice. Resolution, precision, materials, and price, amongst other relevant characteristics, are discussed and reviewed in detail for each printing technology. Key information, suggestions, and future prospects are provided for manufacturing of micromixing machines based on the results from this review.
Collapse
|
30
|
Yin M, Alexander Kim Z, Xu B. Micro/Nanofluidic‐Enabled Biomedical Devices: Integration of Structural Design and Manufacturing. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Mengtian Yin
- Department of Mechanical and Aerospace Engineering University of Virginia Charlottesville VA 22904 USA
| | - Zachary Alexander Kim
- Department of Mechanical and Aerospace Engineering University of Virginia Charlottesville VA 22904 USA
| | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering University of Virginia Charlottesville VA 22904 USA
| |
Collapse
|
31
|
Balakrishnan HK, Doeven EH, Merenda A, Dumée LF, Guijt RM. 3D printing for the integration of porous materials into miniaturised fluidic devices: A review. Anal Chim Acta 2021; 1185:338796. [PMID: 34711329 DOI: 10.1016/j.aca.2021.338796] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/25/2023]
Abstract
Porous materials facilitate the efficient separation of chemicals and particulate matter by providing selectivity through structural and surface properties and are attractive as sorbent owing to their large surface area. This broad applicability of porous materials makes the integration of porous materials and microfluidic devices important in the development of more efficient, advanced separation platforms. Additive manufacturing approaches are fundamentally different to traditional manufacturing methods, providing unique opportunities in the fabrication of fluidic devices. The complementary 3D printing (3DP) methods are each accompanied by unique opportunities and limitations in terms of minimum channel size, scalability, functional integration and automation. This review focuses on the developments in the fabrication of 3DP miniaturised fluidic devices with integrated porous materials, focusing polymer-based methods including fused filament fabrication (FFF), inkjet 3D printing and digital light projection (DLP). The 3DP methods are compared based on resolution, scope for multimaterial printing and scalability for manufacturing. As opportunities for printing pores are limited by resolution, the focus is on approaches to incorporate materials with sub-micron pores to be used as membrane, sorbent or stationary phase in separation science using Post-Print, Print-Pause-Print and In-Print processes. Technical aspects analysing the efficiency of the fabrication process towards scalable manufacturing are combined with application aspects evaluating the separation and/or extraction performance. The review is concluded with an overview on achievements and opportunities for manufacturable 3D printed membrane/sorbent integrated fluidic devices.
Collapse
Affiliation(s)
- Hari Kalathil Balakrishnan
- Deakin University, Centre for Rural and Regional Futures, Locked Bag 20000, Geelong, VIC 3320, Australia; Deakin University, Institute for Frontier Materials, Locked Bag 20000, Geelong, VIC 3320, Australia
| | - Egan H Doeven
- Deakin University, Centre for Rural and Regional Futures, Locked Bag 20000, Geelong, VIC 3320, Australia
| | - Andrea Merenda
- Deakin University, Institute for Frontier Materials, Locked Bag 20000, Geelong, VIC 3320, Australia
| | - Ludovic F Dumée
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Centre on CO(2) and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates; Centre for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rosanne M Guijt
- Deakin University, Centre for Rural and Regional Futures, Locked Bag 20000, Geelong, VIC 3320, Australia.
| |
Collapse
|
32
|
Castiaux AD, Selemani MA, Ward MA, Martin RS. Fully 3D printed fluidic devices with integrated valves and pumps for flow injection analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5017-5024. [PMID: 34643627 PMCID: PMC8638614 DOI: 10.1039/d1ay01569a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of a PolyJet 3D printer to create a microfluidic device that has integrated valves and pumps is described. The process uses liquid support and stacked printing to result in fully printed devices that are ready to use within minutes of fabrication after minimal post-processing. A unique feature of PolyJet printing is the ability to incorporate several different materials of varying properties into one print. In this work, two commercially available materials were used: a rigid-transparent plastic material (VeroClear) was used to define the channel regions and the bulk of the device, while the pumps/valves were printed in a flexible, rubber-like material (Agilus30). The entire process, from initial design to testing takes less than 4 hours to complete. The performance of the valves and pumps were characterized by fluorescence microscopy. A flow injection analysis device that enabled the discrete injections of analyte plugs was created, with on-chip pumps being used to move the fluid streams. The injection process was found to be reproducible and linearly correlated with changes in analyte concentration. The utility was demonstrated with the injection and rapid lysis of fluorescently-labeled endothelial cells. The ability to produce a device with integrated pumps/valves in one process significantly adds to the applicability of 3D printing to create microfluidic devices for analytical measurements.
Collapse
Affiliation(s)
- Andre D Castiaux
- Department of Chemistry, Saint Louis University, USA
- Department of Chemistry, Center for Additive Manufacturing, Saint Louis University, 3501 Laclede Ave., St. Louis, MO, 63103, USA.
| | | | - Morgan A Ward
- Department of Chemistry, Saint Louis University, USA
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, USA
- Department of Chemistry, Center for Additive Manufacturing, Saint Louis University, 3501 Laclede Ave., St. Louis, MO, 63103, USA.
| |
Collapse
|
33
|
Jacobs MJ, Pinger CW, Castiaux AD, Maloney KJ, Spence DM. A novel 3D-printed centrifugal ultrafiltration method reveals in vivo glycation of human serum albumin decreases its binding affinity for zinc. Metallomics 2021; 12:1036-1043. [PMID: 32626857 DOI: 10.1039/d0mt00123f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plasma proteins are covalently modified in vivo by the high-glucose conditions in the bloodstreams of people with diabetes, resulting in changes to both structure and function. Human Serum Albumin (HSA) functions as a carrier-protein in the bloodstream, binding various ligands and tightly regulating their bioavailability. HSA is known to react with glucose via the Maillard reaction, causing adverse effects on its ability to bind and deliver certain ligands, such as metals. Here, the binding between in vivo glycated HSA and zinc (Zn2+) was determined using a novel centrifugal ultrafiltration method that was developed using a 3D-printed device. This method is rapid (90 minutes), capable of high-throughput measurements (24 samples), low-cost (<$1.00 USD per device) and requires lower sample volumes (200 μL) compared to other binding techniques. This device was used to determine an equilibrium dissociation constant between Zn2+ and a commercially obtained normal HSA (nHSA) with a glycation level of 11.5% (Kd = 2.1 (±0.5) × 10-7 M). A glycated fraction of the nHSA sample was enriched (gHSA, 65.5%) and isolated using boronate-affinity chromatography, and found to have a 2.3-fold decrease in Zn2+ binding-affinity (Kd = 4.8 (±0.8) × 10-7 M) when compared to the nHSA sample. The level of glycation of HSA in control plasma (13.0% ± 0.8, n = 3 donors) and plasma from people with diabetes (26.9% ± 6.6, n = 5 donors) was assessed using mass spectrometry. Furthermore, HSA was isolated from plasma obtained in-house from a person with type 1 diabetes and found to have a glycation level of 24.1% and Kd = 3.3 (± 0.5) × 10-7 M for Zn2+, revealing a 1.5-fold decrease in binding affinity compared to nHSA. These findings suggest that increased levels of glycated HSA result in reduced binding to Zn2+, which may have implications in complications associated with diabetes.
Collapse
Affiliation(s)
- Monica J Jacobs
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA. and Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Cody W Pinger
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Andre D Castiaux
- Department of Chemistry, Saint Louis University, East Lansing, MI 48824, USA
| | - Konnor J Maloney
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Dana M Spence
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
34
|
Aladese AD, Jeong HH. Recent Developments in 3D Printing of Droplet-Based Microfluidics. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00032-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Hubbard JD, Acevedo R, Edwards KM, Alsharhan AT, Wen Z, Landry J, Wang K, Schaffer S, Sochol RD. Fully 3D-printed soft robots with integrated fluidic circuitry. SCIENCE ADVANCES 2021; 7:7/29/eabe5257. [PMID: 34261646 PMCID: PMC8279518 DOI: 10.1126/sciadv.abe5257] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/03/2021] [Indexed: 05/23/2023]
Abstract
The emergence of soft robots has presented new challenges associated with controlling the underlying fluidics of such systems. Here, we introduce a strategy for additively manufacturing unified soft robots comprising fully integrated fluidic circuitry in a single print run via PolyJet three-dimensional (3D) printing. We explore the efficacy of this approach for soft robots designed to leverage novel 3D fluidic circuit elements-e.g., fluidic diodes, "normally closed" transistors, and "normally open" transistors with geometrically tunable pressure-gain functionalities-to operate in response to fluidic analogs of conventional electronic signals, including constant-flow ["direct current (DC)"], "alternating current (AC)"-inspired, and preprogrammed aperiodic ("variable current") input conditions. By enabling fully integrated soft robotic entities (composed of soft actuators, fluidic circuitry, and body features) to be rapidly disseminated, modified on demand, and 3D-printed in a single run, the presented design and additive manufacturing strategy offers unique promise to catalyze new classes of soft robots.
Collapse
Affiliation(s)
- Joshua D Hubbard
- Department of Chemical Engineering, University of California, Berkeley, CA 94720, USA
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
- Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA
| | - Ruben Acevedo
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
- Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA
| | - Kristen M Edwards
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
- Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abdullah T Alsharhan
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ziteng Wen
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
- Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA
| | - Jennifer Landry
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
- Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA
| | - Kejin Wang
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Saul Schaffer
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
- Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
- Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Robert E. Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
36
|
Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review. MICROMACHINES 2021; 12:mi12030339. [PMID: 33810056 PMCID: PMC8004812 DOI: 10.3390/mi12030339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
In recent years, additive manufacturing has steadily gained attention in both research and industry. Applications range from prototyping to small-scale production, with 3D printing offering reduced logistics overheads, better design flexibility and ease of use compared with traditional fabrication methods. In addition, printer and material costs have also decreased rapidly. These advantages make 3D printing attractive for application in microfluidic chip fabrication. However, 3D printing microfluidics is still a new area. Is the technology mature enough to print complex microchannel geometries, such as droplet microfluidics? Can 3D-printed droplet microfluidic chips be used in biological or chemical applications? Is 3D printing mature enough to be used in every research lab? These are the questions we will seek answers to in our systematic review. We will analyze (1) the key performance metrics of 3D-printed droplet microfluidics and (2) existing biological or chemical application areas. In addition, we evaluate (3) the potential of large-scale application of 3D printing microfluidics. Finally, (4) we discuss how 3D printing and digital design automation could trivialize microfluidic chip fabrication in the long term. Based on our analysis, we can conclude that today, 3D printers could already be used in every research lab. Printing droplet microfluidics is also a possibility, albeit with some challenges discussed in this review.
Collapse
|
37
|
Wang J, Liang K, Zhang N, Yao H, Ho TY, Sun L. Automated calibration of 3D-printed microfluidic devices based on computer vision. BIOMICROFLUIDICS 2021; 15:024102. [PMID: 33732409 PMCID: PMC7952140 DOI: 10.1063/5.0037274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/28/2021] [Indexed: 05/02/2023]
Abstract
With the development of 3D printing techniques, the application of it in microfluidic/Lab-on-a-Chip (LoC) fabrication is becoming more and more attractive. However, to achieve a satisfying printing quality of the target devices, researchers usually require quite an amount of work in calibration trials even for high-end 3D printers. To increase the calibration efficiency of the average priced printers and promote the application of 3D printing technology in the microfluidic community, this work has presented a computer vision (CV)-based method for rapid and precise 3D printing calibration with examples on cylindrical hole/post diameters of 0.2-2.4 mm and rectangular hole/post widths of 0.2-1.0 mm by a stereolithography-based 3D printer. Our method is fully automated, which contains five steps and only needs a camera at hand to provide photos for convolutional neural network recognition. The experimental results showed that our CV-based method could provide calibrated dimensions with just one print of the specific calibration ruler to meet user desire. The higher resolution of the photo provides a higher precision in calibration. Subsequently, only one more print for the target device is needed after the calibration process. Overall, this work has provided a quick and precise calibration tool for researchers to apply 3D printing in the fabrication of their microfluidic/LoC devices with average price printers. Besides, with our open source calibration software and calibration ruler design file, researchers can modify the specific setting based on customized needs and conduct calibration on any type of 3D printer.
Collapse
Affiliation(s)
- Junchao Wang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China
- Author to whom correspondence should be addressed:
| | - Kaicong Liang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Naiyin Zhang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hailong Yao
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Tsung-Yi Ho
- Department of Computer Science, National Tsing Hua University, Hsinchu 30071, Taiwan
| | - Lingling Sun
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
38
|
Balakrishnan HK, Badar F, Doeven EH, Novak JI, Merenda A, Dumée LF, Loy J, Guijt RM. 3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design. Anal Chem 2020; 93:350-366. [DOI: 10.1021/acs.analchem.0c04672] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hari Kalathil Balakrishnan
- Centre for Rural and Regional Futures, Deakin University, Geelong VIC 3220, Australia
- Institute for Frontier Materials, Deakin University, Geelong VIC 3220, Australia
| | - Faizan Badar
- School of Engineering, Deakin University, Geelong VIC 3220, Australia
| | - Egan H. Doeven
- Centre for Rural and Regional Futures, Deakin University, Geelong VIC 3220, Australia
| | - James I. Novak
- School of Engineering, Deakin University, Geelong VIC 3220, Australia
| | - Andrea Merenda
- Institute for Frontier Materials, Deakin University, Geelong VIC 3220, Australia
| | - Ludovic F. Dumée
- Institute for Frontier Materials, Deakin University, Geelong VIC 3220, Australia
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 0000, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi 0000, United Arab Emirates
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi 0000, United Arab Emirates
| | - Jennifer Loy
- School of Engineering, Deakin University, Geelong VIC 3220, Australia
| | - Rosanne M. Guijt
- Centre for Rural and Regional Futures, Deakin University, Geelong VIC 3220, Australia
| |
Collapse
|
39
|
Martínez-López JI, Betancourt Cervantes HA, Cuevas Iturbe LD, Vázquez E, Naula EA, Martínez López A, Siller HR, Mendoza-Buenrostro C, Rodríguez CA. Characterization of Soft Tooling Photopolymers and Processes for Micromixing Devices with Variable Cross-Section. MICROMACHINES 2020; 11:E970. [PMID: 33138263 PMCID: PMC7692576 DOI: 10.3390/mi11110970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
In this paper, we characterized an assortment of photopolymers and stereolithography processes to produce 3D-printed molds and polydimethylsiloxane (PDMS) castings of micromixing devices. Once materials and processes were screened, the validation of the soft tooling approach in microfluidic devices was carried out through a case study. An asymmetric split-and-recombine device with different cross-sections was manufactured and tested under different regime conditions (10 < Re < 70). Mixing performances between 3% and 96% were obtained depending on the flow regime and the pitch-to-depth ratio. The study shows that 3D-printed soft tooling can provide other benefits such as multiple cross-sections and other potential layouts on a single mold.
Collapse
Affiliation(s)
- J. Israel Martínez-López
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (H.A.B.C.); (L.D.C.I.); (E.V.); (E.A.N.); (C.M.-B.)
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Apodaca, Nuevo Leon 66629, Mexico
- Centro de Investigación Numericalc, 5 de mayo Oriente 912, Monterrey 64000, Mexico;
| | - Héctor Andrés Betancourt Cervantes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (H.A.B.C.); (L.D.C.I.); (E.V.); (E.A.N.); (C.M.-B.)
| | - Luis Donaldo Cuevas Iturbe
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (H.A.B.C.); (L.D.C.I.); (E.V.); (E.A.N.); (C.M.-B.)
| | - Elisa Vázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (H.A.B.C.); (L.D.C.I.); (E.V.); (E.A.N.); (C.M.-B.)
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Apodaca, Nuevo Leon 66629, Mexico
| | - Edisson A. Naula
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (H.A.B.C.); (L.D.C.I.); (E.V.); (E.A.N.); (C.M.-B.)
| | | | - Héctor R. Siller
- Department of Mechanical Engineering, University of North Texas, 3940 N. Elm. St., Denton, TX 76207, USA;
| | - Christian Mendoza-Buenrostro
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (H.A.B.C.); (L.D.C.I.); (E.V.); (E.A.N.); (C.M.-B.)
| | - Ciro A. Rodríguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (H.A.B.C.); (L.D.C.I.); (E.V.); (E.A.N.); (C.M.-B.)
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Apodaca, Nuevo Leon 66629, Mexico
| |
Collapse
|
40
|
Schilly KM, Gunawardhana SM, Wijesinghe MB, Lunte SM. Biological applications of microchip electrophoresis with amperometric detection: in vivo monitoring and cell analysis. Anal Bioanal Chem 2020; 412:6101-6119. [PMID: 32347360 PMCID: PMC8130646 DOI: 10.1007/s00216-020-02647-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 01/01/2023]
Abstract
Microchip electrophoresis with amperometric detection (ME-EC) is a useful tool for the determination of redox active compounds in complex biological samples. In this review, a brief background on the principles of ME-EC is provided, including substrate types, electrode materials, and electrode configurations. Several different detection approaches are described, including dual-channel systems for dual-electrode detection and electrochemistry coupled with fluorescence and chemiluminescence. The application of ME-EC to the determination of catecholamines, adenosine and its metabolites, and reactive nitrogen and oxygen species in microdialysis samples and cell lysates is also detailed. Lastly, approaches for coupling of ME-EC with microdialysis sampling to create separation-based sensors that can be used for near real-time monitoring of drug metabolism and neurotransmitters in freely roaming animals are provided. Graphical abstract.
Collapse
Affiliation(s)
- Kelci M Schilly
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Shamal M Gunawardhana
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Manjula B Wijesinghe
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Susan M Lunte
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA.
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, 2010 Becker Drive, Lawrence, KS, 66045, USA.
| |
Collapse
|
41
|
Nielsen AV, Beauchamp MJ, Nordin GP, Woolley AT. 3D Printed Microfluidics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:45-65. [PMID: 31821017 PMCID: PMC7282950 DOI: 10.1146/annurev-anchem-091619-102649] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Traditional microfabrication techniques suffer from several disadvantages, including the inability to create truly three-dimensional (3D) architectures, expensive and time-consuming processes when changing device designs, and difficulty in transitioning from prototyping fabrication to bulk manufacturing. 3D printing is an emerging technique that could overcome these disadvantages. While most 3D printed fluidic devices and features to date have been on the millifluidic size scale, some truly microfluidic devices have been shown. Currently, stereolithography is the most promising approach for routine creation of microfluidic structures, but several approaches under development also have potential. Microfluidic 3D printing is still in an early stage, similar to where polydimethylsiloxane was two decades ago. With additional work to advance printer hardware and software control, expand and improve resin and printing material selections, and realize additional applications for 3D printed devices, we foresee 3D printing becoming the dominant microfluidic fabrication method.
Collapse
Affiliation(s)
- Anna V Nielsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA;
| | - Michael J Beauchamp
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA;
| | - Gregory P Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah 84602, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA;
| |
Collapse
|
42
|
Cui Y, Yang J, Lei D, Su J. 3D Printing of a Dual-Curing Resin with Cationic Curable Vegetable Oil. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01507] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanyan Cui
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Junlai Yang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Dehua Lei
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jiahui Su
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
43
|
Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing. MICROMACHINES 2020; 11:mi11060567. [PMID: 32492980 PMCID: PMC7345326 DOI: 10.3390/mi11060567] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 11/16/2022]
Abstract
Widely accessible, inexpensive, easy-to-use consumer 3D printers, such as desktop stereolithography (SLA) and fused-deposition modeling (FDM) systems are increasingly employed in prototyping and customizing miniaturized fluidic systems for diagnostics and research. However, these 3D printers are generally limited to printing parts made of only one material type, which limits the functionality of the microfluidic devices without additional assembly and bonding steps. Moreover, mating of different materials requires good sealing in such microfluidic devices. Here, we report methods to print hybrid structures comprising a hard, rigid component (clear polymethacrylate polymer) printed by a low-cost SLA printer, and where the first printed part is accurately mated and adhered to a second, soft, flexible component (thermoplastic polyurethane elastomer) printed by an FDM printer. The prescribed mounting and alignment of the first-printed SLA-printed hard component, and its pre-treatment and heating during the second FDM step, can produce leak-free bonds at material interfaces. To demonstrate the utility of such hybrid 3D-printing, we prototype and test three components: i) finger-actuated pump, ii) quick-connect fluid coupler, and iii) nucleic acid amplification test device with screw-type twist sealing for sample introduction.
Collapse
|
44
|
Castiaux AD, Currens ER, Martin RS. Direct embedding and versatile placement of electrodes in 3D printed microfluidic-devices. Analyst 2020; 145:3274-3282. [PMID: 32242194 PMCID: PMC7243341 DOI: 10.1039/d0an00240b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this paper, we describe how PolyJet 3D printing technology can be used to fully integrate electrode materials into microfluidic devices during the print process. This approach uses stacked printing (separate printing steps and stage drops) with liquid support to result in devices where electrodes and a capillary fluidic connection are directly integrated and ready to use when printing is complete. A key feature of this approach is the ability to directly incorporate electrode materials into the print process so that the electrode(s) can be placed anywhere in the channel (at any height). We show that this can be done with a single electrode or an electrode array (which led to increases in signal). In both cases, we found that a middle electrode configuration leads to a significant increase in the sensitivity, as opposed to more traditional bottom channel placement. Since the electrode is embedded in the device, in situ platinum black deposition was performed to aid in the detection of nitric oxide. Finally, a generator-collector configuration with an opposed counter electrode was made by placing two working electrodes ∼750 μm apart (in the middle of the channel) and a platinum counter electrode at the bottom of the channel. The utility of this configuration was demonstrated by dual electrode detection of catechol. This 3D printing approach affords robust electrochemical detection schemes with new electrode configurations being possible in a manner that also increases the ease of use and transferability of the 3D printed devices with integrated electrode materials.
Collapse
|
45
|
Hayter EA, Castiaux AD, Martin RS. 3D-Printed Microfluidic Device with In-line Amperometric Detection that Also Enables Multi-Modal Detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2046-2051. [PMID: 32849919 PMCID: PMC7444025 DOI: 10.1039/d0ay00368a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microfluidic amperometric detectors often include a reservoir to house auxiliary and reference electrodes, making subsequent detection downstream challenging. Here, we present an in-line microfluidic device with amperometric detection that incorporates a three-electrode set-up, made possible by threading electrodes into a 3D-printed flow cell. The electrodes consist of a commercially available threaded reference electrode and electrodes fabricated in commercially available fittings. This approach centers the working electrode in the fluidic channel enabling the use of a pillar working electrode that is shown to increase sensitivity, as compared to a traditional thin-layer electrode. In addition, the working and auxiliary electrodes can be directly opposed, with this configuration leading to a more uniform potential being applied to the working electrode as well as fewer issues with any iR drop. To demonstrate the ability to incorporate a separate mode of detection downstream from the electrochemical flow cell, the device is modified to include a mixing T for introduction of reagents for chemiluminescent detection of ATP (via the luciferin-luciferase reaction), leading to a single 3D-printed device that can be used to detect norepinephrine and ATP, nearly simultaneously, by amperometry and chemiluminescence, respectively. This approach opens numerous possibilities, where microfluidics with in-line amperometry can be used in continuous circulation studies or in conjunction with other downstream detection events to study complex systems.
Collapse
|
46
|
Jensen C, Teng Y. Is It Time to Start Transitioning From 2D to 3D Cell Culture? Front Mol Biosci 2020; 7:33. [PMID: 32211418 PMCID: PMC7067892 DOI: 10.3389/fmolb.2020.00033] [Citation(s) in RCA: 829] [Impact Index Per Article: 207.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cell culture is an important and necessary process in drug discovery, cancer research, as well as stem cell study. Most cells are currently cultured using two-dimensional (2D) methods but new and improved methods that implement three-dimensional (3D) cell culturing techniques suggest compelling evidence that much more advanced experiments can be performed yielding valuable insights. When performing 3D cell culture experiments, the cell environment can be manipulated to mimic that of a cell in vivo and provide more accurate data about cell-to-cell interactions, tumor characteristics, drug discovery, metabolic profiling, stem cell research, and other types of diseases. Scaffold based techniques such as hydrogel-based support, polymeric hard material-based support, hydrophilic glass fiber, and organoids are employed, and each provide their own advantages and applications. Likewise, there are also scaffold free techniques used such as hanging drop microplates, magnetic levitation, and spheroid microplates with ultra-low attachment coating. 3D cell culture has the potential to provide alternative ways to study organ behavior via the use of organoids and is expected to eventually bridge the gap between 2D cell culture and animal models. The present review compares 2D cell culture to 3D cell culture, provides the details surrounding the different 3D culture techniques, as well as focuses on the present and future applications of 3D cell culture.
Collapse
Affiliation(s)
- Caleb Jensen
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States.,Department of Biology, College of Science and Mathematics, Augusta University, Augusta, GA, United States
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA, United States.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
47
|
Warr C, Valdoz JC, Bickham BP, Knight CJ, Franks NA, Chartrand N, Van Ry PM, Christensen KA, Nordin GP, Cook AD. Biocompatible PEGDA Resin for 3D Printing. ACS APPLIED BIO MATERIALS 2020; 3:2239-2244. [PMID: 32467881 DOI: 10.1021/acsabm.0c00055] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report a non-cytotoxic resin compatible with and designed for use in custom high-resolution 3D printers that follow the design approach described in Gong et al., Lab Chip 17, 2899 (2017). The non-cytotoxic resin is based on a poly(ethylene glycol) diacrylate (PEGDA) monomer with avobenzone as the UV absorber instead of 2-nitrophenyl phenyl sulfide (NPS). Both NPS-PEGDA and avobenzone-PEGDA (A-PEGDA) resins were evaluated for cytotoxicity and cell adhesion. We show that NPS-PEGDA can be made effectively non-cytotoxic with a post-print 12-hour ethanol wash, and that A-PEGDA, as-printed, is effectively non-cytotoxic. 3D prints made with either resin do not support strong cell adhesion in their as-printed state; however, cell adhesion increases dramatically with a short plasma treatment. Using A-PEGDA, we demonstrate spheroid formation in ultra-low adhesion 3D printed wells, and cell migration from spheroids on plasma-treated adherent surfaces. Given that A-PEGDA can be 3D printed with high resolution, it has significant promise for a wide variety of cell-based applications using 3D printed microfluidic structures.
Collapse
Affiliation(s)
- Chandler Warr
- Chemical Engineering Department, Brigham Young University, Provo, Utah, USA 84602
| | - Jonard Corpuz Valdoz
- Chemistry and Biochemistry Department, Brigham Young University, Provo, Utah, USA 84602
| | - Bryce P Bickham
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah, USA 84602
| | - Connor J Knight
- Chemistry and Biochemistry Department, Brigham Young University, Provo, Utah, USA 84602
| | - Nicholas A Franks
- Chemistry and Biochemistry Department, Brigham Young University, Provo, Utah, USA 84602
| | - Nicholas Chartrand
- Chemistry and Biochemistry Department, Brigham Young University, Provo, Utah, USA 84602
| | - Pam M Van Ry
- Chemistry and Biochemistry Department, Brigham Young University, Provo, Utah, USA 84602
| | - Kenneth A Christensen
- Chemistry and Biochemistry Department, Brigham Young University, Provo, Utah, USA 84602
| | - Gregory P Nordin
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah, USA 84602
| | - Alonzo D Cook
- Chemical Engineering Department, Brigham Young University, Provo, Utah, USA 84602
| |
Collapse
|
48
|
Nielsen JB, Hanson RL, Almughamsi HM, Pang C, Fish TR, Woolley AT. Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Anal Chem 2020; 92:150-168. [PMID: 31721565 PMCID: PMC7034066 DOI: 10.1021/acs.analchem.9b04986] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jacob B. Nielsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | - Robert L. Hanson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | - Haifa M. Almughamsi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | - Chao Pang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | - Taylor R. Fish
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| |
Collapse
|
49
|
Zhang JM, Ji Q, Duan H. Three-Dimensional Printed Devices in Droplet Microfluidics. MICROMACHINES 2019; 10:E754. [PMID: 31690055 PMCID: PMC6915402 DOI: 10.3390/mi10110754] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022]
Abstract
Droplet microfluidics has become the most promising subcategory of microfluidics since it contributes numerous applications to diverse fields. However, fabrication of microfluidic devices for droplet formation, manipulation and applications is usually complicated and expensive. Three-dimensional printing (3DP) provides an exciting alternative to conventional techniques by simplifying the process and reducing the cost of fabrication. Complex and novel structures can be achieved via 3DP in a simple and rapid manner, enabling droplet microfluidics accessible to more extensive users. In this article, we review and discuss current development, opportunities and challenges of applications of 3DP to droplet microfluidics.
Collapse
Affiliation(s)
- Jia Ming Zhang
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
| | - Qinglei Ji
- Department of Production Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
- Department of Machine Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Huiling Duan
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
- CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871, China.
| |
Collapse
|
50
|
Castiaux AD, Spence DM, Martin RS. Review of 3D Cell Culture with Analysis in Microfluidic Systems. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:4220-4232. [PMID: 32051693 PMCID: PMC7015157 DOI: 10.1039/c9ay01328h] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A review with 105 references that analyzes the emerging research area of 3D cell culture in microfluidic platforms with integrated detection schemes. Over the last several decades a central focus of cell culture has been the development of better in vivo mimics. This has led to the evolution from planar cell culture to cell culture on 3D scaffolds, and the incorporation of cell scaffolds into microfluidic devices. Specifically, this review explores the incorporation of suspension culture, hydrogels scaffolds, paper-based scaffolds, and fiber-based scaffolds into microfluidic platforms. In order to decrease analysis time, simplify sample preparation, monitor key signaling pathways involved in cell-to-cell communication or cell growth, and combat the limitations of sample volume/ dilution seen in traditional assays, researchers have also started to focus on integrating detection schemes into the cell culture devices. This review will highlight the work that has been performed towards combining these techniques and will discuss potential future directions. It is clear that microfluidic-based 3D cell culture coupled with quantitative analysis can greatly improve our ability to mimic and understand in vivo systems.
Collapse
Affiliation(s)
- Andre D Castiaux
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO 63103
| | - Dana M Spence
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO 63103
| |
Collapse
|