1
|
Hu W, Zhang X, Shen Y, Meng X, Wu Y, Tong P, Li X, Chen H, Gao J. Quantifying allergenic proteins using antibody-based methods or liquid chromatography-mass spectrometry/mass spectrometry: A review about the influence of food matrix, extraction, and sample preparation. Compr Rev Food Sci Food Saf 2024; 23:e70029. [PMID: 39379311 DOI: 10.1111/1541-4337.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Accurate quantification of allergens in food is crucial for ensuring consumer safety. Pretreatment steps directly affect accuracy and efficiency of allergen quantification. We systematically reviewed the latest advances in pretreatment steps for antibody-based methods and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) protein quantification methods in food. For antibody-based methods, the effects induced by food matrix like decreased allergen solubility, epitope masking, and nonspecific binding are of the upmost importance. To mitigate interference from the matrix, effective and proper extraction can be used to obtain the target allergens with a high protein concentration and necessary epitope exposure. Removal of interfering substances, extraction systems (buffers and additives), assistive technologies, and commercial kits were discussed. About LC-MS/MS quantification, the preparation of the target peptides is the crucial step that significantly affects the efficiency and results obtained from the MS detector. The advantages and limitations of each method for pre-purification, enzymatic digestion, and peptide desalting were compared. Additionally, the application characteristics of microfluidic-based pretreatment devices were illustrated to improve the convenience and efficiency of quantification. A promising research direction is the targeted development of pretreatment methods for complex food matrices, such as lipid-based and carbohydrate-based matrices.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yunpeng Shen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Xuanyi Meng
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yong Wu
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Ping Tong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Jinyan Gao
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| |
Collapse
|
2
|
Torii A, Seki Y, Sasano R, Ishida Y, Nakamura K, Ito R, Iwasaki Y, Iijima K, Akiyama H. Development of a rapid and reliable method to simultaneously detect seven food allergens in processed foods using LC-MS/MS. Food Chem X 2024; 23:101558. [PMID: 38984290 PMCID: PMC11231652 DOI: 10.1016/j.fochx.2024.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Rapid analysis of multiple food allergens is required to confirm the appropriateness of food allergen labelling in processed foods. This study aimed to develop a rapid and reliable method to simultaneously detect trace amounts of seven food allergenic proteins (wheat, buckwheat, milk, egg, crustacean, peanut, and walnut) in processed foods using LC-MS/MS. Suspension-trapping (S-Trap) columns and on-line automated solid-phase extraction were used to improve the complex and time-consuming pretreatment process previously required for allergen analysis using LC-MS/MS. The developed method enabled the simultaneous detection of selected marker peptides for specific proteins derived from seven food ingredients in five types of incurred samples amended with trace amounts of allergenic proteins. The limit of detection values of the method for each protein were estimated to be <1 mg/kg. The developed analytical approach is considered an effective screening method for confirming food allergen labelling on a wide range of processed foods.
Collapse
Affiliation(s)
- Akira Torii
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama 356-8511, Japan
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yusuke Seki
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama 356-8511, Japan
| | - Ryoichi Sasano
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- AiSTI SCIENCE CO., Ltd., 18-3 Arimoto, Wakayama-City, Wakayama 640-8390, Japan
| | - Yoshiki Ishida
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama 356-8511, Japan
| | - Kosuke Nakamura
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-City, Kanagawa 210-9501, Japan
| | - Rie Ito
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yusuke Iwasaki
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Ken Iijima
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama 356-8511, Japan
| | - Hiroshi Akiyama
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-City, Kanagawa 210-9501, Japan
| |
Collapse
|
3
|
Li J, Kang W, Zhang J, Ge Y, Yu N, Chen Y. Selection of signature peptide biomarkers for the sesame allergens in commercial food based on LC-MS/MS. Food Chem 2024; 463:141392. [PMID: 39340922 DOI: 10.1016/j.foodchem.2024.141392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Sesame is a commonly used food ingredient, yet it is one of the eight major allergens. As sesame is often consumed in various processed forms, it is important to establish methods for detecting sesame allergens in processed foods. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), using characteristic peptides as biomarkers, detects multiple allergenic proteins simultaneously with high sensitivity and accuracy. Choosing robust biomarkers is beneficial for developing a specific, universal, and sensitive method. To obtain excellent peptides of sesame allergens, sixteen commercial products were used as test materials. Proteins from these materials were extracted, digested, and analyzed. Peptides were screened based on several criteria, including specificity and amino acid composition. Only peptides showing process robustness were retained. Ultimately, nine peptides were selected as the best biomarkers. Based on the above peptides, it is possible to achieve precise and high-sensitivity detection of sesame allergens in processed products.
Collapse
Affiliation(s)
- Jing Li
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Wenhan Kang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; Key Laboratory of Food Authenticity Identification, State Administration for Market Regulation, Beijing 100176, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; Key Laboratory of Food Authenticity Identification, State Administration for Market Regulation, Beijing 100176, People's Republic of China
| | - Yiqiang Ge
- China Rural Technology Development Center, Beijing 100045, People's Republic of China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; Key Laboratory of Food Authenticity Identification, State Administration for Market Regulation, Beijing 100176, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; Key Laboratory of Food Authenticity Identification, State Administration for Market Regulation, Beijing 100176, People's Republic of China.
| |
Collapse
|
4
|
Suh SM, Kim K, Yang SM, Lee H, Jun M, Byun J, Lee H, Kim D, Lee D, Cha JE, Kim JS, Kim E, Park ZY, Kim HY. Comparative analysis of LC-MS/MS and real-time PCR assays for efficient detection of potential allergenic silkworm. Food Chem 2024; 445:138761. [PMID: 38367561 DOI: 10.1016/j.foodchem.2024.138761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
The silkworm (Bombyx mori) has long been valued food and feed in East Asia for its abundant nutritional and medicinal attributes, conversely, it can elicit allergic responses in susceptible individuals. Therefore, the development of silkworm detection method is required to avert allergenic incidents. In this study, two methodologies, tandem mass spectrometry (LC-MS/MS) and real-time PCR, were developed to achieve effective silkworm detection. These methods exhibited exceptional sensitivity in identifying silkworm presence in processed foods. Furthermore, model cookies spiked with silkworm were used to validate the sensitivities of LC-MS/MS (0.0005%) and real-time PCR (0.001%). Overall, these techniques were useful for trace silkworm detection in food products; therefore, they may help prevent allergic reactions. To the best of our knowledge, this study represents the first comparison of LC-MS/MS and real-time PCR methods for silkworm detection, marking an important contribution to the field. Data are available from ProteomeXchange under identifier PXD042494.
Collapse
Affiliation(s)
- Seung-Man Suh
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Kyungdo Kim
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hana Lee
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Minkyung Jun
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jisun Byun
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeongjoo Lee
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Daseul Kim
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dain Lee
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jae-Eun Cha
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jun-Su Kim
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Zee-Yong Park
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
5
|
Xia Y, Dong X, Chang H, Zhang X, Li J, Wang S, Lu Y, Yue T. Fabrication of an Antifouling Surface Plasmon Resonance Sensor with Stratified Zwitterionic Peptides for Highly Efficient Detection of Peanut Allergens in Biscuits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11259-11267. [PMID: 38691423 DOI: 10.1021/acs.jafc.4c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Peanut allergen monitoring is currently an effective strategy to avoid allergic diseases, while food matrix interference is a critical challenge during detection. Here, we developed an antifouling surface plasmon resonance sensor (SPR) with stratified zwitterionic peptides, which provides both excellent antifouling and sensing properties. The antifouling performance was measured by the SPR, which showed that stratified peptide coatings showed much better protein resistance, reaching ultralow adsorption levels (<5 ng/cm2). Atomic force microscopy was used to further analyze the antifouling mechanism from a mechanical perspective, which demonstrated lower adsorption forces on hybrid peptide coatings, confirming the better antifouling performance of stratified surfaces. Moreover, the recognition of peanut allergens in biscuits was performed using an SPR with high efficiency and appropriate recovery results (98.2-112%), which verified the feasibility of this assay. Therefore, the fabrication of antifouling sensors with stratified zwitterionic peptides provides an efficient strategy for food safety inspection.
Collapse
Affiliation(s)
- Yinqiang Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xinru Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Heng Chang
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiwen Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jinyu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Siqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yang Lu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an 710069, China
| |
Collapse
|
6
|
Qi S, Dong X, Hamed EM, Jiang H, Cao W, Yau Li SF, Wang Z. Ratiometric Fluorescence Aptasensor of Allergen Protein Based on Multivalent Aptamer-Encoded DNA Flowers as Fluorescence Resonance Energy Transfer Platform. Anal Chem 2024; 96:6947-6957. [PMID: 38656889 DOI: 10.1021/acs.analchem.3c05894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Life-threatening allergic reactions to food allergens, particularly peanut protein Ara h1, are a growing public health concern affecting millions of people worldwide. Thus, accurate and rapid detection is necessary for allergen labeling and dietary guidance and ultimately preventing allergic incidents. Herein, we present a novel ratiometric fluorescence aptasensor based on multivalent aptamer-encoded DNA flowers (Mul-DNFs) for the high-stability and sensitive detection of allergen Ara h1. The flower-shaped Mul-DNFs were spontaneously packaged using ultralong polymeric DNA amplicons driven by a rolling circle amplification reaction, which contains a large number of Ara h1 specific recognition units and has excellent binding properties. Furthermore, dual-color fluorescence-labeled Mul-DNFs probes were developed by hybridizing them with Cy3- and Cy5-labeled complementary DNA (cDNA) to serve as a ratiometric fluorescence aptasensor platform based on fluorescence resonance energy transfer. Benefiting from the combined merits of the extraordinary synergistic multivalent binding ability of Mul-DNFs, the excellent specificity of the aptamer, and the sensitivity of the ratiometric sensor to avoid exogenous interference. The developed ratiometric aptasensor showed excellent linearity (0.05-2000 ng mL-1) with a limit of detection of 0.02 ng mL-1. Additionally, the developed ratiometric fluorescence aptasensor was utilized for quantifying the presence of Ara h1 in milk, infant milk powder, cookies, bread, and chocolate with recoveries of 95.7-106.3%. The proposed ratiometric aptasensor is expected to be a prospective universal aptasensor platform for the rapid, sensitive, and accurate determination of food and environmental hazards.
Collapse
Affiliation(s)
- Shuo Qi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Eslam M Hamed
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Hongtao Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wenbo Cao
- Technology Innovation Center of Special Food for State Market Regulation, Wuxi Food Safety Inspection and Test Center, Wuxi 214100, China
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Yang S, Chen J, Abdallah MF, Lin H, Yang P, Li J, Zhang R, Li Q, Lu P, Liu S, Li Y. An integrated calibration strategy for the development and validation of an LC-MS/MS method for accurate quantification of egg allergens (Gal d 1-6) in foods. Food Chem 2024; 438:137922. [PMID: 37979263 DOI: 10.1016/j.foodchem.2023.137922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/20/2023]
Abstract
Accurate determination of egg allergens in food is vital for allergen management and labeling. However, quantifying egg allergens with mass spectrometry poses challenges and lacks validation methods. Here, we developed and validated an LC-MS/MS method for quantifying egg allergens (Gal d 1-6) in foods. Sample extraction, enzymatic digestion, purification, proteins/peptides selection, and calibration curves were optimized. VMVLC[+57]NR (Gal d 1) and GTDVQAWIR (Gal d 5) exhibited outstanding sensitivity and stability, serving as quantitation markers for egg white and yolk. Using a matrix-matched calibration curve with allergen ingredients as calibrants and labeled peptides as standards, we achieved highly accurate quantitation. Validation involved spiking egg protein into egg-free foods, showing excellent sensitivity (LOQ: 1-5 mg/kg), accuracy (62.4 %-88.5 %), and reproducibility (intra-/inter-day precision: 3.5 %-14.2 %/8.2 %-14.6 %). Additionally, we successfully applied this method to commercial food analysis. These findings demonstrate optimal allergen selection, peptides, and calibration strategy are crucial parameters for food allergen quantification via MS-based methods.
Collapse
Affiliation(s)
- Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Jingjing Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Mohamed F Abdallah
- Depaerment of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Haopeng Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Peijie Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Rong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qianqian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Peng Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Shuyan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
8
|
Yang S, Lin H, Yang P, Meng J, Abdallah MF, Shencheng Y, Li R, Li J, Liu S, Li Q, Lu P, Zhang R, Li Y. Advancing High-Throughput MS-Based Protein Quantification: A Case Study on Quantifying 10 Major Food Allergens by LC-MS/MS Using a One-Sample Multipoint External Calibration Curve. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6625-6637. [PMID: 38494953 DOI: 10.1021/acs.jafc.3c08362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The LC-MS-based method has emerged as the preferred approach for quantifying food allergens. However, the preparation of a traditional calibration curve (MSCC) is labor-intensive and error-prone. Here, a sensitive and robust LC-MS/MS method for quantifying 10 major food allergens was developed and validated, where the one-sample multipoint external calibration curve (OSCC) was employed instead of MSCC. By employing the multiple isotopologue reaction monitoring (MIRM) technique with only one spiked level in the blank, OSCC can be effectively established. Results demonstrate that the proposed method exhibits excellent performance in selectivity, sensitivity, accuracy, and precision, comparable to that of the traditional MSCC. Additionally, this strategy allows for isotope sample dilution by monitoring the less abundant MIRM channel. Moreover, the developed method was successfully applied to investigate the contamination of 10 food allergens in commercial food products. With its high throughput and robustness, the MIRM-OSCC-LC-MS/MS methodology has many potential applications, especially in the MS-based protein quantification analysis.
Collapse
Affiliation(s)
- Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Haopeng Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Peijie Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Junhong Meng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Mohamed F Abdallah
- Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent 9000, Belgium
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Yingnan Shencheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Ruohan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Shuyan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qianqian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Peng Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Rong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
9
|
Bianco M, Ventura G, Calvano CD, Losito I, Cataldi TRI. Food allergen detection by mass spectrometry: From common to novel protein ingredients. Proteomics 2023; 23:e2200427. [PMID: 37691088 DOI: 10.1002/pmic.202200427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Food allergens are molecules, mainly proteins, that trigger immune responses in susceptible individuals upon consumption even when they would otherwise be harmless. Symptoms of a food allergy can range from mild to acute; this last effect is a severe and potentially life-threatening reaction. The European Union (EU) has identified 14 common food allergens, but new allergens are likely to emerge with constantly changing food habits. Mass spectrometry (MS) is a promising alternative to traditional antibody-based assays for quantifying multiple allergenic proteins in complex matrices with high sensitivity and selectivity. Here, the main allergenic proteins and the advantages and drawbacks of some MS acquisition protocols, such as multiple reaction monitoring (MRM) and data-dependent analysis (DDA) for identifying and quantifying common allergenic proteins in processed foodstuffs are summarized. Sections dedicated to novel foods like microalgae and insects as new sources of allergenic proteins are included, emphasizing the significance of establishing stable marker peptides and validated methods using database searches. The discussion involves the in-silico digestion of allergenic proteins, providing insights into their potential impact on immunogenicity. Finally, case studies focussing on microalgae highlight the value of MS as an effective analytical tool for ensuring regulatory compliance throughout the food control chain.
Collapse
Affiliation(s)
- Mariachiara Bianco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Centro interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Cosima D Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Centro interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Centro interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Centro interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
10
|
Lu Y, Ji H, Chen Y, Li Z, Timira V. A systematic review on the recent advances of wheat allergen detection by mass spectrometry: future prospects. Crit Rev Food Sci Nutr 2023; 63:12324-12340. [PMID: 35852160 DOI: 10.1080/10408398.2022.2101091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wheat is one of the three major staple foods in the world. Although wheat is highly nutritional, it has a variety of allergenic components that are potentially fatal to humans and pose a significant hazard to the growth and consumption of wheat. Wheat allergy is a serious health problem, which is becoming more and more prevalent all over the world. To address and prevent related health risks, it is crucial to establish precise and sensitive detection and analytical methods as well as an understanding of the structure and sensitization mechanism of wheat allergens. Among various analytical tools, mass spectrometry (MS) is known to have high specificity and sensitivity. It is a promising non immune method to evaluate and quantify wheat allergens. In this article, the current research on the detection of wheat allergens based on mass spectrometry is reviewed. This review provides guidance for the further research on wheat allergen detection using mass spectrometry, and speeds up the development of wheat allergen research in China.
Collapse
Affiliation(s)
- Yingjun Lu
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Hua Ji
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), Beijing, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| |
Collapse
|
11
|
Christopoulou NM, Kalogianni DP, Christopoulos TK. Multifold improvement in allergen detection capability of dipstick-type immunosensors via macromolecular crowding. Talanta 2023; 265:124899. [PMID: 37421795 DOI: 10.1016/j.talanta.2023.124899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Dipstick-type lateral flow immunosensors are used widely for on-site detection of food allergens. The weakness of the immunosensors of this type, however, is their low sensitivity. Contrary to current methods, that focus on improving detection capability through the introduction of novel labels or multistep protocols, this work exploits macromolecular crowding to modify and regulate the microenvironment of the immunoassay, thus promoting the interactions that are responsible for allergen recognition and signal generation. The effect of 14 macromolecular crowding agents was explored using, as a model, commercially available and widely applied dipstick immunosensors, which are already optimized in terms of reagents and conditions for peanut allergen detection. An about 10-fold improvement in detection capability was achieved by using polyvinylpyrrolidone, Mr 29,000, as a macromolecular crowder without compromising simplicity and practicality. The proposed approach is complementary to other methods of improving the sensitivity by using novel labels. Because biomacromolecular interactions have a fundamental role in all types of biosensors, we foresee that the proposed strategy will also find applications in other biosensors and analytical devices.
Collapse
Affiliation(s)
- Natalia-Maria Christopoulou
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, Rio, Patras, 26504, Greece
| | - Despina P Kalogianni
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, Rio, Patras, 26504, Greece
| | - Theodore K Christopoulos
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, Rio, Patras, 26504, Greece.
| |
Collapse
|
12
|
Chen X, Zhang D, Liu Q, Liu S, Li H, Li Z. Enzyme-Linked Immunosorbent Assay-Based Microarray on a Chip for Bioaerosol Sensing: Toward Sensitive and Multiplexed Profiling of Foodborne Allergens. Anal Chem 2023; 95:7354-7362. [PMID: 37098245 DOI: 10.1021/acs.analchem.3c00591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Food allergy has become a growing health concern that may impair life quality and even cause life-threatening outcomes. Accidental and continuous exposure to allergenic bioaerosols has a substantially negative impact on the respiratory health of patients. Traditional analytical methodologies for food allergens are restricted by strong reliance on bulk instrumentation and skilled personnel, particularly in low-resource settings. In this study, a fluorescent sensor array based on the enzyme-linked immunosorbent assay performed on a herringbone-shaped microfluidic chip (ELISA-HB-chip) was designed for dynamically sensitive and multiplexed quantification of foodborne allergens in aerosols that originated from liquid food extracts. Due to the high surface area of aerosol particles and sufficient mixing of immunological reagents using a herringbone micromixer, the detection sensitivity was improved by over an order of magnitude compared to traditional allergen detection in the aqueous phase. Through fluorescence imaging of multiple regions on the ELISA-HB-chip, four important foodborne allergens, namely, ovalbumin, ovomucoid, lysozyme, and tropomyosin, could be simultaneously monitored without any cross-reactivity, and the limits of detection for these allergenic species were determined to be 7.8, 1.2, 4.2, and 0.31 ng/mL, respectively. Combining with a 3D printed and portable fluorescence microscope, this platform exhibited an excellent field-deployable capacity for quick and accurate determination of allergens in the aerosol state from spiked buffer solutions, thus displaying the practicality for food safety screening at cooking or food processing sites where patients are potentially under exposure to allergenic bioaerosols that escaped from food matrices or extracts.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Dongdong Zhang
- Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qingmei Liu
- College of Ocean Food and Biologic Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Sihui Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Houlin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
13
|
Nelis JLD, Dawson AL, Bose U, Anderson A, Colgrave ML, Broadbent JA. Safe food through better labelling; a robust method for the rapid determination of caprine and bovine milk allergens. Food Chem 2023; 417:135885. [PMID: 36917909 DOI: 10.1016/j.foodchem.2023.135885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
Accidental milk cross-contamination is one of the most common causes for costly food recalls. Yet, quantifying trace-levels of allergen is time-consuming and current methods are not adapted for routine analyses making quality control for trace-level allergen content impractical. This perpetuates voluntary "may-contain" statements that are unhelpful for people suffering from food allergies. Here, we developed a rapid LC-MS method enabling milk allergen quantification by comparing all tryptic-peptides of major milk allergens. The bovine-specific αS-2 casein peptide and allergen-epitope NAVPITPTLNR provided excellent performance in sensitivity (LOD 1 mg.kg-1; LOQ 2 mg.kg-1) across various dairy products, good recovery rates in baked croissants (77% with a 10% inter-day RSD) and a linear range of 2-2,000 mg.kg-1. The method can be used for routine determination of trace-contamination with bovine milk allergen and the adulteration of high-value caprine dairy products with lower-value bovine milk products, protecting consumer trust and the growing population suffering from food allergies.
Collapse
Affiliation(s)
- Joost L D Nelis
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), St Lucia, QLD 4067, Australia; Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5DL, United Kingdom.
| | - Amanda L Dawson
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), St Lucia, QLD 4067, Australia
| | - Utpal Bose
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), St Lucia, QLD 4067, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Alisha Anderson
- Health & Biosecurity, CSIRO, Black Mountain, Canberra, ACT 2600, Australia
| | - Michelle L Colgrave
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), St Lucia, QLD 4067, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - James A Broadbent
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), St Lucia, QLD 4067, Australia
| |
Collapse
|
14
|
Torii A, Seki Y, Arimoto C, Hojo N, Iijima K, Nakamura K, Ito R, Yamakawa H, Akiyama H. Development of a simple and reliable LC-MS/MS method to simultaneously detect walnut and almond as specified in food allergen labelling regulations in processed foods. Curr Res Food Sci 2023; 6:100444. [PMID: 36699117 PMCID: PMC9868337 DOI: 10.1016/j.crfs.2023.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
We developed a simple and reliable analytical method using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) to simultaneously detect walnut and almond as specified in regulations for food allergen labelling in processed foods. Five specific target peptides derived from walnut 2S albumin and 7S globulin and three target peptides from almond 11S globulin were selected by analysing several varieties of walnut and almond, eight kinds of other nuts, and ten kinds of major allergen ingredients or cereals. The limit of detection for the walnut 2S albumin peptide GEEMEEMVQSAR (m/z 698.3 [precursor] > 316.1 [product]) was 0.22 ± 0.02 μg/g, and that for almond 11S globulin peptide GNLDFVQPPR (m/z 571.8 [precursor] > 369.2 [product]) was 0.08 ± 0.02 μg/g when extracted walnut and almond protein were spiked into butter cookie chocolate ice cream. These peptides had good linearity (R2 > 0.999) for each calibration curve with a range of 0.1-50 μg/mL protein concentration in the sample solutions, and sufficient recovery rates (90.4-101.5%) from the spiked samples. The developed analytical approach is applicable to a wide variety of processed foods for food allergen labelling.
Collapse
Affiliation(s)
- Akira Torii
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama, 356-8511, Japan
- Hoshi University, School of Pharmacy, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yusuke Seki
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama, 356-8511, Japan
| | - Chisato Arimoto
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama, 356-8511, Japan
| | - Naomi Hojo
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama, 356-8511, Japan
| | - Ken Iijima
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama, 356-8511, Japan
| | - Kosuke Nakamura
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Rie Ito
- Hoshi University, School of Pharmacy, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Hirohito Yamakawa
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama, 356-8511, Japan
| | - Hiroshi Akiyama
- Hoshi University, School of Pharmacy, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| |
Collapse
|
15
|
Henrottin J, Pilolli R, Huet AC, van Poucke C, Nitride C, De Loose M, Tranquet O, Larré C, Adel-Patient K, Bernard H, Mills EC, Gillard N, Monaci L. Optimization of a sample preparation workflow based on UHPLC-MS/MS method for multi-allergen detection in chocolate: An outcome of the ThRAll project. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Simultaneous Mass Spectrometric Detection of Proteins of Ten Oilseed Species in Meat Products. Foods 2022; 11:foods11142155. [PMID: 35885397 PMCID: PMC9323756 DOI: 10.3390/foods11142155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 02/06/2023] Open
Abstract
Food fraud is a common issue in the modern food industry. The undeclared use of foreign proteins in meat products is a major concern in this context. Oilseeds are ideal for this purpose due to their high protein content and since huge amounts of oil meal are obtained as a by-product of oil production. Therefore, a UHPLC-MS/MS method was developed for the simultaneous detection of chia, coconut, flaxseed, hemp, peanut, pumpkin, rapeseed, sesame, soy, and sunflower proteins in meat products. Potential tryptic peptide markers were identified by high-resolution mass spectrometry. The final twenty peptide markers selected, which are specific for one of the ten species targeted, were each measured by multiple reaction monitoring. To the best of our knowledge, twelve new heat-stable marker peptides for chia, coconut, flaxseed, pumpkin, rapeseed, sesame and sunflower have not been reported previously. Emulsion-type sausages with 0.01, 0.25, 0.50, 0.75 and 1.00% protein addition by each oilseed species were produced for matrix calibration. No false-positive results were recorded. In the quantification of the ten oilseed species, 466 of 480 measuring data points of the recovery rate in unknown sausages (0.15 and 0.85% protein addition by each oilseed species) were in the accepted range of 80–120%.
Collapse
|
17
|
He K, Sun L, Wang L, Li W, Hu G, Ji X, Zhang Y, Xu X. Engineering DNA G-quadruplex assembly for label-free detection of Ochratoxin A in colorimetric and fluorescent dual modes. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126962. [PMID: 34464866 DOI: 10.1016/j.jhazmat.2021.126962] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Colorimetric and fluorescent methods for Ochratoxin A (OTA) detection are convenient and well received. However, the pigments and autofluorescence originated from food matrices often interfere with detection signals. We have developed a strategy with colorimetric and fluorescent dual modes to solve this challenge. In the colorimetric mode, OTA aptamer (AP9) was assembled into a DNA triple-helix switch with a specially designed signal-amplifying sequence. The OTA-induced G-quadruplex (G4) of AP9 would open the switch and release the signal-amplifying sequence for colorimetric signal amplification. The G4 structures of AP9 were further utilized to combine with the fluorogenic dye ThT for fluorescent mode. By skillfully engineering DNA G4 assembly for signal amplification, there was no need for any DNA amplification or nanomaterials labeling. Detections could be carried out in a wide temperature range (22-37 ℃) and finished rapidly (colorimetric mode, 60 min; fluorescent mode, 15 min). Broad linear ranges (colorimetric mode, 10-1.5 ×103 μg/kg; fluorescent mode, 0.05-1.0 ×103 μg/kg) were achieved. The limit of detection for colorimetric and fluorescent modes were 4 μg/kg and 0.01 μg/kg, respectively. The two modes have been successfully applied to detect OTA in samples with intrinsic pigments and autofluorescence, showing their applicability and reliability.
Collapse
Affiliation(s)
- Kaiyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liping Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wang Li
- College of Food Science & Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Guixian Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yiming Zhang
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou 311300, China.
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
18
|
Krager J, Baumert JL, Downs ML. Quantification of Soy-Derived Ingredients in Model Bread and Frankfurter Matrices with an Optimized Liquid Chromatography-Tandem Mass Spectrometry External Standard Calibration Workflow. J Food Prot 2022; 85:311-322. [PMID: 34731247 DOI: 10.4315/jfp-21-260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/01/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT The detection and quantification of soy protein is important for food allergen management and identifying the presence of undeclared soy proteins. Heat processing and matrix interactions can affect the accuracy of allergen detection methods. The sensitivity of enzyme-linked immunosorbent assay methods can be compromised if protein epitopes are modified during processing. Therefore, a mass spectrometry (MS)-based method was evaluated for the recovery of total soy protein in incurred matrices. MS-based quantification of total soy protein was assessed by using a combination of external and internal standards. The reproducibility of the standard curves was investigated by comparing within-day and among-day variation. Incurred samples were prepared using bread and frankfurters as model food matrices. Several soy-derived ingredients were used to prepare the matrices with varying levels of soy protein (1, 10, 50, or 100 ppm of total soy protein). A pooled standard curve was used to estimate the total soy protein concentration of the incurred food matrices and the percent total protein recovery. The variation of replicate standard curves between days and among all days was not significant. The differences in slopes obtained from replicate standards run on different days were minimal. The most influential factor on the quantitative protein recovery in incurred samples was the effect of the physical matrix structure on protein extraction. The lowest percent protein recoveries, less than 50%, were calculated for uncooked matrices. The cooked matrices had percentage recoveries between 50 and 150% for all total soy protein levels. Other factors, such as type of ingredient, were determined to be not as impactful on recovery. The MS method described in this study was able to provide sensitive detection and accurate quantification of total soy protein from various soy-derived ingredients present in processed food matrices. HIGHLIGHTS
Collapse
Affiliation(s)
- Jenna Krager
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska-Lincoln., Lincoln, Nebraska 68588-6205, USA
| | - Joseph L Baumert
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska-Lincoln., Lincoln, Nebraska 68588-6205, USA
| | - Melanie L Downs
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska-Lincoln., Lincoln, Nebraska 68588-6205, USA
| |
Collapse
|
19
|
Yao K, Yang Y, Liu J, Zhang J, Shao B, Zhang Y. Labeled Peptide-Free UHPLC-MS/MS Method Used for Simultaneous Determination of Shrimp and Soybean in Sauce Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7149-7157. [PMID: 34152133 DOI: 10.1021/acs.jafc.1c02008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Unintentional missing of shrimp and soybean allergen information on precautionary food allergen labeling often occurs in sauce products. To avoid food allergies, sensitive and time-saving analytical methods are urgently needed. However, the currently reported methods usually employed labeled peptides for isotope internal standard quantitation, and the matrix effect caused by protein extraction or digestion can not be corrected. In this study, a labeled peptide-free standard addition method was developed for simultaneous determination of shrimp and soybean in sauce products using ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Through the rational selection of stable peptides, satisfying mean recoveries and relative standard deviations of the chosen peptides are achieved. The limit of quantifications of each peptide ranged from 0.25 to 5 μg tropomyosin/g sauce and from 1 to 10 μg Gly m 6/g sauce, respectively. Using the labeled peptide-free UHPLC-MS/MS method, not only ideal experimental results were obtained surpassing those obtained with labeled peptides, but also the reagents were economized and shortening of the sample preparation time was achieved.
Collapse
Affiliation(s)
- Kai Yao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
- Beijing Research Center for Preventive Medicine, Beijing 100020, People's Republic of China
| | - Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
- Beijing Research Center for Preventive Medicine, Beijing 100020, People's Republic of China
| | - Jinyuan Liu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
- Beijing Research Center for Preventive Medicine, Beijing 100020, People's Republic of China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
- Beijing Research Center for Preventive Medicine, Beijing 100020, People's Republic of China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
- Beijing Research Center for Preventive Medicine, Beijing 100020, People's Republic of China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
20
|
Heteropore covalent organic framework-based composite membrane prepared by in situ growth on non-woven fabric for sample pretreatment of food non-targeted analysis. Mikrochim Acta 2021; 188:235. [PMID: 34164747 DOI: 10.1007/s00604-021-04889-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
A heteropore covalent organic framework (COF)-based composite membrane material was prepared and proved to have a satisfactory effect on the pretreatment of vegetable samples. The composite membrane was fabricated by in situ growth of a dual-pore COF on the surface of polydopamine (PDA)-aminated non-woven (NW) fabric. Due to the difference in the strength of the interaction between the phytochromes/COF and the pesticides/COF, the removal of phytochromes and the recovery of pesticides can be achieved by adjusting the composition of the solution. Through a simple immersion or filtration operation, NW@PDA@COF composite membrane can quickly and almost completely remove interfering phytochromes in the samples. The recovery of pesticides was determined by HPLC-MS/MS, and the recovery efficiencies were 72.3~101.7% and 67.3~106.7% for immersion and filtration modes of five different vegetable samples, respectively; the RSD is between 1.1 and 19% (n = 3). The limits of detection and quantification for the 13 pesticides investigated were 0.08 μg·L-1 and 0.23 μg·L-1, respectively. A wide linear range of 1~1000 μg·L-1 was observed with R2 values from 0.9774 to 0.9998. The membrane can be repeatedly used for at least 10 times by using a facile elution treatment. Compared to other commonly used sample pretreatment materials, heteropore COF-based composite membrane is superior in terms of sorbent amount, treatment time, operation simplicity, and material reusability.
Collapse
|
21
|
Artavia G, Cortés-Herrera C, Granados-Chinchilla F. Selected Instrumental Techniques Applied in Food and Feed: Quality, Safety and Adulteration Analysis. Foods 2021; 10:1081. [PMID: 34068197 PMCID: PMC8152966 DOI: 10.3390/foods10051081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
This review presents an overall glance at selected instrumental analytical techniques and methods used in food analysis, focusing on their primary food science research applications. The methods described represent approaches that have already been developed or are currently being implemented in our laboratories. Some techniques are widespread and well known and hence we will focus only in very specific examples, whilst the relatively less common techniques applied in food science are covered in a wider fashion. We made a particular emphasis on the works published on this topic in the last five years. When appropriate, we referred the reader to specialized reports highlighting each technique's principle and focused on said technologies' applications in the food analysis field. Each example forwarded will consider the advantages and limitations of the application. Certain study cases will typify that several of the techniques mentioned are used simultaneously to resolve an issue, support novel data, or gather further information from the food sample.
Collapse
Affiliation(s)
- Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | - Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | | |
Collapse
|
22
|
Marengo M, Bonomi F, Iametti S, Ferranti P, Barbiroli A. Monitoring the carryover of egg proteins in pasta making to support allergen risk management. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1087-1095. [PMID: 33955824 DOI: 10.1080/19440049.2021.1916098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Egg proteins are among the major food allergens. Very often, the same pasta-making plants are used for industrial production of egg-based pasta (EBP) and semolina-only pasta (SP), so that residual egg proteins may be present in SP. This calls for defining the amount of semolina pasta that should be discarded when switching production lines. In this study, the egg proteins content was measured in pasta samples taken at various times after switching production lines from EBP to SP Both long and short pasta shapes were sampled before and after a drying step. Protocols meant to circumvent the difficulties associated with detecting egg proteins in a complex matrix after processing were set up for using commercial ELISA kits to monitor the disappearance of egg proteins from the products. The use of both denaturants and disulphide reductants to solubilise egg proteins was found to be mandatory, as verified by ovalbumin detection by ELISA and by using mass spectrometry to assess residual egg white lysozyme. Appropriate sample preparation protocols were used to monitor the progressive disappearance of egg proteins in the products when shifting production lines in an industrial pasta plant, providing a basis for credible, reliable, and consistent self-control procedures. For lines with a production capacity of 2200-2400 kg h-1, the amount of material to be discarded to ensure that products meet the strictest analytical requirements has been found to be around 2000-3000 kg (for long pasta) and 3000-4000 kg (for short pasta).
Collapse
Affiliation(s)
- Mauro Marengo
- Department of Food, Environmental and Nutritional Sciences (Defens), University of Milan, Milan, Italy.,Department of Drug Science and Technology (DSTF), University of Turin, Turin, Italy
| | - Francesco Bonomi
- Department of Food, Environmental and Nutritional Sciences (Defens), University of Milan, Milan, Italy
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Sciences (Defens), University of Milan, Milan, Italy
| | | | - Alberto Barbiroli
- Department of Food, Environmental and Nutritional Sciences (Defens), University of Milan, Milan, Italy
| |
Collapse
|
23
|
Kotecka-Majchrzak K, Kasałka-Czarna N, Sumara A, Fornal E, Montowska M. Multispecies Identification of Oilseed- and Meat-Specific Proteins and Heat-Stable Peptide Markers in Food Products. Molecules 2021; 26:molecules26061577. [PMID: 33809348 PMCID: PMC7998630 DOI: 10.3390/molecules26061577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/31/2023] Open
Abstract
Consumer demand for both plant products and meat products enriched with plant raw materials is constantly increasing. Therefore, new versatile and reliable methods are needed to find and combat fraudulent practices in processed foods. The objective of this study was to identify oilseed species-specific peptide markers and meat-specific markers that were resistant to processing, for multispecies authentication of different meat and vegan food products using the proteomic LC-MS/MS method. To assess the limit of detection (LOD) for hemp proteins, cooked meatballs consisting of three meat species and hemp cake at a final concentration of up to 7.4% were examined. Hemp addition at a low concentration of below 1% was detected. The LOD for edestin subunits and albumin was 0.9% (w/w), whereas for 7S vicilin-like protein it was 4.2% (w/w). Specific heat-stable peptides unique to hemp seeds, flaxseed, nigella, pumpkin, sesame, and sunflower seeds, as well as guinea fowl, rabbit, pork, and chicken meat, were detected in different meat and vegan foods. Most of the oilseed-specific peptides were identified as processing-resistant markers belonging to 11S globulin subunits, namely conlinin, edestin, helianthinin, pumpkin vicilin-like or late embryogenesis proteins, and sesame legumin-like as well as 2S albumins and oleosin isoforms or selected enzymic proteins.
Collapse
Affiliation(s)
- Klaudia Kotecka-Majchrzak
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (K.K.-M.); (N.K.-C.)
| | - Natalia Kasałka-Czarna
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (K.K.-M.); (N.K.-C.)
| | - Agata Sumara
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.S.); (E.F.)
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.S.); (E.F.)
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (K.K.-M.); (N.K.-C.)
- Correspondence: ; Tel.: +48-61-848-7257
| |
Collapse
|
24
|
Development of a simple and reliable high-performance liquid chromatography-tandem mass spectrometry approach to simultaneously detect grains specified in food allergen labeling regulation on processed food commodities. J Chromatogr A 2021; 1639:461877. [PMID: 33545578 DOI: 10.1016/j.chroma.2021.461877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/28/2023]
Abstract
An analytical approach using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed to simultaneously detect Fagopyrum esculentum Moench (buckwheat) and cereals containing gluten (Triticum species including wheat and spelt, rye, barley, and oats) that were specified in regulations for food allergen labeling on processed foods. Trypsin-digested peptides were purified from different processed food commodities and heptapeptides derived from buckwheat 13S globulin (GFIVQAR, m/z 395.8 [precursor] > 177.0 [product]) and Triticum low molecular weight glutenin (QIPEQSR, m/z 429.3 [precursor] > 616.2 [product]) were specifically detected each species at levels as low as 0.050-0.056 µg/L and 0.028-0.032 µg/L, respectively. Detection of these synthetic peptides was quantitative to over 100 µg/L by reference to the synthetic peptide calibration curves and at recovery rates, 76.6 ± 4.1%-104.8 ± 17.1% and 82.4 ± 2.0%-105.8 ± 5.3%, for GFIVQAR and QIPEQSR, respectively, when 1-1,000 µg of these peptides were spiked into a retort tomato sauce for pasta or dried instant soup. In combination with LC-MS/MS detection methods specific to other cereals containing gluten (rye, barley, and oats), the developed analytical approach was applicable to a wide variety of processed food commodities for food allergen labeling.
Collapse
|
25
|
Tuzimski T, Petruczynik A. Review of New Trends in the Analysis of Allergenic Residues in Foods and Cosmetic Products. J AOAC Int 2020; 103:997-1028. [PMID: 33241349 PMCID: PMC8370415 DOI: 10.1093/jaoacint/qsaa015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Allergies represent an important health problem in industrialized countries. Allergen sensitization is an important risk factor for the development of allergic diseases; thus, the identification of an individual's allergen sensitization is essential for the diagnosis and treatment of diseases. OBJECTIVE This review compares different modern methods applied for the analysis of allergens in various matrices (from 2015 to the end of September 2019). CONCLUSIONS Immunological methods are still most frequently used for detection of allergens. These methods are sensitive, but the lack of specificity and cross-reaction of some antibodies can still be a relevant source of errors. DNA-based methods are fast and reliable for determination of protein allergens, but the epitopes of protein allergens with posttranslational modifications and their changes, originated during various processing, cannot be identified through the use of this method. Methods based on application of biosensors are very rapid and easy to use, and can be readily implemented as screening methods to monitor allergens. Recent developments of new high-resolution MS instruments are encouraging and enable development in the analysis of allergens. Fast, very sensitive, reliable, and accurate detection and quantification of allergens in complex samples can be used in the near future. Mass spectrometry coupled with LC, GC, or electrophoretic methods bring additional advances in allergen analysis. The use of LC-MS or LC-MS/MS for the quantitative detection of allergens in various matrices is at present gaining acceptance as a protein-based confirmatory technique over the routinely performed enzyme-linked immunosorbent assays.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Medical University of Lublin, Department of Physical Chemistry, 4A Chodzki Street, Lublin, Poland, 20-093
| | - Anna Petruczynik
- Medical University of Lublin, Department of Inorganic Chemistry, 4A Chodzki Street, Lublin, Poland, 20-093
| |
Collapse
|
26
|
Ramachandran B, Yang CT, Downs ML. Parallel Reaction Monitoring Mass Spectrometry Method for Detection of Both Casein and Whey Milk Allergens from a Baked Food Matrix. J Proteome Res 2020; 19:2964-2976. [PMID: 32483969 DOI: 10.1021/acs.jproteome.9b00844] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Milk allergy is among the most common food allergies present in early childhood, which in some cases may persist into adulthood as well. Proteins belonging to both casein and whey fractions of milk can trigger an allergic response in susceptible individuals. Milk is present as an ingredient in many foods, and it can also be present as casein- or whey-enriched milk-derived ingredients. As whey proteins are more susceptible to thermal processing than caseins, conventional methods often posed a challenge in accurate detection of whey allergens, particularly from a processed complex food matrix. In this study, a targeted mass spectrometry method has been developed to detect the presence of both casein and whey allergens from thermally processed foods. A pool of 19 candidate peptides representing four casein proteins and two whey proteins was identified using a discovery-driven target selection approach from various milk-derived ingredients. These target peptides were evaluated by parallel reaction monitoring of baked cookie samples containing known amounts of nonfat dry milk (NFDM). The presence of milk could be detected from baked cookies incurred with NFDM at levels as low as 1 ppm using seven peptides representing α-, β-, and κ-casein proteins and three peptides representing a whey protein, β-lactoglobulin, by this consensus PRM method.
Collapse
Affiliation(s)
- Bini Ramachandran
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Charles T Yang
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Melanie L Downs
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68588, United States
| |
Collapse
|
27
|
Marzano V, Tilocca B, Fiocchi AG, Vernocchi P, Levi Mortera S, Urbani A, Roncada P, Putignani L. Perusal of food allergens analysis by mass spectrometry-based proteomics. J Proteomics 2020; 215:103636. [DOI: 10.1016/j.jprot.2020.103636] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/05/2020] [Indexed: 12/30/2022]
|