1
|
Šikula M, Vaněčková E, Hromadová M, Kolivoška V. Spectroelectrochemical sensing of reaction intermediates and products in an affordable fully 3D printed device. Anal Chim Acta 2023; 1267:341379. [PMID: 37257964 DOI: 10.1016/j.aca.2023.341379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Recent advances in fused deposition modelling 3D printing (FDM 3DP) and synthesis of printable electrically conductive materials enabled the manufacture of customized electrodes and electrochemical devices by this technique. The past couple of years have seen a boom in applying approaches of FDM 3DP in the realm of spectroelectrochemistry (SEC). Despite significant progress, reported designs of SEC devices still rely on conventionally manufactured optical components such as quartz windows and cuvettes. To bridge this technological gap, in this work we apply bi-material FDM 3DP combining electrically conductive and optically translucent filaments to manufacture working electrodes and cells, constituting a fully integrated microfluidic platform for transmission absorption UV-Vis SEC measurements. The cell design enables de-aeration of samples and their convenient handling and analysis. Employing cyclic voltammetric measurements with ruthenium(III) acetylacetonate, ethylviologen dibromide and ferrocenemethanol redox-active probes as model analytes, we demonstrate that the presented platform allows SEC sensing of reactants, intermediates and products of charge transfer reactions, including the inspection of their long-term stability. Approaches developed and presented in this work pave the way for manufacturing customized SEC devices with dramatically reduced costs compared to currently available commercial platforms.
Collapse
Affiliation(s)
- Martin Šikula
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic.
| | - Eva Vaněčková
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic.
| | - Magdaléna Hromadová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic.
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic.
| |
Collapse
|
2
|
3D printing and its applications in spectroelectrochemistry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Crapnell R, Bernalte E, Ferrari AGM, Whittingham MJ, Williams RJ, Hurst NJ, Banks CE. All-in-One Single-Print Additively Manufactured Electroanalytical Sensing Platforms. ACS MEASUREMENT SCIENCE AU 2022; 2:167-176. [PMID: 36785725 PMCID: PMC9838814 DOI: 10.1021/acsmeasuresciau.1c00046] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This manuscript provides the first report of a fully additively manufactured (AM) electrochemical cell printed all-in-one, where all the electrodes and cell are printed as one, requiring no post-assembly or external electrodes. The three-electrode cell is printed using a standard non-conductive poly(lactic acid) (PLA)-based filament for the body and commercially available conductive carbon black/PLA (CB/PLA, ProtoPasta) for the three electrodes (working, counter, and reference; WE, CE, and RE, respectively). The electrochemical performance of the cell is evaluated first against the well-known near-ideal outer-sphere redox probe hexaamineruthenium(III) chloride (RuHex), showing that the cell performs well using an AM electrode as the pseudo-RE. Electrochemical activation of the WE via chronoamperometry and NaOH provides enhanced electrochemical performances toward outer-sphere probes and for electroanalytical performance. It is shown that this activation can be completed using either an external commercial Ag|AgCl RE or through simply using the internal AM CB/PLA pseudo-RE and CE. This all-in-one electrochemical cell (AIOEC) was applied toward the well-known detection of ascorbic acid (AA) and acetaminophen (ACOP), achieving linear trends with limits of detection (LODs) of 13.6 ± 1.9 and 4.5 ± 0.9 μM, respectively. The determination of AA and ACOP in real samples from over-the-counter effervescent tablets was explored, and when analyzed individually, recoveries of 102.9 and 100.6% were achieved against UV-vis standards, respectively. Simultaneous detection of both targets was also achieved through detection in the same sample exhibiting 149.75 and 81.35% recoveries for AA and ACOP, respectively. These values differing from the originals are likely due to electrode fouling due to the AA oxidation being a surface-controlled process. The cell design produced herein is easily tunable toward different sample volumes or container shapes for various applications among aqueous electroanalytical sensing; however, it is a simple example of the capabilities of this manufacturing method. This work illustrates the next step in research synergising AM and electrochemistry, producing operational electrochemical sensing platforms in a single print, with no assembly and no requirements for exterior or commercial electrodes. Due to the flexibility, low-waste, and rapid prototyping of AM, there is scope for this work to be able to span and impact a plethora of research areas.
Collapse
Affiliation(s)
- Robert
D. Crapnell
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Chester Street, Manchester M1 5GD, U.K.
| | - Elena Bernalte
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Chester Street, Manchester M1 5GD, U.K.
| | | | - Matthew J. Whittingham
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Chester Street, Manchester M1 5GD, U.K.
| | - Rhys J. Williams
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Chester Street, Manchester M1 5GD, U.K.
| | - Nicholas J. Hurst
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Chester Street, Manchester M1 5GD, U.K.
| | - Craig E Banks
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Chester Street, Manchester M1 5GD, U.K.
| |
Collapse
|
4
|
Vivaldi F, Sebechlebská T, Vaněčková E, Biagini D, Bonini A, Kolivoška V. Electric conductivity measurements employing 3D printed electrodes and cells. Anal Chim Acta 2022; 1203:339600. [DOI: 10.1016/j.aca.2022.339600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
|
5
|
Garcia-Miranda Ferrari A, Hurst NJ, Bernalte E, Crapnell RD, Whittingham MJ, Brownson DAC, Banks CE. Exploration of defined 2-dimensional working electrode shapes through additive manufacturing. Analyst 2022; 147:5121-5129. [DOI: 10.1039/d2an01412b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this work, the electrochemical response of different morphologies (shapes) and dimensions of additively manufactured (3D-printing) carbon black(CB)/poly-lactic acid (PLA) electrodes are reported.
Collapse
Affiliation(s)
| | - Nicholas J. Hurst
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, UK
| | - Elena Bernalte
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, UK
| | - Robert D. Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, UK
| | - Matthew J. Whittingham
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, UK
| | - Dale A. C. Brownson
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, UK
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, UK
| |
Collapse
|
6
|
McKenzie ECR, Hosseini S, Petro AGC, Rudman KK, Gerroll BHR, Mubarak MS, Baker LA, Little RD. Versatile Tools for Understanding Electrosynthetic Mechanisms. Chem Rev 2021; 122:3292-3335. [PMID: 34919393 DOI: 10.1021/acs.chemrev.1c00471] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrosynthesis is a popular, green alternative to traditional organic methods. Understanding the mechanisms is not trivial yet is necessary to optimize reaction processes. To this end, a multitude of analytical tools is available to identify and quantitate reaction products and intermediates. The first portion of this review serves as a guide that underscores electrosynthesis fundamentals, including instrumentation, electrode selection, impacts of electrolyte and solvent, cell configuration, and methods of electrosynthesis. Next, the broad base of analytical techniques that aid in mechanism elucidation are covered in detail. These methods are divided into electrochemical, spectroscopic, chromatographic, microscopic, and computational. Technique selection is dependent on predicted reaction pathways and electrogenerated intermediates. Often, a combination of techniques must be utilized to ensure accuracy of the proposed model. To conclude, future prospects that aim to enhance the field are discussed.
Collapse
Affiliation(s)
- Eric C R McKenzie
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Seyyedamirhossein Hosseini
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ana G Couto Petro
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kelly K Rudman
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Benjamin H R Gerroll
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | | | - Lane A Baker
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - R Daniel Little
- Department of Chemistry, University of California Santa Barbara, Building 232, Santa Barbara, California 93106, United States
| |
Collapse
|
7
|
Whittingham MJ, Crapnell RD, Rothwell EJ, Hurst NJ, Banks CE. Additive manufacturing for electrochemical labs: An overview and tutorial note on the production of cells, electrodes and accessories. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
8
|
da Silva Junior JH, de Melo JV, Castro PS. Lab-made 3D-printed accessories for spectroscopy and spectroelectrochemistry: a proof of concept to investigate dynamic interfacial and surface phenomena. Mikrochim Acta 2021; 188:394. [PMID: 34705063 DOI: 10.1007/s00604-021-05041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
3D printing is presented as an auspicious additive manufacturing technique for diverse interesting applications coupling electrochemistry and spectroscopy techniques, proposing as utilities: a general-purpose module for specular spectroscopy and spectroelectrochemical (SEC) cells for in situ UV-VIS and Raman measures capable of acting in flux or a stationary regime. As a proof of concept, UV-VIS absorption and middle-infrared spectra of an azo dye thin film were collected with the specular module showing characteristic bands according to the literature data. SEC investigations related to the Prussian Blue (PB) film growth on the platinum electrode surface were also investigated. By applying appropriate potentials, the PB film growth was accompanied by a proportional increase in the absorption signal at 700 nm in the UV-VIS region. This signal was related to the intervalence charge transfer from the Fe(II)-C to Fe(III)-N. Moreover, the Raman SEC experiment presented scattering intensity at 2092 and 2156 cm-1, related to the (CN) mode associated with the Fe(II) and Fe(III) cations, which was observed during the thin film growth. In addition, the conversion to the Berlin Green (BG) and Prussian White (PB) forms was monitored while applying the suitable potential and in situ spectroscopic observations of structural changes during the redox processes were also detected as described in the literature. Thus, it is possible to state that the accessories successfully validated in situ spectroelectrochemical dynamic investigations unlocking many other applications in this research field.
Collapse
Affiliation(s)
| | - Jailson Vieira de Melo
- Federal University of Rio Grande do Norte, Institute of Chemistry, Lagoa Nova - CEP 59.072-970, Natal, RN, Brazil
| | - Pollyana Souza Castro
- Federal University of Rio Grande do Norte, Institute of Chemistry, Lagoa Nova - CEP 59.072-970, Natal, RN, Brazil.
| |
Collapse
|
9
|
Silva AL, Salvador GMDS, Castro SVF, Carvalho NMF, Munoz RAA. A 3D Printer Guide for the Development and Application of Electrochemical Cells and Devices. Front Chem 2021; 9:684256. [PMID: 34277568 PMCID: PMC8283263 DOI: 10.3389/fchem.2021.684256] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
3D printing is a type of additive manufacturing (AM), a technology that is on the rise and works by building parts in three dimensions by the deposit of raw material layer upon layer. In this review, we explore the use of 3D printers to prototype electrochemical cells and devices for various applications within chemistry. Recent publications reporting the use of Fused Deposition Modelling (fused deposition modeling®) technique will be mostly covered, besides papers about the application of other different types of 3D printing, highlighting the advances in the technology for promising applications in the near future. Different from the previous reviews in the area that focused on 3D printing for electrochemical applications, this review also aims to disseminate the benefits of using 3D printers for research at different levels as well as to guide researchers who want to start using this technology in their research laboratories. Moreover, we show the different designs already explored by different research groups illustrating the myriad of possibilities enabled by 3D printing.
Collapse
Affiliation(s)
- Ana Luisa Silva
- Grupo de Catálise Ambiental e Sustentabilidade Energética, Instituto de Química, Departamento de Química Geral e Inorgânica, Universidade do Estado do Rio de Janeiro, Maracanã, Rio de Janeiro, Brazil
| | - Gabriel Maia da Silva Salvador
- Grupo de Catálise Ambiental e Sustentabilidade Energética, Instituto de Química, Departamento de Química Geral e Inorgânica, Universidade do Estado do Rio de Janeiro, Maracanã, Rio de Janeiro, Brazil
| | - Sílvia V F Castro
- Núcleo de Pesquisa em Eletroanalítica, Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Nakédia M F Carvalho
- Grupo de Catálise Ambiental e Sustentabilidade Energética, Instituto de Química, Departamento de Química Geral e Inorgânica, Universidade do Estado do Rio de Janeiro, Maracanã, Rio de Janeiro, Brazil
| | - Rodrigo A A Munoz
- Núcleo de Pesquisa em Eletroanalítica, Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
10
|
Vaněčková E, Bouša M, Shestivska V, Kubišta J, Moreno‐García P, Broekmann P, Rahaman M, Zlámal M, Heyda J, Bernauer M, Sebechlebská T, Kolivoška V. Electrochemical Reduction of Carbon Dioxide on 3D Printed Electrodes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Eva Vaněčková
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 182 23 Prague 8 Czech Republic
- University of Chemistry and Technology Prague Faculty of Chemical Engineering Department of Physical Chemistry Technická 5 166 28 Prague 6 Czech Republic
| | - Milan Bouša
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 182 23 Prague 8 Czech Republic
| | - Violetta Shestivska
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 182 23 Prague 8 Czech Republic
| | - Jiří Kubišta
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 182 23 Prague 8 Czech Republic
| | - Pavel Moreno‐García
- Department of Chemistry Biochemistry and Pharmaceutical Sciences University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Peter Broekmann
- Department of Chemistry Biochemistry and Pharmaceutical Sciences University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Motiar Rahaman
- Department of Chemistry Biochemistry and Pharmaceutical Sciences University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Martin Zlámal
- University of Chemistry and Technology Prague Faculty of Chemical Technology Department of Inorganic Technology Technická 5 166 28 Prague 6 Czech Republic
| | - Jan Heyda
- University of Chemistry and Technology Prague Faculty of Chemical Engineering Department of Physical Chemistry Technická 5 166 28 Prague 6 Czech Republic
| | - Milan Bernauer
- University of Chemistry and Technology Prague Faculty of Chemical Technology Department of Inorganic Technology Technická 5 166 28 Prague 6 Czech Republic
| | - Táňa Sebechlebská
- Department of Physical and Theoretical Chemistry Faculty of Natural Sciences Comenius University in Bratislava Ilkovičova 6 84215 Bratislava 4 Slovak Republic
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 182 23 Prague 8 Czech Republic
| |
Collapse
|
11
|
Poltorak L, Rudnicki K, Kolivoška V, Sebechlebská T, Krzyczmonik P, Skrzypek S. Electrochemical study of ephedrine at the polarized liquid-liquid interface supported with a 3D printed cell. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123411. [PMID: 32711385 DOI: 10.1016/j.jhazmat.2020.123411] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
In this work, we have examined an electrochemical behavior of the ephedrine at the polarized liquid-liquid interface (water/1,2-dichloroethane). In this respect, we first designed and then 3D printed polyamide-based electrochemical cell that was used as the liquid-liquid interface support during electroanalytical measurements. The protonated ephedrine undergoes a reversible ion transfer reaction with the standard Galvani potential difference equal to +0.269 V. This value was used to calculate the water - 1,2-dichloroethane logP equal to -4.6. Ion transfer voltammetry was used to build the calibration curve and allowed for the ephedrine detection from concentration equal to 20 μM. By varying the pH of the aqueous phase from 2 up to 12 we were able to plot the ion partition diagram that was further analyzed and provided several pharmacochemical information. To further push this work towards practical utility, we have formulated the artificial urine and studied the interfacial behavior of all its components at the polarized liquid-liquid interface. Ephedrine detection from real spiked urine samples was also performed.
Collapse
Affiliation(s)
- Lukasz Poltorak
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland.
| | - Konrad Rudnicki
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of The Czech Academy of Sciences, v.v.i., Dolejškova 3, 18223 Prague, Czech Republic.
| | - Táňa Sebechlebská
- J. Heyrovský Institute of Physical Chemistry of The Czech Academy of Sciences, v.v.i., Dolejškova 3, 18223 Prague, Czech Republic; Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava 4, Slovakia
| | - Paweł Krzyczmonik
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Sławomira Skrzypek
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| |
Collapse
|
12
|
Tully JJ, Meloni GN. A Scientist’s Guide to Buying a 3D Printer: How to Choose the Right Printer for Your Laboratory. Anal Chem 2020; 92:14853-14860. [DOI: 10.1021/acs.analchem.0c03299] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joshua J. Tully
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gabriel N. Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
13
|
da Silveira GD, Quero RF, Bressan LP, Bonacin JA, de Jesus DP, da Silva JAF. Ready-to-use 3D-printed electrochemical cell for in situ voltammetry of immobilized microparticles and Raman spectroscopy. Anal Chim Acta 2020; 1141:57-62. [PMID: 33248662 DOI: 10.1016/j.aca.2020.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 01/24/2023]
Abstract
We report in this communication a ready-to-use fused deposition modeling (FDM) based 3D-printed spectroelectrochemical cell to perform for the first time voltammetry of immobilized microparticles (VIMP) and Raman spectroscopy in situ using acrylonitrile butadiene styrene (ABS) as the filament material for printing. The 3D-printed cell was applied to evaluate solid state electrochemical behavior of tadalafil as a proof-of-concept. Several advantages were achieved in the use of the developed device, such as less manipulation of the working electrode, monitoring the same region of the solid microparticles before and after electrochemical measurements, better control of the laser incidence, low-cost and low-time production. Furthermore, the device was printed in a single-step, without handling to assembly and it has an estimated material cost of approximately 2 $. The use of 3D-printing technology was significantly important to integrate Raman spectroscopic method with VIMP measurements and to support mechanism elucidation and characterization of the compounds with less manipulation of the working electrode, avoiding loss of solid products formed from electrochemical reactions.
Collapse
Affiliation(s)
| | | | - Lucas Paines Bressan
- Chemistry Institute, State University of Campinas, Campinas, SP, 13083-861, Brazil
| | | | - Dosil Pereira de Jesus
- Chemistry Institute, State University of Campinas, Campinas, SP, 13083-861, Brazil; Instituto Nacional de Ciência e Tecnologia Em Bioanalítica (INCTBio), Campinas, SP, Brazil
| | - José Alberto Fracassi da Silva
- Chemistry Institute, State University of Campinas, Campinas, SP, 13083-861, Brazil; Instituto Nacional de Ciência e Tecnologia Em Bioanalítica (INCTBio), Campinas, SP, Brazil.
| |
Collapse
|
14
|
Giorgini Escobar J, Vaněčková E, Nováková Lachmanová Š, Vivaldi F, Heyda J, Kubišta J, Shestivska V, Španěl P, Schwarzová-Pecková K, Rathouský J, Sebechlebská T, Kolivoška V. The development of a fully integrated 3D printed electrochemical platform and its application to investigate the chemical reaction between carbon dioxide and hydrazine. Electrochim Acta 2020; 360:136984. [PMID: 32863402 PMCID: PMC7444954 DOI: 10.1016/j.electacta.2020.136984] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022]
Abstract
An integrated electrochemical platform was manufactured by bi-material 3D printing. It was applied to investigate the reaction between hydrazine and carbon dioxide. Experimental results were supported by finite-element method numerical simulations.
The combination of computer assisted design and 3D printing has recently enabled fast and inexpensive manufacture of customized ‘reactionware’ for broad range of electrochemical applications. In this work bi-material fused deposition modeling 3D printing is utilized to construct an integrated platform based on a polyamide electrochemical cell and electrodes manufactured from a polylactic acid-carbon nanotube conductive composite. The cell contains separated compartments for the reference and counter electrode and enables reactants to be introduced and inspected under oxygen-free conditions. The developed platform was employed in a study investigating the electrochemical oxidation of aqueous hydrazine coupled to its bulk reaction with carbon dioxide. The analysis of cyclic voltammograms obtained in reaction mixtures with systematically varied composition confirmed that the reaction between hydrazine and carbon dioxide follows 1/1 stoichiometry and the corresponding equilibrium constant amounts to (2.8 ± 0.6) × 103. Experimental characteristics were verified by results of numerical simulations based on the finite-element-method.
Collapse
Affiliation(s)
- João Giorgini Escobar
- Institute of Chemistry, UNB - University of Brazilia, Campus Universitário Darcy Ribeiro 70910-900 Asa Norte - Brasília-DF, Brazil
| | - Eva Vaněčková
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia.,Department of Physical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czechia
| | - Štěpánka Nováková Lachmanová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia
| | - Federico Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Jan Heyda
- Department of Physical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czechia
| | - Jiří Kubišta
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia
| | - Violetta Shestivska
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia
| | - Karolina Schwarzová-Pecková
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czechia
| | - Jiří Rathouský
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia
| | - Táňa Sebechlebská
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia.,Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava 4, Slovakia
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia
| |
Collapse
|
15
|
Vlachou E, Margariti A, Papaefstathiou GS, Kokkinos C. Voltammetric Determination of Pb(II) by a Ca-MOF-Modified Carbon Paste Electrode Integrated in a 3D-Printed Device. SENSORS 2020; 20:s20164442. [PMID: 32784856 PMCID: PMC7472020 DOI: 10.3390/s20164442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 01/22/2023]
Abstract
In this work, a voltammetric method based on a metal organic framework (Ca-MOF)-modified carbon paste electrode for lead determination was developed. The MOF-based electrode was packed in a new type of 3D-printed syringe-type integrated device, which was entirely fabricated by a dual extruder 3D printer. After optimization of the operational parameters, a limit of detection of 0.26 µg L−1 Pb(II) was achieved, which is lower than that of existing MOF-based lead sensors. The device was used for Pb(II) determination in fish feed and bottled water samples with high accuracy and reliability. The proposed sensor is suitable for on-site analyses and provides a low-cost integrated transducer for the ultrasensitive routine detection of lead in practical applications.
Collapse
Affiliation(s)
- Evaggelia Vlachou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Antigoni Margariti
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.M.); (G.S.P.)
| | - Giannis S. Papaefstathiou
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.M.); (G.S.P.)
| | - Christos Kokkinos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
- Correspondence: ; Tel.: +30-2107-274-312
| |
Collapse
|
16
|
Cardoso RM, Rocha DP, Rocha RG, Stefano JS, Silva RAB, Richter EM, Muñoz RAA. 3D-printing pen versus desktop 3D-printers: Fabrication of carbon black/polylactic acid electrodes for single-drop detection of 2,4,6-trinitrotoluene. Anal Chim Acta 2020; 1132:10-19. [PMID: 32980099 DOI: 10.1016/j.aca.2020.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
The fabrication of carbon black/polylactic acid (PLA) electrodes using a 3D printing pen is presented and compared with electrodes obtained by a desktop fused deposition modelling (FDM) 3D printer. The 3D pen was used for the fast production of electrodes in two designs using customized 3D printed parts to act as template and guide the reproducible application of the 3D pen: (i) a single working electrode at the bottom of a 3D-printed cylindrical body and (ii) a three-electrode system on a 3D-printed planar substrate. Both devices were electrochemically characterized using the redox probe [Fe(CN)6]3-/4- via cyclic voltammetry, which presented similar performance to an FDM 3D-printed electrode or a commercial screen-printed carbon electrode (SPE) regarding peak-to-peak separation (ΔEp) and current density. The surface treatment of the carbon black/PLA electrodes fabricated by both 3D pen and FDM 3D-printing procedures provided substantial improvement of the electrochemical activity by removing excess of PLA, which was confirmed by scanning electron microscopic images for electrodes fabricated by both procedures. Structural defects were not inserted after the electrochemical treatment as shown by Raman spectra (iD/iG), which indicates that the use of 3D pen can replace desktop 3D printers for electrode fabrication. Inter-electrode precision for the best device fabricated using the 3D pen (three-electrode system) was 4% (n = 5) considering current density and anodic peak potential for the redox probe. This device was applied for the detection of 2,4,6-trinitrotoluene (TNT) via square-wave voltammetry of a single-drop of 100 μL placed upon the thee-electrode system, resulting in three reduction peaks commonly verified for TNT on carbon electrodes. Limit of detection of 1.5 μmol L-1, linear range from 5 to 500 μmol L-1 and RSD lower than 4% for 10 repetitive measurements of 100 μmol L-1 TNT were obtained. The proposed devices can be reused after polishing on sandpaper generating new electrode surfaces, which is an extra advantage over chemically-modified electrochemical sensors applied for TNT detection.
Collapse
Affiliation(s)
- Rafael M Cardoso
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Diego P Rocha
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Raquel G Rocha
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Jéssica S Stefano
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Rodrigo A B Silva
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Eduardo M Richter
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Rodrigo A A Muñoz
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil.
| |
Collapse
|
17
|
Cardoso RM, Kalinke C, Rocha RG, dos Santos PL, Rocha DP, Oliveira PR, Janegitz BC, Bonacin JA, Richter EM, Munoz RA. Additive-manufactured (3D-printed) electrochemical sensors: A critical review. Anal Chim Acta 2020; 1118:73-91. [DOI: 10.1016/j.aca.2020.03.028] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 01/13/2023]
|
18
|
da Silveira GD, Bressan LP, Schmidt MEP, Dal Molin TR, Teixeira CA, Poppi RJ, da Silva JAF. Electrochemical behavior of 5-type phosphodiesterase inhibitory drugs in solid state by voltammetry of immobilized microparticles. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04533-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Baumgartner B, Freitag S, Lendl B. 3D Printing for Low-Cost and Versatile Attenuated Total Reflection Infrared Spectroscopy. Anal Chem 2020; 92:4736-4741. [DOI: 10.1021/acs.analchem.9b04043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bettina Baumgartner
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/E164, 1060 Wien, Austria
| | - Stephan Freitag
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/E164, 1060 Wien, Austria
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/E164, 1060 Wien, Austria
| |
Collapse
|
20
|
Vaněčková E, Bouša M, Vivaldi F, Gál M, Rathouský J, Kolivoška V, Sebechlebská T. UV/VIS spectroelectrochemistry with 3D printed electrodes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Kalinke C, Neumsteir NV, Aparecido GDO, Ferraz TVDB, dos Santos PL, Janegitz BC, Bonacin JA. Comparison of activation processes for 3D printed PLA-graphene electrodes: electrochemical properties and application for sensing of dopamine. Analyst 2020; 145:1207-1218. [DOI: 10.1039/c9an01926j] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This paper reports the comparison of the electrochemical properties of 3D PLA-graphene electrodes (PLA-G) under different activation conditions and through different processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Bruno Campos Janegitz
- Department of Nature Science
- Mathematics and Education
- Federal University of São Carlos
- Araras
- Brazil
| | | |
Collapse
|
22
|
Lozeman JJA, Führer P, Olthuis W, Odijk M. Spectroelectrochemistry, the future of visualizing electrode processes by hyphenating electrochemistry with spectroscopic techniques. Analyst 2020; 145:2482-2509. [DOI: 10.1039/c9an02105a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reviewing the future of electrochemistry combined with infrared, Raman, and nuclear magnetic resonance spectroscopy as well as mass spectrometry.
Collapse
Affiliation(s)
- Jasper J. A. Lozeman
- BIOS Lab-on-a-Chip Group
- MESA+ Institute
- University of Twente
- 7522 NB Enschede
- The Netherlands
| | - Pascal Führer
- BIOS Lab-on-a-Chip Group
- MESA+ Institute
- University of Twente
- 7522 NB Enschede
- The Netherlands
| | - Wouter Olthuis
- BIOS Lab-on-a-Chip Group
- MESA+ Institute
- University of Twente
- 7522 NB Enschede
- The Netherlands
| | - Mathieu Odijk
- BIOS Lab-on-a-Chip Group
- MESA+ Institute
- University of Twente
- 7522 NB Enschede
- The Netherlands
| |
Collapse
|