1
|
Daniels WM, Sekhotha MM, Morgan N, Manilall A. The Cytotoxic Effects of Nyaope, a Heroin-based Street Drug, in SH-SY5Y Neuroblastoma Cells. IBRO Neurosci Rep 2024; 16:280-290. [PMID: 38374957 PMCID: PMC10875117 DOI: 10.1016/j.ibneur.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Nyaope is a local adulterated drug that contributes significantly to the psychosocial challenge of substance use in South Africa. Despite being a huge burden on society and the health care system, research into the deleterious effects of nyaope is limited. The aim of the present study was therefore to perform a chemical analysis of the drug and to assess its toxic effects on neuroblastoma cells. Gas chromatography-mass spectrometry (GC/MS) analysis showed that nyaope mainly consists of heroin and heroin-related products. SH-SY5Y cells were subsequently exposed to increasing concentrations of nyaope (0.625, 1.25, 2.5, 5 and 10 µg/µL) for 1, 6 or 24 h. The toxic effects of nyaope were determined by measuring lactate dehydrogenase (LDH) released into the cell culture medium as an indicator of necrosis, the mRNA expression levels of Bax and Bcl-2 as markers of apoptosis, and the mRNA expression levels of p62 and microtubule-associated protein 1 A/1B light-chain 3 (LC3) as indicators of autophagy. Exposing SH-SY5Y cells to concentrations of nyaope 5 µg/µL and greater for 24 h, resulted in a significant increase in LDH levels in the cell culture medium, unchanged mRNA expression of Bax and Bcl-2 mRNA, and significantly reduced p62 and elevated LC3 mRNA expression levels. The chemical analysis suggests that nyaope should be considered synonymous with heroin and the toxic effects of the drug may recruit pathways involved in necrosis and autophagy.
Collapse
Affiliation(s)
- Willie M.U. Daniels
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa
| | - Matome M. Sekhotha
- Department of Physiology and Environmental Health, School of Molecular Science and Agriculture, University of Limpopo, South Africa
| | - Nirvana Morgan
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa
- Department of Psychiatry, Ulm University, Germany
| | - Ashmeetha Manilall
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa
| |
Collapse
|
2
|
Steijlen ASM, Parrilla M, Van Echelpoel R, De Wael K. Dual Microfluidic Sensor System for Enriched Electrochemical Profiling and Identification of Illicit Drugs On-Site. Anal Chem 2024; 96:590-598. [PMID: 38154077 DOI: 10.1021/acs.analchem.3c05039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Electrochemical sensors have emerged as a new analytical tool for illicit drug detection to facilitate ultrafast and accurate identification of suspicious compounds on-site. Drugs of abuse can be identified using their unique voltammetric fingerprint at a given pH. Today, the right buffer solution is manually selected based on drug appearance, and in some cases, a consecutive analysis in two different pH solutions is required. In this work, we present a disposable microfluidic multichannel sensor system that automatically records fingerprints in two pH solutions (e.g., pH 5 and pH 12). This system has two advantages. It will overcome the manual selection of a buffer solution at the right pH, decrease analysis time, and minimize the risk of human errors. Second, the combination of two fingerprints, the superfingerprint, contains more detailed information about the samples, which enhances the selectivity of the analytical technique. First, real-time pH measurements proved that the sample can be brought to the desired pH within a minute. Subsequently, an electrochemical study on the microfluidic platform with 1 mM illicit drug standards of MDMA, cocaine, heroin, and methamphetamine showed that the characteristic voltammetric fingerprints and peak potentials are reproducible, also in the presence of common cutting agents. Finally, the microfluidic concept was validated with real confiscated samples, showing promising results for the user-friendly identification of drugs of abuse. In short, this paper presents a successful proof-of-concept study of a multichannel microfluidic sensor system to enrich the fingerprints of illicit drugs at pH 5 and pH 12, thus providing a low-cost, portable, and rapid identification system of illicit drugs with minimal user intervention.
Collapse
Affiliation(s)
- Annemarijn S M Steijlen
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Marc Parrilla
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Robin Van Echelpoel
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
3
|
Chen Q, Yao L, Xu J, Qi Q, Tao S, Song X, Chen W. Stepwise Au decoration-assisted double signal amplified lateral flow strip for ultrasensitive detection of morphine in fingerprint sweat. Anal Chim Acta 2023; 1278:341684. [PMID: 37709439 DOI: 10.1016/j.aca.2023.341684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023]
Abstract
Point-of-care testing (POCT) of morphine (MOP) without invasion of privacy is of critical importance for law-enforcement departments to realize on-site rapid screening. In this study, ultrasensitive and non-invasive screening of MOP residues in the fingerprint sweat was easily realized by stepwise Au decoration-assisted double signal amplification and antibody-saving strategies on lateral flow strip (LFS). The construction of LFS was not intrinsically changed compared with traditional LFS except the labeling material on conjugation pad for enhanced signal reporting. The gold nanoparticle-seeded SiO2 was adopted as the labeling materials in place of traditional gold nanoparticles, which acted as the first-round signal amplification and ready for second-round gold deposition-assisted amplification. And the second-round amplification could be completed in just 10 s, which did not alter the intrinsic simplicity of LFS for rapid and on-site screening. With the designed signal amplification principle of LFS, target MOP in the fingerprint sweat can be effectively transferred to the LFS for analysis without invasion of privacy. As low as 0.5 pg MOP in fingerprint sweat can be visually judged with this double signal amplified LFS, the sensitivity of which has been improved at least 10-fold compared with traditional Au-labeled LFS, guaranteeing accurate screening of trace MOP in the fingerprint sweat. Of great importance, the consumption of valuable antibody can be reduced to just 1/20, which greatly reduces the cost of high-throughput screening. This stepwise Au decoration-assisted double signal amplified LFS holds great potential in the ultrasensitive screening of trace analytes in various fields and further widens the application scope of lateral flow strips.
Collapse
Affiliation(s)
- Qi Chen
- Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li Yao
- Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jianguo Xu
- Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qiujing Qi
- Evidence Identification Center of Anhui Province Public Security Department, Hefei, 230061, China
| | - Sha Tao
- Second School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xin Song
- Criminal Police Detachment of Hefei Public Bureau, Hefei, 230051, China.
| | - Wei Chen
- Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
4
|
Stelmaszczyk P, Kwaczyński K, Rudnicki K, Skrzypek S, Wietecha-Posłuszny R, Poltorak L. Nitrazepam and 7-aminonitrazepam studied at the macroscopic and microscopic electrified liquid-liquid interface. Mikrochim Acta 2023; 190:182. [PMID: 37052720 PMCID: PMC10101902 DOI: 10.1007/s00604-023-05739-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Two benzodiazepine type drugs, that is, nitrazepam and 7-aminonitrazepam, were studied at the electrified liquid-liquid interface (eLLI). Both drugs are illicit and act sedative in the human body and moreover are used as date rape drugs. Existence of the diazepine ring in the concerned chemicals structure and one additional amine group (for 7-aminonitrazepam) allows for the molecular charging below their pKa values, and hence, both drugs can cross the eLLI interface upon application of the appropriate value of the Galvani potential difference. Chosen molecules were studied at the macroscopic eLLI formed in the four electrode cell and microscopic eLLI formed within a microtip defined as the single pore having 25 μm in diameter. Microscopic eLLI was formed using only a few μL of the organic and the aqueous phase with the help of a 3D printed cell. Parameters such as limit of detection and voltammetric detection sensitivity are derived from the experimental data. Developed methodology was used to detect nitrazepam in pharmaceutical formulation and both drugs (nitrazepam and 7-aminonitrazepam) in spiked biological fluids (urine and blood).
Collapse
Affiliation(s)
- Paweł Stelmaszczyk
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Karolina Kwaczyński
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Konrad Rudnicki
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Sławomira Skrzypek
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| | - Lukasz Poltorak
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland.
| |
Collapse
|
5
|
Dragan AM, Parrilla M, Sleegers N, Slosse A, Van Durme F, van Nuijs A, Oprean R, Cristea C, De Wael K. Investigating the electrochemical profile of methamphetamine to enable fast on-site detection in forensic analysis. Talanta 2023; 255:124208. [PMID: 36628903 DOI: 10.1016/j.talanta.2022.124208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
Methamphetamine (MA) is a synthetic psychoactive drug which is consumed both licitly and illicitly. In some countries it is prescribed for attention-deficit and hyperactivity disorder, and short-term treatment of obesity. More often though, it is abused for its psychostimulant properties. Unfortunately, the spread and abuse of this synthetic drug have increased globally, being reported as the most widely consumed synthetic psychoactive drug in the world in 2019. Attempting to overcome the shortcomings of the currently used on-site methods for MA detection in suspected cargos, the present study explores the potential of electrochemical identification of MA by means of square wave voltammetry on disposable graphite screen-printed electrodes. Hence, the analytical characterization of the method was evaluated under optimal conditions exhibiting a linear range between 50 μM and 2.5 mM MA, a LOD of 16.7 μM, a LOQ of 50.0 μM and a sensitivity of 5.3 μA mM-1. Interestingly, two zones in the potential window were identified for the detection of MA, depending on its concentration in solution. Furthermore, the oxidative pathway of MA was elucidated employing liquid chromatography - mass spectrometry to understand the change in the electrochemical profile. Thereafter, the selectivity of the method towards MA in mixtures with other drugs of abuse as well as common adulterants/cutting agents was evaluated. Finally, the described method was employed for the analysis of MA in confiscated samples and compared with forensic methods, displaying its potential as a fast and easy-to-use method for on-site analysis.
Collapse
Affiliation(s)
- Ana-Maria Dragan
- Department of Analytical Chemistry, Faculty of Pharmacy, 'Iuliu Hațieganu' University of Medicine and Pharmacy Cluj-Napoca, Pasteur 6, 400349, Cluj-Napoca, Romania; A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium
| | - Marc Parrilla
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium
| | - Nick Sleegers
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium
| | - Amorn Slosse
- Drugs and Toxicology Department, National Institute for Criminalistics and Criminology (NICC), Vilvoordsesteenweg 100, 1120, Brussels, Belgium
| | - Filip Van Durme
- Drugs and Toxicology Department, National Institute for Criminalistics and Criminology (NICC), Vilvoordsesteenweg 100, 1120, Brussels, Belgium
| | - Alexander van Nuijs
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Radu Oprean
- Department of Analytical Chemistry, Faculty of Pharmacy, 'Iuliu Hațieganu' University of Medicine and Pharmacy Cluj-Napoca, Pasteur 6, 400349, Cluj-Napoca, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, 'Iuliu Hațieganu' University of Medicine and Pharmacy Cluj-Napoca, Pasteur 6, 400349, Cluj-Napoca, Romania
| | - Karolien De Wael
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium.
| |
Collapse
|
6
|
Affiliation(s)
- David Love
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| | - Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
- 70113 Street, N.W., Suite 750, Washington, DC, 20005-3967, USA
| |
Collapse
|
7
|
Joosten F, Parrilla M, van Nuijs AL, Ozoemena KI, De Wael K. Electrochemical detection of illicit drugs in oral fluid: potential for forensic drug testing. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Molecular Insights and Clinical Outcomes of Drugs of Abuse Adulteration: New Trends and New Psychoactive Substances. Int J Mol Sci 2022; 23:ijms232314619. [PMID: 36498947 PMCID: PMC9739917 DOI: 10.3390/ijms232314619] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Adulteration is a well-known practice of drug manufacturers at different stages of drug production. The intentional addition of active ingredients to adulterate the primary drug may enhance or mask pharmacological effects or may produce more potent drugs to increase the number of available doses and the dealer's profit. Adulterants found in different drugs change over time in response to different factors. A systematic literature search in PubMed and Scopus databases and official international organizations' websites according to PRISMA guidelines was performed. A total of 724 studies were initially screened, with 145 articles from PubMed and 462 from Scopus excluded according to the criteria described in the Method Section. The remaining 117 records were further assessed for eligibility to exclude articles without sufficient data. Finally, 79 studies were classified as "non-biological" (n = 35) or "biological" (n = 35 case reports; n = 9 case series) according to the samples investigated. Although the seized samples analyses revealed the presence of well-established adulterants such as levamisole for cocaine or paracetamol/acetaminophen for heroin, the reported data disclosed new adulteration practices, such as the use of NPS as cutting agents for classic drugs of abuse and other NPS. For example, heroin adulterated with synthetic cannabinoids or cocaine adulterated with fentanyl/fentalogues raised particular concern. Notably, adulterants play a role in some adverse effects commonly associated with the primary drug, such as levamisole-adulterated cocaine that may induce vasculitis via an autoimmune process. It is essential to constantly monitor adulterants due to their changing availability that may threaten drug consumers' health.
Collapse
|
9
|
Heroin detection in a droplet hosted in a 3D printed support at the miniaturized electrified liquid-liquid interface. Sci Rep 2022; 12:18615. [PMID: 36329050 PMCID: PMC9633610 DOI: 10.1038/s41598-022-21689-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Simple sensing protocols for the detection of illicit drugs are needed. Electrochemical sensing is especially attractive in this respect, as its cost together with the analytical accuracy aspires to replace still frequently used colorimetric tests. In this work, we have shown that the interfacial transfer of protonated heroin can be followed at the electrified water-1,2-dichloroethane interface. We have comprehensively studied the interfacial behavior of heroin alone and in the presence of its major and abundant cutting agents, caffeine and paracetamol. To maximally increase developed sensing protocol applicability we have designed and 3D printed a platform requiring only a few microliters of the aqueous and the organic phase. The proposed sensing platform was equipped with a cavity hosting a short section of Ag/AgCl electrode, up to 20 µL of the aqueous phase and the end of the micropipette tip being used as a casing of a fused silica capillary having 25 µm as the internal pore diameter. The volume of the organic phase was equal to around 5 µL and was present inside the micropipette tip. We have shown that under optimized conditions heroin can be detected in the presence of caffeine and paracetamol existing in a sample with 10,000 times excess over the analyte of interest. The calculated limit of detection equal to 1.3 µM, linear dynamic range spanning to at least 50 µM, good reproducibility, and very low volume of needed sample is fully in line with forensic demands.
Collapse
|
10
|
Kranenburg RF, Ramaker HJ, van Asten AC. On-site forensic analysis of colored seized materials: Detection of brown heroin and MDMA-tablets by a portable NIR spectrometer. Drug Test Anal 2022; 14:1762-1772. [PMID: 35968822 DOI: 10.1002/dta.3356] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 01/07/2023]
Abstract
The increasing workload for forensic laboratories and the expanding complexity of the drug market necessitates efficient approaches to detect drugs of abuse. Identification directly at the scene of crime enables investigative forces to make rapid decisions. Additionally, on-site identification of the material also leads to considerable efficiency and cost benefits. As such, paperwork, transportation, and time-consuming analysis in a laboratory may be avoided. Near-infrared (NIR) spectroscopy is an analysis technique suitable for rapid drug testing using portable equipment. A possible limitation of spectroscopic analysis concerns the complexity of seized materials. NIR measurements represent composite spectra for mixtures and diagnostic spectral features can be obscured by excipients such as colorants. Herein, a NIR-based (1300-2600 nm) detection of heroin and MDMA in colored casework (i.e., brown powders and ecstasy tablets) using a portable analyzer is presented. The application includes a multistage data analysis model based on the net analyte signal (NAS) approach. This identification model was specifically designed for mixture analysis and requires a limited set of pure reference spectra only. Consequently, model calibration efforts are reduced to a minimum. A total of 549 forensic samples was tested comprising brown heroine samples and a variety of colored tablets with different active ingredients. This investigation led to a >99% true negative and >93% true positive rate for heroin and MDMA. These results show that accurate on-site detection in colored casework is possible using NIR spectroscopy combined with an efficient data analysis model. These findings may eventually help in the transition of routine forensic laboratories from laboratory-based techniques to portable equipment operated on scene.
Collapse
Affiliation(s)
- Ruben F Kranenburg
- Unit Amsterdam, Forensic Laboratory, Dutch National Police, Amsterdam, The Netherlands.,Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, GD, The Netherlands
| | | | - Arian C van Asten
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, GD, The Netherlands.,Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Carbon nanotubes coated with hybrid nanocarbon layers for electrochemical sensing of psychoactive drug. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Paraformaldehyde-coated electrochemical sensor for improved on-site detection of amphetamine in street samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Van Echelpoel R, Kranenburg RF, van Asten AC, De Wael K. Electrochemical detection of MDMA and 2C-B in ecstasy tablets using a selectivity enhancement strategy by in-situ derivatization. Forensic Chem 2022. [DOI: 10.1016/j.forc.2021.100383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Li C, Han D, Wu Z, Liang Z, Han F, Chen K, Fu W, Han D, Wang Y, Niu L. Polydopamine-based molecularly imprinted electrochemical sensor for the highly selective determination of ecstasy components. Analyst 2022; 147:3291-3297. [DOI: 10.1039/d2an00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical sensor based on molecularly imprinted polydopamine (MIP@PDA) for detecting the main components of ecstasy, MDA and MDMA.
Collapse
Affiliation(s)
- Chen Li
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Dongfang Han
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhifang Wu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhishan Liang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Fangjie Han
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Ke Chen
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Wencai Fu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Dongxue Han
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, PR China
| | - Yukai Wang
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, PR China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
15
|
Voltammetric sensing using an array of modified SPCE coupled with machine learning strategies for the improved identification of opioids in presence of cutting agents. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Felipe Montiel N, Parrilla M, Beltrán V, Nuyts G, Van Durme F, De Wael K. The opportunity of 6-monoacetylmorphine to selectively detect heroin at preanodized screen printed electrodes. Talanta 2021; 226:122005. [DOI: 10.1016/j.talanta.2020.122005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 12/10/2020] [Indexed: 01/21/2023]
|
17
|
Sleegers N, van Nuijs ALN, van den Berg M, De Wael K. Electrochemistry of Intact Versus Degraded Cephalosporin Antibiotics Facilitated by LC-MS Analysis. Anal Chem 2021; 93:2394-2402. [PMID: 33393285 DOI: 10.1021/acs.analchem.0c04286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrochemical detection of cephalosporins is a promising approach for the monitoring of cephalosporin levels in process waters. However, this class of antibiotics, like penicillins, is composed of chemically active molecules and susceptible to hydrolysis and aminolysis of the four membered β-lactam ring present. In order to develop a smart monitoring strategy for cephalosporins, the influence of degradation (hydrolysis and aminolysis) on the electrochemical fingerprint has to be taken into account. Therefore, an investigation was carried out to understand the changes of the voltammetric fingerprints upon acidic and alkaline degradation. Changes in fingerprints were correlated to the degradation pathways through the combination of square wave voltammetry and liquid chromatography quadrupole time-of-flight analysis. The characteristic electrochemical signals of the β-lactam ring disappeared upon hydrolysis. Additional oxidation signals that appeared after degradation were elucidated and linked to different degradation products, and therefore, enrich the voltammetric fingerprints with information of the state of the cephalosporins. The applicability of the electrochemical monitoring system was explored by the analysis of the intact and degraded industrial process waters containing the key intermediate 7-aminodeacetoxycephalosporanic acid (7-ADCA). Clearly, the intact process samples exhibited the expected core signals of 7-ADCA and could be quantified, while the degraded samples only showed the newly formed degradation products.
Collapse
Affiliation(s)
- Nick Sleegers
- AXES Research Group, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,NANOlab Center of Excellence, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Alexander L N van Nuijs
- Department of Pharmaceutical Sciences, Toxicological Centre, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | - Karolien De Wael
- AXES Research Group, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,NANOlab Center of Excellence, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
18
|
Truta F, Florea A, Cernat A, Tertis M, Hosu O, de Wael K, Cristea C. Tackling the Problem of Sensing Commonly Abused Drugs Through Nanomaterials and (Bio)Recognition Approaches. Front Chem 2020; 8:561638. [PMID: 33330355 PMCID: PMC7672198 DOI: 10.3389/fchem.2020.561638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/26/2020] [Indexed: 11/26/2022] Open
Abstract
We summarize herein the literature in the last decade, involving the use of nanomaterials and various (bio)recognition elements, such as antibodies, aptamers and molecularly imprinted polymers, for the development of sensitive and selective (bio)sensors for illicit drugs with a focus on electrochemical transduction systems. The use and abuse of illicit drugs remains an increasing challenge for worldwide authorities and, therefore, it is important to have accurate methods to detect them in seized samples, biological fluids and wastewaters. They are recently classified as the latest group of “emerging pollutants,” as their consumption has increased tremendously in recent years. Nanomaterials, antibodies, aptamers and molecularly imprinted polymers have gained much attention over the last decade in the development of (bio)sensors for a myriad of applications. The applicability of these (nano)materials, functionalized or not, has significantly increased, and are therefore highly suitable for use in the detection of drugs. Lately, such functionalized nanoscale materials have assisted in the detection of illicit drugs fingerprints, providing large surface area, functional groups and unique properties that facilitate sensitive and selective sensing. The review discusses the types of commonly abused drugs and their toxicological implications, classification of functionalized nanomaterials (graphene, carbon nanotubes), their fabrication, and their application on real samples in different fields of forensic science. Biosensors for drugs of abuse from the last decade's literature are then exemplified. It also offers insights into the prospects and challenges of bringing the functionalized nanobased technology to the end user in the laboratories or in-field.
Collapse
Affiliation(s)
- Florina Truta
- Department of Analytical Chemistry, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Florea
- Department of Analytical Chemistry, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreea Cernat
- Department of Analytical Chemistry, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oana Hosu
- Department of Analytical Chemistry, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Karolien de Wael
- Antwerp X-ray Analysis, Electrochemistry and Speciation Research Group, University of Antwerp, Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Cecilia Cristea
- Department of Analytical Chemistry, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
19
|
de Jong M, Florea A, Daems D, Van Loon J, Samyn N, De Wael K. Electrochemical analysis of speedball-like polydrug samples. Analyst 2020; 145:6091-6096. [PMID: 32840270 DOI: 10.1039/d0an01097a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Increasing global production, trafficking and consumption of drugs of abuse is an emerging threat to people's health and safety. Electrochemical approaches have been proved to be useful for on-site analysis of drugs of abuse. However, less attention has been focused on the analysis of polydrug samples, even though these samples pose severe health concerns, especially when stimulants and depressants are combined, as is the case of speedball, a mixture of cocaine and heroin. In this work, we provide solutions for the selective detection of cocaine (stimulant) in polydrug samples adulterated with heroin and codeine (depressants). The presence of either one of these compounds in cocaine street samples leads to an overlap with the cocaine signal in square-wave voltammetry measurements at unmodified carbon screen-printed electrodes, leading to inconclusive screening results in the field. The provided solutions to this problem consist of two parallel approaches: (i) cathodic pretreatment of the carbon screen-printed electrode surface prior to measurement under both alkaline and neutral conditions and (ii) electropolymerization of orthophenylenediamine on graphene modified carbon screen-printed electrodes prior to measurement under neutral conditions. Both strategies allow simultaneous detection of cocaine and heroin in speedball samples as well as simultaneous detection of cocaine and codeine. Implementing these strategies in portable devices holds great potential for significantly improved accuracy of on-site cocaine screening in polydrug samples.
Collapse
Affiliation(s)
- Mats de Jong
- AXES Research Group, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | | | | | | | | | | |
Collapse
|
20
|
De Rycke E, Stove C, Dubruel P, De Saeger S, Beloglazova N. Recent developments in electrochemical detection of illicit drugs in diverse matrices. Biosens Bioelectron 2020; 169:112579. [PMID: 32947080 DOI: 10.1016/j.bios.2020.112579] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023]
Abstract
Drug abuse is a global problem, requiring an interdisciplinary approach. Discovery, production, trafficking, and consumption of illicit drugs have been constantly growing, leading to heavy consequences for environment, human health, and society in general. Therefore, an urgent need for rapid, sensitive, portable and easy-to-operate detection methods for numerous drugs of interest in diverse matrices, from police samples, biological fluids and hair to sewage water has risen. Electrochemical sensors are promising alternatives to chromatography and spectrometry. Last decades, electrochemical sensing of illegal drugs has experienced a very significant growth, driven by improved transducers and signal amplifiers helping to improve the sensitivity and selectivity. The present review summarizes recent advances (last 10 years) in electrochemical detection of the most prevailing illicit drugs (such as cocaine, heroin, and (meth)amphetamine), their precursors and derivatives in different matrices. Various electrochemical sensors making use of different transducers with their (dis)advantages were discussed, and their sensitivity and applicability were critically compared. In those cases where natural or synthetic recognition elements were included in the sensing system to increase specificity, selected recognition elements, their immobilization, working conditions, and analytical performance were discussed. Finally, an outlook is presented with suggestions and recommendations for future developments.
Collapse
Affiliation(s)
- Esther De Rycke
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-Bis, B-9000 Ghent, Belgium.
| | - Christophe Stove
- Laboratory of Toxicology, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-Bis, B-9000 Ghent, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Natalia Beloglazova
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; Nanotechnology Education and Research Center, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
21
|
Schram J, Parrilla M, Sleegers N, Samyn N, Bijvoets SM, Heerschop MWJ, van Nuijs ALN, De Wael K. Identifying Electrochemical Fingerprints of Ketamine with Voltammetry and Liquid Chromatography–Mass Spectrometry for Its Detection in Seized Samples. Anal Chem 2020; 92:13485-13492. [DOI: 10.1021/acs.analchem.0c02810] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jonas Schram
- AXES Group, Bioscience Engineering Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Marc Parrilla
- AXES Group, Bioscience Engineering Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Nick Sleegers
- AXES Group, Bioscience Engineering Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Nele Samyn
- Drugs and Toxicology Department, National Institute for Criminalistics and Criminology, Vilvoordsesteenweg 100, 1120 Brussels, Belgium
| | - Stefan M. Bijvoets
- Dutch Customs Laboratory, Kingsfordweg 1, Amsterdam, 1043 GN, The Netherlands
| | | | | | - Karolien De Wael
- AXES Group, Bioscience Engineering Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
22
|
Mella-Raipán J, Romero-Parra J, Recabarren-Gajardo G. DARK Classics in Chemical Neuroscience: Heroin and Desomorphine. ACS Chem Neurosci 2020; 11:3905-3927. [PMID: 32568519 DOI: 10.1021/acschemneuro.0c00262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Opioids are arguably one of the most important pharmacologic classes, mainly due to their rich history, their useful and potent analgesic effects, and also, just as importantly, their "Dark Side", constituted by their reinforcing properties that have led countless of users to a spiral of addiction, biological dependence, tolerance, withdrawal syndromes, and death. Among the most significant abused and addictive known opioids are heroin and desomorphine, both synthetic derivatives of morphine that belong to the 4,5-epoxymorphinan structural chemical group of the opioid family drugs. These agents share not only structural, pharmacological, and epidemiological features but also a common geographical distribution. A drop in Afghan heroin production and its "exports" to Russia gave rise to widespread consumption of desomorphine in ex-Soviet republics during the first decade of the 21st century, representing an economical and accessible alternative for misusers to this sort of derivative. Herein we review the state of the art of history, chemistry and synthesis, pharmacology, and impact on society of these "cursed cousins".
Collapse
Affiliation(s)
- Jaime Mella-Raipán
- Instituto de Quı́mica y Bioquı́mica, Facultad de Ciencias, Universidad de Valparaı́so, Av. Gran Bretaña 1111, Valparaı́so 2360102, Chile
- Facultad de Farmacia, Centro de Investigación Farmacopea Chilena, Universidad de Valparaı́so,, Av. Gran Bretaña 1093, Valparaı́so 2360102, Chile
| | - Javier Romero-Parra
- Departamento de Quı́mica Orgánica y Fisicoquı́mica, Facultad de Ciencias Quı́micas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Casilla
233, 8380492 Santiago, Chile
| | - Gonzalo Recabarren-Gajardo
- Bioactive Heterocycles Synthesis Laboratory, BHSL, Departamento de Farmacia, Facultad de Quı́mica y de Farmacia, Pontificia Universidad Católica de Chile, Casilla 306, Avda. Vicuña Mackenna 4860, Macul, 7820436 Santiago, Chile
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile,, Marcoleta 391, 8330024 Santiago, Chile
| |
Collapse
|
23
|
Moro G, Barich H, Driesen K, Felipe Montiel N, Neven L, Domingues Mendonça C, Thiruvottriyur Shanmugam S, Daems E, De Wael K. Unlocking the full power of electrochemical fingerprinting for on-site sensing applications. Anal Bioanal Chem 2020; 412:5955-5968. [DOI: 10.1007/s00216-020-02584-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
|
24
|
Brown K, Jacquet C, Biscay J, Allan P, Dennany L. Electrochemiluminescent sensors as a screening strategy for psychoactive substances within biological matrices. Analyst 2020; 145:4295-4304. [DOI: 10.1039/d0an00846j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Electrochemiluminescent sensors for point-of-care devices; a screening strategy for the direct detection of hallucinogens within a variety of biological matrices.
Collapse
Affiliation(s)
- Kelly Brown
- WESTChem Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
- UK
| | - Charlotte Jacquet
- WESTChem Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
- UK
| | - Julien Biscay
- WESTChem Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
- UK
| | - Pamela Allan
- WESTChem Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
- UK
| | - Lynn Dennany
- WESTChem Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
- UK
| |
Collapse
|
25
|
Brown K, Jacquet C, Biscay J, Allan P, Dennany L. Tale of Two Alkaloids: pH-Controlled Electrochemiluminescence for Differentiation of Structurally Similar Compounds. Anal Chem 2019; 92:2216-2223. [DOI: 10.1021/acs.analchem.9b04922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kelly Brown
- WestChem Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K
| | - Charlotte Jacquet
- WestChem Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K
| | - Julien Biscay
- WestChem Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K
| | - Pamela Allan
- WestChem Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K
| | - Lynn Dennany
- WestChem Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K
| |
Collapse
|