1
|
Xin MK, Sun X, Tang HW, Li CY. Near-Infrared Light-Powered and DNA Nanocage-Confined Catalytic Hairpin Assembly Nanobiosensor with a Nucleic Acid Restriction Behavior and Reinforced Enzymatic Resistance for Robust Imaging Assay in Live Biosystems. Anal Chem 2024; 96:7101-7110. [PMID: 38663376 DOI: 10.1021/acs.analchem.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
While DNA amplifier-built nanobiosensors featuring a DNA polymerase-free catalytic hairpin assembly (CHA) reaction have shown promise in fluorescence imaging assays within live biosystems, challenges persist due to unsatisfactory precision stemming from premature activation, insufficient sensitivity arising from low reaction kinetics, and poor biostability caused by endonuclease degradation. In this research, we aim to tackle these issues. One aspect involves inserting an analyte-binding unit with a photoinduced cleavage bond to enable a light-powered notion. By utilizing 808 nm near-infrared (NIR) light-excited upconversion luminescence as the ultraviolet source, we achieve entirely a controllable sensing event during the biodelivery phase. Another aspect refers to confining the CHA reaction within the finite space of a DNA self-assembled nanocage. Besides the accelerated kinetics (up to 10-fold enhancement) resulting from the nucleic acid restriction behavior, the DNA nanocage further provides a 3D rigid skeleton to reinforce enzymatic resistance. After selecting a short noncoding microRNA (miRNA-21) as the modeled low-abundance sensing analyte, we have verified that the innovative NIR light-powered and DNA nanocage-confined CHA nanobiosensor possesses remarkably high sensitivity and specificity. More importantly, our sensing system demonstrates a robust imaging capability for this cancer-related universal biomarker in live cells and tumor-bearing mouse bodies, showcasing its potential applications in disease analysis.
Collapse
Affiliation(s)
- Meng-Kun Xin
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Xiaoming Sun
- School of Basic Medical Sciences, Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, P. R. China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Cheng-Yu Li
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| |
Collapse
|
2
|
Huang J, Cui K, Li L, Li X, Wang F, Wang Y, Zhang Y, Ge S, Yu J. Paper-Supported Photoelectrochemical Biosensor for Dual-Mode miRNA-106a Assay: Integration of Luminescence-Confined Upconversion-Actuated Fluorescent Resonance Energy Transfer and CRISPR/Cas13a-Powered Cascade DNA Circuits. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16048-16059. [PMID: 37918973 DOI: 10.1021/acs.langmuir.3c02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Near-infrared (NIR)-responsive bioassays based on upconversion nanoparticle (UCNP) incorporating high-performance semiconductors have been developed by researchers, but most lack satisfactory ultrasensitivity for exceedingly trace amounts of target. Herein, for the first time, the CRISPR/Cas13a system is combined with cascade DNA circuits, fluorescent resonance energy transfer (FRET) effect, and luminescence-confined UCNPs-bonded CuInS2/ZnO p-n heterostructures-functionalized paper-working electrode to construct dual-signal-on paper-supported NIR-irradiated photoelectrochemical (PEC) (NIR-PEC) and upconversion luminescence (UCL) bioassay for high-sensitive quantification of miRNA-106a (miR-106a). By constructing an ideal FAM-labeled aminating molecular beacon (FAM-H2) model, a relatively good FRET ratio between the UCNP and FAM (≈85.3%) can be achieved. In the existence of miR-106a, the hairpin-structure FAM-H2 was unwound, bringing about the distance increase of UCNP and FAM and the restraint of FRET. Accordingly, both the NIR-PEC signal and the UCL intensity gradually recovered distinctly. Unlike conventional single-mode PEC sensors, with NIR excitation, the designed dual-mode sensing system could implement minimized misdiagnose assay and quantitative miR-106a determination with low detection limits, that is, 76.54 and 51.36 aM for NIR-PEC and UCL detection, respectively. This work not only broadens the horizon of application of the CRISPR/Cas13a strategy toward biosensing but also constructs a new structure of the UCNP-semiconductor in the exploration of efficient NIR-responsive tools and inspires the construction of a no-misdiagnosed and novel biosensor for dual-mode liquid biopsy.
Collapse
Affiliation(s)
- Jiali Huang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Fengyi Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Yangyang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| |
Collapse
|
3
|
K S, K M, Bankapur A, George SD. Energy transfer between optically trapped single ligand-free upconversion nanoparticle and dye. NANOTECHNOLOGY 2023; 34:175702. [PMID: 36706452 DOI: 10.1088/1361-6528/acb69f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The quenching in luminescence emission of an optically trapped ligand-free hydrophilic NaYF4:Yb, Er upconversion nanoparticle (UCNP) as a function of rose Bengal dye molecule is investigated here. The removal of oleate capping of the as-prepared UCNPs was achieved via acid treatment and characterized via FTIR and Raman spectroscopic techniques. Further, the capping removed hydrophilic single UCNP is optically trapped and the emission studies were carried out as a function of excitation laser power. Compared to the studies using the bulk solution, the single UCNP luminescence spectrum exhibited additional spectral lines. The excitation laser power-dependent studies using the bulk solution yield a slope value between 1 and 2 for Blue, Green 1, Green 2, and Red emission and thus indicate that upconversion is a two-photon upconversion process. On the other hand, in the case of laser power-dependent studies on an optically trapped single-particle study, Blue and Green 1 yield a slope value of less than 1 whereas Green 2 and Red emission gave a slope value between 1 and 2. The energy transfer studies between an optically trapped ligand-free single UCNP and the rose Bengal dye show a concentration-dependent quenching in the emission of Green emissions and illustrate the potential of developing sensor platforms.
Collapse
Affiliation(s)
- Suresh K
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Monisha K
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Aseefhali Bankapur
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Centre for Applied Nanosciences (CAN), Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
4
|
Li CY, Liu JX, Yuheng L, Gao JL, Chen YL, He JW, Xin MK, Liu D, Zheng B, Sun X. Upconversion Luminescence-Initiated and GSH-Responsive Self-Driven DNA Motor for Automatic Operation in Living Cells and In Vivo. Anal Chem 2022; 94:5450-5459. [PMID: 35324151 DOI: 10.1021/acs.analchem.2c00830] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In light of the worthy design flexibility and the good signal amplification capacity, the recently developed DNA motor (especially the DNA walker)-based fluorescent biosensors can offer an admirable choice for realizing bioimaging. However, this attractive biosensing strategy not only has the disadvantage of uncontrollable initiation but also usually demands the supplement of exogenous driving forces. To handle the above obstacles, some rewarding solutions are proposed here. First, on the surface of an 808 nm near-infrared light-excited low-heat upconversion nanoparticle, a special ultraviolet upconversion luminescence-initiated three-dimensional (3D) walking behavior is performed by embedding a photocleavage linker into the sensing elements, and such light-controlled target recognition can perfectly overcome the pre-triggering of the biosensor during the biological delivery to significantly boost the sensing precision. After that, a peculiar self-driven walking pattern is constructed by employing MnO2 nanosheets as an additional nanovector to physically absorb the sensing frame, for which the reduction of the widespread glutathione in the biological medium can bring about sufficient self-supplied Mn2+ to guarantee the walking efficiency. By selecting an underlying next-generation broad-spectrum cancer biomarker (survivin messenger RNA) as the model target, we obtain that the newly formed autonomous 3D DNA motor shows a commendable sensitivity (where the limit of detection is down to 0.51 pM) and even an outstanding specificity for distinguishing single-base mismatching. Beyond this sound assay performance, our sensing approach is capable of working as a powerful imaging platform for accurately operating in various living specimens such as cells and bodies, showing a favorable diagnostic ability for cancer care.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Jun-Xian Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Liu Yuheng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Jia-Ling Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Ya-Ling Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Jing-Wei He
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Meng-Kun Xin
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Bei Zheng
- Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou 310024, People's Republic of China
| | - Xiaoming Sun
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| |
Collapse
|
5
|
Gao JL, Yuheng L, Liu JX, Tang HW, Li CY. A Photoresponsive and Metal-Organic Framework Encapsulated DNA Tetrahedral Entropy-Driven Amplifier for High-Performance Imaging Intracellular MicroRNA. Anal Chem 2021; 93:16638-16645. [PMID: 34855353 DOI: 10.1021/acs.analchem.1c04105] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The further development of high-performance fluorescent biosensors to image intracellular microRNAs is beneficial to cancer medicine. By virtue of the need for enzymes and hairpin DNA probes, the entropy-driven reaction-assisted signal amplification strategy has shown an enormous potential to accomplish this task. Nevertheless, this good option still meets with poor biostability, low cell uptake efficiency, and unsatisfactory accuracy. On the basis of these challenges, we put forward here a battery of solving pathways. First, the straight DNA probes are anchored onto the vertexes of dual DNA tetrahedrons, and thus the enzyme resistance of the whole sensing system is observably enhanced. A metal-organic framework (ZIF-8 nanoparticle), which can be effectively dissociated into a weakly acidic environment, then is employed as an additional delivery vehicle to encapsulate such a DNA tetrahedron sustained biosensor and finally bring about a more efficient endocytosis. Last, a kind of photocleavage-linker triggered photoresponsive manner is incorporated to achieve an exceptional precise target identification, by which the biosensor can only be initiated under the irradiation of an externally mild 365 nm ultraviolet light source. In accordance with the above efforts, worthy assay performance toward microRNA-196a has given rise to this newly constructed biosensor, whose sensitivity is down to 2.7 pM and also able to distinguish single-base variation. Beyond that, the amplifier can work as a powerful imaging toolbox to accurately determine the targets in living cells, providing a promising intracellular sensing platform.
Collapse
Affiliation(s)
- Jia-Ling Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Liu Yuheng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Jun-Xian Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| |
Collapse
|
6
|
Li CY, Zheng B, Lu LL, Fang WK, Zheng MQ, Gao JL, Yuheng L, Pang DW, Tang HW. Biomimetic Chip Enhanced Time-Gated Luminescent CRISPR-Cas12a Biosensors under Functional DNA Regulation. Anal Chem 2021; 93:12514-12523. [PMID: 34490773 DOI: 10.1021/acs.analchem.1c01403] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite that the currently discovered CRISPR-Cas12a system is beneficial for improving the detection accuracy and design flexibility of luminescent biosensors, there are still challenges to extend target species and strengthen adaptability in complicated biological media. To conquer these obstacles, we present here some useful strategies. For the former, the limitation to nucleic acids assay is broken through by introducing a simple functional DNA regulation pathway to activate the unique trans-cleavage effect of this CRISPR system, under which the expected biosensors are capable of effectively transducing a protein (employing dual aptamers) and a metal ion (employing DNAzyme). For the latter, a time-gated luminescence resonance energy transfer imaging manner using a long-persistent nanophosphor as the energy donor is performed to completely eliminate the background interference and a nature-inspired biomimetic periodic chip constructed by photonic crystals is further combined to enhance the persistent luminescence. In line with the above efforts, the improved CRISPR-Cas12a luminescent biosensor not only exhibits a sound analysis performance toward the model targets (carcinoembryonic antigen and Na+) but also owns a strong anti-interference feature to actualize accurate sensing in human plasma samples, offering a new and applicative analytical tool for laboratory medicine.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Bei Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.,Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, 310024, People's Republic of China
| | - Li-Li Lu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China.,Institute of Pharmaceutical Innovation, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Wen-Kai Fang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Ming-Qiu Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jia-Ling Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Liu Yuheng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| |
Collapse
|
7
|
Fang WK, Liu L, Zhang LL, Liu D, Liu Y, Tang HW. Detection of Amyloid β Oligomers by a Fluorescence Ratio Strategy Based on Optically Trapped Highly Doped Upconversion Nanoparticles-SiO 2@Metal-Organic Framework Microspheres. Anal Chem 2021; 93:12447-12455. [PMID: 34449219 DOI: 10.1021/acs.analchem.1c02679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD), known as a progressive neurodegenerative disorder, has had a terrible impact on the health of aged people. Due to its severity, early diagnosis of AD is significant to retard the progress and provide timely treatment. Here, we report a fluorescence ratio detection of AD biomarker amyloid β oligomers (AβOs) by combining highly doped upconversion nanoparticles-SiO2@metal-organic framework/black hole quencher (H-USM/BHQ-1) microspheres with optical tweezer (OT) microscopic imaging. Optical trapping a single microsphere not only avoids the interference of fluid viscosity but also provides a high power density laser source to efficiently stimulate upconversion luminescence (UCL) of highly doped upconversion nanoparticles (H-UCNPs). Under this condition, H-UCNPs show stronger UCL and greater power-dependent properties compared to low-doped ones. Moreover, the closely packed quenching molecules BHQ-1 on a metal-organic framework (ZIF-8) exhibit excellent quenching efficiency for upconversion 525 and 540 nm emission. Also, the luminescent resonance energy transfer efficiency reaches 89.58%. When different concentrations of AβOs are present, the UCL540 recovers due to the decomposition of ZIF-8 and the release of BHQ-1. Using 540 and 654 nm emission ratio of highly doped UCNPs as reporters, the limit of detection reaches 28.4 pM for the quantitative determination of AβOs. Besides, this strategy is able to selectively quantify the AβO concentration. Therefore, we demonstrated the combination of optical trapping and highly doped UCNPs which is applied for the detection of AβOs with high sensitivity and specificity.
Collapse
Affiliation(s)
- Wen-Kai Fang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Liu Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Li-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
8
|
Gao JL, Liu YH, Zheng B, Liu JX, Fang WK, Liu D, Sun XM, Tang HW, Li CY. Light-Activated and Self-Driven Autonomous DNA Nanomachine Enabling Fluorescence Imaging of MicroRNA in Living Cells with Exceptional Precision and Efficiency. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31485-31494. [PMID: 34184527 DOI: 10.1021/acsami.1c07333] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to their favorable design flexibility and eminent signal amplification ability, DNA nanomachine-supported biosensors have provided an attractive avenue for intracellular fluorescence imaging, especially for DNA walkers. However, this promising option not only suffers from poor controllability but also needs to be supplied with additional driving forces on account of the frequent employment of metal ion-dependent DNAzymes. Aiming at overcoming these obstacles, we introduce some fruitful solutions. On one hand, innovative light-activated walking behavior induced by a photocleavage mode is established on the surfaces of gold nanoparticles, and such a photoselective sensing system can be perfectly prevented from pre-activating during the intracellular delivery process and made to achieve target identification only under irradiation using a moderate ultraviolet light source. On the other hand, this light-switchable sensing frame is encapsulated within a dissociable metal-organic framework (ZIF-8) to facilitate endocytosis and ensure sufficient internal cofactors (Zn2+) to realize a self-driven pattern in the acidic environment of the cell lysosome. Based on the abovementioned efforts, the newly constructed autonomous three-dimensional DNA walkers present satisfactory sensitivity (a limit of detection of down to 19.4 pM) and specificity (even distinguishing single-base changes) toward a model biomarker (microRNA-21). More importantly, the sensing method allows determination of the variations in targets in living cancer cells with exceptional precision and efficiency, offering a powerful assay platform for intracellular imaging.
Collapse
Affiliation(s)
- Jia-Ling Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Yu-Heng Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Bei Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
- Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou 310024, People's Republic of China
| | - Jun-Xian Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Wen-Kai Fang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiao-Ming Sun
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Human Aantomy, School of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| |
Collapse
|
9
|
Zhao J, Li Z, Shao Y, Hu W, Li L. Spatially Selective Imaging of Mitochondrial MicroRNAs via Optically Programmable Strand Displacement Reactions. Angew Chem Int Ed Engl 2021; 60:17937-17941. [PMID: 34117823 DOI: 10.1002/anie.202105696] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Indexed: 12/14/2022]
Abstract
MicroRNA (miRNA) functions are tightly regulated by their sub-compartmental location in living cells, and the ability to imaging of mitochondrial miRNAs (mitomiRs) is essential for understanding of the related pathological processes. However, most existing DNA-based methods could not be used for this purpose. Here, we report the development of a DNA nanoreporter technology for imaging of mitomiRs in living cells through near-infrared (NIR) light-controlled DNA strand displacement reactions. The sensing function of the DNA nanoreporters are silent (OFF) during the delivery process, but can be photoactivated (ON) with NIR light after targeted mitochondrial localization, enabling spatially-restricted imaging of two types of cancer-related mitomiRs with improved detection accuracy. Furthermore, we demonstrate imaging of mitomiRs in vivo through spatiotemporally-controlled delivery and activation. Therefore, this study illustrates a simple methodology that may be broadly applicable for investigating the mitomiRs-associated physiological events.
Collapse
Affiliation(s)
- Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhixiang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Yulei Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
10
|
Spatially Selective Imaging of Mitochondrial MicroRNAs via Optically Programmable Strand Displacement Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105696] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Liu YH, Gao JL, Liu JX, Liu D, Fang WK, Zheng B, Tang HW, Li CY. Photo-gated and self-powered three-dimensional DNA motors with boosted biostability for exceptionally precise and efficient tracing of intracellular survivin mRNA. Biosens Bioelectron 2021; 190:113445. [PMID: 34153827 DOI: 10.1016/j.bios.2021.113445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/03/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Benefiting from the outstanding signal amplification effect and the admirable construction flexibility, the currently proposed DNA motors (particularly DNA walkers) based biosensing concepts have provided a forceful fluorescence imaging tool for intracellular detection. Even so, this promising sensing means is not only subject to poor controllability and prone to produce false signals but also requires exogenous powering forces owing to the common employment of DNAzyme. In response to these challenges, we are herein motivated to present some meaningful solving strategies. For one thing, the surfaces of gold nanoparticles are conducted with a photo-gated walking behavior by introducing a photocleave mode, under which the light-switchable DNA walkers are capable of being selectively activated via an external ultraviolet source to faultlessly prevent the sensing frame from being pre-initiated during cellular uptake and intracellular delivery. For another, the intracellular biothiols are consumed by MnO2 nanosheets to effectively avoid the competitions to Au-S bonds to eliminate potential false outputs and also self-supply sufficient cofactors (Mn2+) to actualize a self-powered operation pattern as well as facilitate the endocytosis process. Following these breakthroughs, a favorable analysis performance towards a model tumor biomarker (survivin mRNA) is endowed with the newly raised biosensor, whose sensitivity is low to pM level with a sound specificity for identifying single base mismatching. Moreover, the significantly improved autonomous three-dimensional DNA walkers can be used to determine and dynamically trace the targets in live cancer cells with an exceptional precise and efficient manner, commendably impelling the sensing ability of DNA motors in biological specimens.
Collapse
Affiliation(s)
- Yu-Heng Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Jia-Ling Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Jun-Xian Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Wen-Kai Fang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Bei Zheng
- Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, 310024, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China.
| |
Collapse
|
12
|
Li CY, Zheng B, Li JT, Gao JL, Liu YH, Pang DW, Tang HW. Holographic Optical Tweezers and Boosting Upconversion Luminescent Resonance Energy Transfer Combined Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas12a Biosensors. ACS NANO 2021; 15:8142-8154. [PMID: 33428399 DOI: 10.1021/acsnano.0c09986] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Taking advantage of outstanding precision in target recognition and trans-cleavage ability, the recently discovered CRISPR/Cas12a system provides an alternative opportunity for designing fluorescence biosensors. To fully exploit the analytical potential, we introduce here some meaningful concepts. First, the collateral cleavage of CRISPR/Cas12a is efficiently activated in a functional DNA regulation manner and the bottleneck which largely applicable to nucleic acids detection is broken. After selection of a representative aptamer and DNAzyme as the transduction pathways, the sensing coverage is extended to a small organic compound (ATP) and a metal ion (Na+). The assay sensitivity is significantly improved by utilizing a bead-supported enrichment strategy wherein emerging holographic optical tweezers are used to enhance imaging stability and simultaneously achieve multiflux analysis. Last, a sandwich-structured energy-concentrating upconversion nanoparticle triggered boosting luminescent resonance energy transfer mode is comined to face with complicated biological samples by skillfully confining the emitters into a very limited inner shell. Following the above attempts, the developed CRISPR/Cas12a biosensors not only present an ultrasensitive assay behavior toward these model non-nucleic acid analytes but also can serve as a formidable toolbox for determining real samples including single cell lysates and human plasma, proving a good practical application capacity.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Bei Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jiang-Tao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jia-Ling Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Yu-Heng Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hong-Wu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| |
Collapse
|
13
|
Kalogianni DP. Nanotechnology in emerging liquid biopsy applications. NANO CONVERGENCE 2021; 8:13. [PMID: 33934252 PMCID: PMC8088419 DOI: 10.1186/s40580-021-00263-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/23/2021] [Indexed: 05/17/2023]
Abstract
Liquid biopsy is considered as the most attractive alternative to traditional tissue biopsies. The major advantages of this approach lie in the non-invasive procedure, the rapidness of sample collection and the potential for early cancer diagnosis and real-time monitoring of the disease and the treatment response. Nanotechnology has dynamically emerged in a wide range of applications in the field of liquid biopsy. The benefits of using nanomaterials for biosensing include high sensitivity and detectability, simplicity in many cases, rapid analysis, the low cost of the analysis and the potential for portability and personalized medicine. The present paper reports on the nanomaterial-based methods and biosensors that have been developed for liquid biopsy applications. Most of the nanomaterials used exhibit great analytical performance; moreover, extremely low limits of detection have been achieved for all studied targets. This review will provide scientists with a comprehensive overview of all the nanomaterials and techniques that have been developed for liquid biopsy applications. A comparison of the developed methods in terms of detectability, dynamic range, time-length of the analysis and multiplicity, is also provided.
Collapse
|
14
|
Near-infrared light excited UCNP-DNAzyme nanosensor for selective detection of Pb2+ and in vivo imaging. Talanta 2021; 227:122156. [DOI: 10.1016/j.talanta.2021.122156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022]
|
15
|
Li CY, Zheng B, Liu YH, Gao JL, Zheng MQ, Pang DW, Tang HW. A boosting upconversion luminescent resonance energy transfer and biomimetic periodic chip integrated CRISPR/Cas12a biosensor for functional DNA regulated transduction of non-nucleic acid targets. Biosens Bioelectron 2020; 169:112650. [DOI: 10.1016/j.bios.2020.112650] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
|
16
|
DSN/TdT recycling digestion based cyclic amplification strategy for microRNA assay. Talanta 2020; 219:121173. [PMID: 32887095 DOI: 10.1016/j.talanta.2020.121173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 01/02/2023]
Abstract
Sensitive and specific detection of microRNAs (miRNAs) is of great significance for early cancer diagnosis. Here we report a simple and sensitive fluorescence signal amplification strategy that based on DSN/TdT recycling digestion for miRNA detection. DSN initiates DNA digestion on 3'-phosphate-primer/miRNA heteroduplex which causes miRNA recycle. The digested DNA strands with 3'-OH ends enable TdT to synthesize a polydeoxyguanylic tails on the 3'-end. The DNAs with polydeoxyguanylic tails are converted to double-stranded-DNA prior to initiation of DSN/TdT recycling digestion. With the cooperation of TdT and DSN, a new round of digestion and extension is triggered, leading to massive fluorophores separating and signal amplification. The amplification strategy produces large amounts of 3'-OH probes that can be used directly for dsDNA enrichment and DSN digestion. Moreover, both DSN digestion and TdT extension are sequence-independent reaction without the need of complex sequences design. In addition, this strategy is utilized to analyze miRNA samples from MCF-7 cell lysates and Cu (II) ion samples, indicating its potential application in actual sample analysis. The method shows a promising analytical platform for DNA nicking-related studies and tumor biomarkers measuring in clinical diagnostics.
Collapse
|
17
|
Zheng B, Kang YF, Zhang T, Li CY, Huang S, Zhang ZL, Wu QS, Qi CB, Pang DW, Tang HW. Improving Flow Bead Assay: Combination of Near-Infrared Optical Tweezers Stabilizing and Upconversion Luminescence Encoding. Anal Chem 2020; 92:5258-5266. [DOI: 10.1021/acs.analchem.9b05800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bei Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ya-Feng Kang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ting Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People’s Republic of China
| | - Sha Huang
- Electronic information school, Wuhan University, Wuhan 430072, China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Qiong-Shui Wu
- Electronic information school, Wuhan University, Wuhan 430072, China
| | - Chu-Bo Qi
- Hubei Cancer Hospital, Wuhan, 430079, People’s Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Hong-Wu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
18
|
Li Q, Zhou S, Zhang T, Zheng B, Tang H. Bioinspired sensor chip for detection of miRNA-21 based on photonic crystals assisted cyclic enzymatic amplification method. Biosens Bioelectron 2020; 150:111866. [DOI: 10.1016/j.bios.2019.111866] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/08/2023]
|
19
|
Li CY, Zheng B, Kang YF, Tang HW, Pang DW. Integrating 808 nm Light-Excited Upconversion Luminescence Powering with DNA Tetrahedron Protection: An Exceptionally Precise and Stable Nanomachine for Intracelluar MicroRNA Tracing. ACS Sens 2020; 5:199-207. [PMID: 31833356 DOI: 10.1021/acssensors.9b02043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although plentiful advanced fluorescence sensors have achieved to analyze microRNAs (miRNAs) in living cells, the prerequisite relating to nucleic acids specific recognition based sensing principle compels them lack favorable accurancy and stability in such complicated biological mediums. Here, we make a double breakthrough for the two challenges by combining a near-infrared (NIR) light powering process with a DNA tetrahedron (DNAT)-based protection concept. In this sensing system, a special nanomachine is first engineered by conjugating a core-shell-structured upconversion nanoparticle capable of highly converting 808 nm NIR photons into ultraviolet ones with self-assembling DNATs. The newly developed nanostructure not only prevents the sensing pathway from triggering during the intracellular delivery as well as reducing the adverse thermal effect for cell viability but also significantly enhances the enzyme resistance to avoid degradation to produce false signals. Furthermore, a fluorescence resonance energy transfer sensing strategy is rationally designed on this nanomachine. Upon using the powering light to excite the upconversion luminescence to activate the nanomachine in living cells, it can stably trace the precise level changes of miRNA-21 sequences at the reaching position with an "off-on" mode of fluorescence outputs.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People’s Republic of China
| | - Bei Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ya-Feng Kang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hong-Wu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
20
|
Pallares RM, Abergel RJ. Transforming lanthanide and actinide chemistry with nanoparticles. NANOSCALE 2020; 12:1339-1348. [PMID: 31859321 DOI: 10.1039/c9nr09175k] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lanthanides and actinides are used in a wide variety of applications, from energy production to life sciences. To address toxicity issues due to the chemical, and often radiological, properties of these elements, methods to quantify and recover them from industrial waste are necessary. When used in biomedicine, lanthanides and actinides are incorporated in compounds that show promising therapeutic and/or bioimaging properties, but lack robust strategies to target cancer and other pathologies. Furthermore, current decorporation protocols to respond to accidental actinide exposure rely on intravenous injections of soluble chelating agents, which are inefficient for treatment of inhaled radionuclides trapped in lungs. In recent years, nanoparticles have emerged as powerful tools in both industry and clinical settings. Because some inorganic nanoparticles are sensitive to external stimuli, such as light and magnetic fields, they can be used as building blocks for sensitive bioassays and separation techniques. In addition, nanoparticles can be functionalized with multiple ligands and act as carriers for selective delivery of therapeutic and contrast agents. This review summarizes and discusses recent progress on the use of nanoparticles in lanthanide and actinide chemistry. We examine different types of nanoparticles based on composition, functionalization, and properties, and we critically analyze their performance in a comparative mode. Our focus is two-pronged, including the nanoparticles free of lanthanides and actinides that are used for the detection, separation, or decorporation of f-block elements, as well as the nanoparticles that enhance the inherent properties of lanthanides and actinides for therapeutics, imaging and catalysis.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | |
Collapse
|