1
|
Lai C, Tang Z, Liu Z, Luo P, Zhang W, Zhang T, Zhang W, Dong Z, Liu X, Yang X, Wang F. Probing the functional hotspots inside protein hydrophobic pockets by in situ photochemical trifluoromethylation and mass spectrometry. Chem Sci 2024; 15:2545-2557. [PMID: 38362424 PMCID: PMC10866368 DOI: 10.1039/d3sc05106d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Due to the complex high-order structures and interactions of proteins within an aqueous solution, a majority of chemical functionalizations happen on the hydrophilic sites of protein external surfaces which are naturally exposed to the solution. However, the hydrophobic pockets inside proteins are crucial for ligand binding and function as catalytic centers and transporting tunnels. Herein, we describe a reagent pre-organization and in situ photochemical trifluoromethylation strategy to profile the functional sites inside the hydrophobic pockets of native proteins. Unbiased mass spectrometry profiling was applied for the characterization of trifluoromethylated sites with high sensitivity. Native proteins including myoglobin, trypsin, haloalkane dehalogenase, and human serum albumin have been engaged in this mild photochemical process and substantial hydrophobic site-specific and structure-selective trifluoromethylation substitutes are obtained without significant interference to their bioactivity and structures. Sodium triflinate is the only reagent required to functionalize the unprotected proteins with wide pH-range tolerance and high biocompatibility. This "in-pocket" activation model provides a general strategy to modify the potential binding pockets and gain essential structural insights into the functional hotspots inside protein hydrophobic pockets.
Collapse
Affiliation(s)
- Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhiyao Tang
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Pan Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Institute of Advanced Science Facilities Shenzhen 518107 China
| | - Wenxiang Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Tingting Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenhao Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhe Dong
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xinyuan Liu
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xueming Yang
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Institute of Advanced Science Facilities Shenzhen 518107 China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
2
|
Šupová M, Suchý T, Chlup H, Šulc M, Kotrč T, Šilingová L, Žaloudková M, Rýglová Š, Braun M, Chvátil D, Hrdlička Z, Houška M. The electron beam irradiation of collagen in the dry and gel states: The effect of the dose and water content from the primary to the quaternary levels. Int J Biol Macromol 2023; 253:126898. [PMID: 37729990 DOI: 10.1016/j.ijbiomac.2023.126898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
The aim of our study was to describe the impact of collagen in the gel and dry state to various doses of electron beam radiation (1, 10 and 25 kGy) which are using for food processing and sterilization. The changes in the chemical compositions (water, amino acids, lipids, glycosaminoglycans) were analyzed and the changes in the structure (triple-helix or β-sheet, the integrity of the collagen) were assessed. Subsequently, the impact of the applied doses on the mechanical properties, stability in the enzymatic environment, swelling and morphology were determined. The irradiated gels evinced enhanced degrees of cross-linking with only partial degradation. Nevertheless, an increase was observed in their stability manifested via a higher degree of resistance to the enzymatic environment, a reduction in swelling and, in terms of the mechanical behaviour, an approximation to the non-linear behavior of native tissues. In contrast, irradiation in the dry state exerted a somewhat negative impact on the observed properties and was manifested mainly via the scission of the collagen molecule and via a lower degree of stability in the aqueous and enzymatic environments. Neither the chemical composition nor the morphology was affected by irradiation.
Collapse
Affiliation(s)
- Monika Šupová
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic.
| | - Tomáš Suchý
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic; Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 166 07, Prague 6, Czech Republic
| | - Hynek Chlup
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 166 07, Prague 6, Czech Republic
| | - Miloslav Šulc
- Food Research Institute Prague, 102 00 Prague 10, Czech Republic
| | - Tomáš Kotrč
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 166 07, Prague 6, Czech Republic
| | - Lucie Šilingová
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 166 07, Prague 6, Czech Republic
| | - Margit Žaloudková
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic
| | - Šárka Rýglová
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic
| | - Martin Braun
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague 8, Czech Republic
| | - David Chvátil
- Nuclear Physics Institute CAS, v.v.i., 250 68 Řež, Czech Republic
| | - Zdeněk Hrdlička
- Department of Polymers, University of Chemistry and Technology Prague, 166 28, Prague 6, Czech Republic
| | - Milan Houška
- Food Research Institute Prague, 102 00 Prague 10, Czech Republic
| |
Collapse
|
3
|
Jiang R, Rempel DL, Gross ML. MALDI Peptide Mapping for Fast Analysis in Protein Footprinting. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2023; 490:117080. [PMID: 38465269 PMCID: PMC10923600 DOI: 10.1016/j.ijms.2023.117080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Although protein footprinting results are commonly obtained by ESI-based LC-MS/MS, a more rapid-turnaround alternative approach is desirable to expand the scope of protein footprinting and facilitate routine analysis such as monitoring protein high order structure in quality control or checking epitope maps. Considering that MALDI is a faster procedure that can be easily adapted for high-throughput analysis, we explore here the feasibility of developing a MALDI-based analysis "portfolio" of bottom-up peptide mass mapping for footprinting. The approach was applied to several model proteins that were submitted to two footprinting strategies, FPOP and GEE labeling, and their performance was evaluated. We found adequate coverage that can be improved with automatic off-line separation and spotting, demonstrating the capability to footprint accurately protein conformational change, showing that MALDI may be useful for selected applications in protein footprinting.
Collapse
Affiliation(s)
- Ruidong Jiang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Don L Rempel
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
4
|
Shortt R, Wang Y, Hummon AB, Jones LM. Development of Spheroid-FPOP: An In-Cell Protein Footprinting Method for 3D Tumor Spheroids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:417-425. [PMID: 36700916 PMCID: PMC9983004 DOI: 10.1021/jasms.2c00307] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Many cancer drugs fail at treating solid epithelial tumors with hypoxia and insufficient drug penetration thought to be contributing factors to the observed chemoresistance. Owing to this, it is imperative to evaluate potential cancer drugs in conditions as close to in vivo as possible, which is not always done. To address this, we developed a mass spectrometry-based protein footprinting method for exploring the impact of hypoxia on protein in 3D colorectal cancer cells. Our group has previously extended the protein footprinting method fast photochemical oxidation of proteins (FPOP) for live cell analysis (IC-FPOP); however, this is the first application of IC-FPOP in a 3D cancer model. In this study, we perform IC-FPOP on intact spheroids (Spheroid-FPOP) using a modified version of the static platform incubator with an XY movable stage (PIXY) FPOP platform. We detected modification in each of three spheroid layers, even the hypoxic core. Pathway analysis revealed protein modifications in over 10 distinct protein pathways, including some involved in protein ubiquitination; a process modulated in cancer pathologies. These results demonstrate the feasibility of Spheroid-FPOP to be utilized as a tool to interrogate protein interactions within a native tumor microenvironment.
Collapse
Affiliation(s)
- Raquel
L. Shortt
- Department
of Pharmaceutical Sciences, University of
Maryland, Baltimore, Maryland 21201, United States
| | - Yijia Wang
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Amanda B. Hummon
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Lisa M. Jones
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Vagkidis N, Li L, Marsh J, Chechik V. Synergy of UV light and heat in peptide degradation. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
6
|
Feng H, Zhao Q, Zhang B, Hu H, Liu M, Wu K, Li X, Zhang X, Zhang L, Liu Y. Enabling Photo-Crosslinking and Photo-Sensitizing Properties for Synthetic Fluorescent Protein Chromophores. Angew Chem Int Ed Engl 2023; 62:e202215215. [PMID: 36370037 DOI: 10.1002/anie.202215215] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Synthetic fluorescent protein chromophores have been reported for their singlet state fluorescence properties and applications in bioimaging, but rarely for the triplet state chemistries. Herein, we enabled their photo-sensitizing and photo-crosslinking properties through rational modulations. Extension of molecular conjugation and introduction of heavy atoms promoted the generation of reactive oxygen species. Unlike other photosensitizers, these chromophores selectively photo-crosslinked aggregated proteins and uncovered the interactome profiles. We also exemplified their general applications in chromophore-assisted light inactivation, photodynamic therapy and photo induced polymerization. Theoretical calculation, pathway analysis and transient absorption spectroscopy provided mechanistic insights for this triplet state chemistry. Overall, this work expands the function and application of synthetic fluorescent protein chromophores by enabling their triplet excited state properties.
Collapse
Affiliation(s)
- Huan Feng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Beirong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Hu
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Meng Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Xin Zhang
- Department of Chemistry and Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
7
|
Bertran O, Martí D, Torras J, Turon P, Alemán C. Computer simulations on oxidative stress-induced reactions in SARS-CoV-2 spike glycoprotein: a multi-scale approach. Mol Divers 2022; 26:3143-3155. [PMID: 35179698 PMCID: PMC8854484 DOI: 10.1007/s11030-021-10373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
Oxidative stress, which occurs when an organism is exposed to an adverse stimulus that results in a misbalance of antioxidant and pro-oxidants species, is the common denominator of diseases considered as a risk factor for SARS-CoV-2 lethality. Indeed, reactive oxygen species caused by oxidative stress have been related to many virus pathogenicity. In this work, simulations have been performed on the receptor binding domain of SARS-CoV-2 spike glycoprotein to study what residues are more susceptible to be attacked by ·OH, which is one of the most reactive radicals associated to oxidative stress. The results indicate that isoleucine (ILE) probably plays a crucial role in modification processes driven by radicals. Accordingly, QM/MM-MD simulations have been conducted to study both the ·OH-mediated hydrogen abstraction of ILE residues and the induced modification of the resulting ILE radical through hydroxylation or nitrosylation reactions. All in all, in silico studies show the importance of the chemical environment triggered by oxidative stress on the modifications of the virus, which is expected to help for foreseeing the identification or development of antioxidants as therapeutic drugs.
Collapse
Affiliation(s)
- Oscar Bertran
- Departament de Física EETAC, Universitat Politècnica de Catalunya, c/Esteve Terrades, 7, 08860, Castelldefels, Spain.
| | - Didac Martí
- Departament d'Enginyeria Química (DEQ) and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - Juan Torras
- Departament d'Enginyeria Química (DEQ) and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/Eduard Maristany 10-14, 08019, Barcelona, Spain.
| | - Pau Turon
- B. Braun Surgical, S.A.U. Carretera de Terrasa 121, 08191, Rubí, Barcelona, Spain.
| | - Carlos Alemán
- Departament d'Enginyeria Química (DEQ) and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/Eduard Maristany 10-14, 08019, Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.
| |
Collapse
|
8
|
Cornwell O, Ault JR. Fast photochemical oxidation of proteins coupled with mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140829. [PMID: 35933084 DOI: 10.1016/j.bbapap.2022.140829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Fast photochemical oxidation of proteins (FPOP) is a hydroxyl radical footprinting approach whereby radicals, produced by UV laser photolysis of hydrogen peroxide, induce oxidation of amino acid side-chains. Mass Spectrometry (MS) is employed to locate and quantify the resulting irreversible, covalent oxidations to use as a surrogate for side-chain solvent accessibility. Modulation of oxidation levels under different conditions allows for the characterisation of protein conformation, dynamics and binding epitopes. FPOP has been applied to structurally diverse and biopharmaceutically relevant systems from small, monomeric aggregation-prone proteins to proteome-wide analysis of whole organisms. This review evaluates the current state of FPOP, the progress needed to address data analysis bottlenecks, particularly for residue-level analysis, and highlights significant developments of the FPOP platform that have enabled its versatility and complementarity to other structural biology techniques.
Collapse
Affiliation(s)
- Owen Cornwell
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - James R Ault
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
9
|
Yassaghi G, Kukačka Z, Fiala J, Kavan D, Halada P, Volný M, Novák P. Top-Down Detection of Oxidative Protein Footprinting by Collision-Induced Dissociation, Electron-Transfer Dissociation, and Electron-Capture Dissociation. Anal Chem 2022; 94:9993-10002. [PMID: 35797180 DOI: 10.1021/acs.analchem.1c05476] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fast photochemical oxidation of proteins (FPOP) footprinting is a structural mass spectrometry method that maps proteins by fast and irreversible chemical reactions. The position of oxidative modification reflects solvent accessibility and site reactivity and thus provides information about protein conformation, structural dynamics, and interactions. Bottom-up mass spectrometry is an established standard method to analyze FPOP samples. In the bottom-up approach, all forms of the protein are digested together by a protease of choice, which results in a mixture of peptides from various subpopulations of proteins with varying degrees of photochemical oxidation. Here, we investigate the possibility to analyze a specifically selected population of only singly oxidized proteins. This requires utilization of more specific top-down mass spectrometry approaches. The key element of any top-down experiment is the selection of a suitable method of ion isolation, excitation, and fragmentation. Here, we employ and compare collision-induced dissociation, electron-transfer dissociation, and electron-capture dissociation combined with multi-continuous accumulation of selected ions. A singly oxidized subpopulation of FPOP-labeled ubiquitin was used to optimize the method. The top-down approach in FPOP is limited to smaller proteins, but its usefulness was demonstrated by using it to visualize structural changes induced by co-factor removal from the holo/apo myoglobin system. The top-down data were compared with the literature and with the bottom-up data set obtained on the same samples. The top-down results were found to be in good agreement, which indicates that monitoring a singly oxidized FPOP ion population by the top-down approach is a functional workflow for oxidative protein footprinting.
Collapse
Affiliation(s)
- Ghazaleh Yassaghi
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 142 20, Czech Republic
| | - Zdeněk Kukačka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 142 20, Czech Republic
| | - Jan Fiala
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 142 20, Czech Republic.,Faculty of Science, Charles University, Albertov 6, Prague 2 128 00, Czech Republic
| | - Daniel Kavan
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 142 20, Czech Republic.,Faculty of Science, Charles University, Albertov 6, Prague 2 128 00, Czech Republic
| | - Petr Halada
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 142 20, Czech Republic
| | - Michael Volný
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 142 20, Czech Republic
| | - Petr Novák
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 142 20, Czech Republic
| |
Collapse
|
10
|
Advances in Mass Spectrometry-based Epitope Mapping of Protein Therapeutics. J Pharm Biomed Anal 2022; 215:114754. [DOI: 10.1016/j.jpba.2022.114754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/16/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
|
11
|
Almuhtaram H, Hofmann R. Evaluation of ultraviolet/peracetic acid to degrade M. aeruginosa and microcystins -LR and -RR. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127357. [PMID: 34687995 DOI: 10.1016/j.jhazmat.2021.127357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The reactivity of peracetic acid (PAA) alone, and PAA exposed to ultraviolet radiation (UV), was investigated on Microcystis aeruginosa cells, and on microcystin-LR and -RR. Reaction rates between PAA and MC-LR (k = 3.46 M-1 s-1) and MC-RR (k = 2.67 M-1 s-1) were determined in an unbuffered acidic solution, and they are approximately 35-45 times lower than a previously reported reaction rate between MC-LR and chlorine at pH 6. Peracetic acid reacted with M. aeruginosa cells as a function of PAA and cell concentrations, with 10 mg/L PAA resulting in 1-log reduction of total MC-LR within 15 min. Advanced oxidation by UV/PAA readily degraded MC-LR and MC-RR, outperforming UV/H2O2 at pH 7.7 by > 50% on an equimolar basis. Indirect photolysis at this pH is due to •OH and organic radicals, as determined by trials in the presence of excess tert-butanol to scavenge •OH. The process is less effective when the pH departs from neutral conditions (5.9 or 10.6) due to the decreased effects of both radicals. These findings suggest that PAA alone might be a viable option for cyanobacteria and microcystins control in preoxidation applications and that UV/PAA is an effective process for degrading MC-LR and MC-RR at neutral pH.
Collapse
Affiliation(s)
- Husein Almuhtaram
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada.
| | - Ron Hofmann
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| |
Collapse
|
12
|
Csire G, Dupire F, Canabady-Rochelle L, Selmeczi K, Stefan L. Bio-Inspired Casein-Derived Antioxidant Peptides Exhibiting a Dual Direct/Indirect Mode of Action. Inorg Chem 2022; 61:1941-1948. [PMID: 35034436 DOI: 10.1021/acs.inorgchem.1c03085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antioxidant compounds are chemicals of primary importance, especially for their applications in nutrition and healthcare, thanks to their abilities to prevent oxidation processes and to limit and/or rebalance the oxidative stress, well-known for its impact on a wide variety of diseases. While several biomolecules are well-known for their antioxidant properties (e.g., ascorbic acid, carotenoids, phenolic derivatives), bio-sourced antioxidants have drawn considerable attention in the last decades, especially bioactive peptides, mainly obtained by the hydrolysis process. Antioxidant peptide sequences are mainly identified a posteriori, thanks to fastidious and time-consuming approaches and techniques, limiting the discovery of new efficient peptides. In this context and taking inspiration from nature, we report herein on a new series of three bio-inspired antioxidant peptides derived from the milk protein casein. These phosphopeptides, designed to chelate the redox-active iron(III) and forming highly soluble complexes up to pH 9, act both as indirect (i.e., inhibition of the metal redox activity) and direct (i.e., radical scavenging) antioxidants.
Collapse
Affiliation(s)
- Gizella Csire
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | | | | | | | - Loic Stefan
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| |
Collapse
|
13
|
Luo P, Liu Z, Zhang T, Wang X, Liu J, Liu Y, Zhou X, Chen Y, Dong W, Xiao C, Jin Y, Yang X, Wang F. Chloride-Mediated Peroxide-Free Photochemical Oxidation of Proteins (PPOP) in Mass Spectrometry-Based Structural Analysis. Anal Chem 2021; 94:1135-1142. [PMID: 34965100 DOI: 10.1021/acs.analchem.1c04209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultraviolet (UV) laser photolysis of hydrogen peroxide (H2O2) for the in situ generation of hydroxyl radicals (•OH) is a widely utilized strategy in the oxidation footprinting of native proteins and mass spectrometry (MS)-based structural analysis. However, it remains challenging to realize peroxide-free photochemical oxidation footprinting. Herein, we describe the footprinting of native proteins by chloride-mediated peroxide-free photochemical oxidation of proteins (PPOP). The protein samples are prepared within biocompatible phosphate-buffered saline (PBS) containing 10 mM Gln as radical scavengers and oxidized in a capillary flow reactor directly under a single-pulse (10 ns) irradiation of a 193 nm ArF UV laser. The main oxidized protein residues are CMYWFHLI. We demonstrate that the PPOP-MS strategy is highly sensitive to the protein high-order structures and can be applied to monitor the protein-drug interfaces, which provides a promising footprinting alternative for protein structure-function explorations.
Collapse
Affiliation(s)
- Pan Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tingting Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolei Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yiqiang Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohu Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenrui Dong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yan Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
McKenzie-Coe A, Montes NS, Jones LM. Hydroxyl Radical Protein Footprinting: A Mass Spectrometry-Based Structural Method for Studying the Higher Order Structure of Proteins. Chem Rev 2021; 122:7532-7561. [PMID: 34633178 DOI: 10.1021/acs.chemrev.1c00432] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydroxyl radical protein footprinting (HRPF) coupled to mass spectrometry has been successfully used to investigate a plethora of protein-related questions. The method, which utilizes hydroxyl radicals to oxidatively modify solvent-accessible amino acids, can inform on protein interaction sites and regions of conformational change. Hydroxyl radical-based footprinting was originally developed to study nucleic acids, but coupling the method with mass spectrometry has enabled the study of proteins. The method has undergone several advancements since its inception that have increased its utility for more varied applications such as protein folding and the study of biotherapeutics. In addition, recent innovations have led to the study of increasingly complex systems including cell lysates and intact cells. Technological advances have also increased throughput and allowed for better control of experimental conditions. In this review, we provide a brief history of the field of HRPF and detail recent innovations and applications in the field.
Collapse
Affiliation(s)
- Alan McKenzie-Coe
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Nicholas S Montes
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
15
|
Zhou F, Yang Y, Chemuru S, Cui W, Liu S, Gross M, Li W. Footprinting Mass Spectrometry of Membrane Proteins: Ferroportin Reconstituted in Saposin A Picodiscs. Anal Chem 2021; 93:11370-11378. [PMID: 34383472 DOI: 10.1021/acs.analchem.1c02325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane proteins participate in a broad range of cellular processes and represent more than 60% of drug targets. One approach to their structural analyses is mass spectrometry (MS)-based footprinting including hydrogen/deuterium exchange (HDX), fast photochemical oxidation of proteins (FPOP), and residue-specific chemical modification. Studying membrane proteins usually requires their isolation from the native lipid environment, after which they often become unstable. To overcome this problem, we are pursuing a novel methodology of incorporating membrane proteins into saposin A picodiscs for MS footprinting. We apply different footprinting approaches to a model membrane protein, mouse ferroportin, in picodiscs and achieve high coverage that enables the analysis of the ferroportin structure. FPOP footprinting shows extensive labeling of the extramembrane regions of ferroportin and protection at its transmembrane regions, suggesting that the membrane folding of ferroportin is maintained throughout the labeling process. In contrast, an amphipathic reagent, N-ethylmaleimide (NEM), efficiently labels cysteine residues in both extramembrane and transmembrane regions, thereby affording complementary footprinting coverage. Finally, optimization of sample treatment gives a peptic-map of ferroportin in picodiscs with 92% sequence coverage, setting the stage for HDX. These results, taken together, show that picodiscs are a new platform broadly applicable to mass spectrometry studies of membrane proteins.
Collapse
Affiliation(s)
- Fengbo Zhou
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Yihu Yang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Saketh Chemuru
- Department of Chemistry, Washington University, St. Louis, Missouri 63110, United States
| | - Weidong Cui
- Department of Chemistry, Washington University, St. Louis, Missouri 63110, United States
| | - Shixuan Liu
- Department of Chemistry, Washington University, St. Louis, Missouri 63110, United States
| | - Michael Gross
- Department of Chemistry, Washington University, St. Louis, Missouri 63110, United States
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
16
|
Loginov DS, Fiala J, Chmelik J, Brechlin P, Kruppa G, Novak P. Benefits of Ion Mobility Separation and Parallel Accumulation-Serial Fragmentation Technology on timsTOF Pro for the Needs of Fast Photochemical Oxidation of Protein Analysis. ACS OMEGA 2021; 6:10352-10361. [PMID: 34056188 PMCID: PMC8153767 DOI: 10.1021/acsomega.1c00732] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 05/07/2023]
Abstract
Fast photochemical oxidation of proteins (FPOP) is a recently developed technique for studying protein folding, conformations, interactions, etc. In this method, hydroxyl radicals, usually generated by KrF laser photolysis of H2O2, are used for irreversible labeling of solvent-exposed side chains of amino acids. Mapping of the oxidized residues to the protein's structure requires pinpointing of modifications using a bottom-up proteomic approach. In this work, a quadrupole time-of-flight (QTOF) mass spectrometer coupled with trapped ion mobility spectrometry (timsTOF Pro) was used for identification of oxidative modifications in a model protein. Multiple modifications on the same residues, including six modifications of histidine, were successfully resolved. Moreover, parallel accumulation-serial fragmentation (PASEF) technology allows successful sequencing of even minor populations of modified peptides. The data obtained indicate a clear improvement of the quality of the FPOP analysis from the viewpoint of the number of identified peptides bearing oxidative modifications and their precise localization. Data are available via ProteomeXchange with identifier PXD020509.
Collapse
Affiliation(s)
- Dmitry S. Loginov
- Institute
of Microbiology, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
- Faculty
of Science, Charles University, Hlavova 8, 128 20 Prague, Czech Republic
| | - Jan Fiala
- Orekhovich
Institute of Biomedical Chemistry, Pogodinskaja str. 10, 119191 Moscow, Russia
| | - Josef Chmelik
- Institute
of Microbiology, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Peter Brechlin
- Bruker
Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Gary Kruppa
- Bruker
s.r.o., Prazakova 60, 619 00 Brno, Czech
Republic
| | - Petr Novak
- Institute
of Microbiology, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
17
|
Liu XR, Rempel DL, Gross ML. Protein higher-order-structure determination by fast photochemical oxidation of proteins and mass spectrometry analysis. Nat Protoc 2020; 15:3942-3970. [PMID: 33169002 PMCID: PMC10476649 DOI: 10.1038/s41596-020-0396-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/03/2020] [Indexed: 11/09/2022]
Abstract
The higher-order structure (HOS) of proteins plays a critical role in their function; therefore, it is important to our understanding of their function that we have as much information as possible about their three-dimensional structure and how it changes with time. Mass spectrometry (MS) has become an important tool for determining protein HOS owing to its high throughput, mid-to-high spatial resolution, low sample amount requirement and broad compatibility with various protein systems. Modern MS-based protein HOS analysis relies, in part, on footprinting, where a reagent reacts 'to mark' the solvent-accessible surface of the protein, and MS-enabled proteomic analysis locates the modifications to afford a footprint. Fast photochemical oxidation of proteins (FPOP), first introduced in 2005, has become a powerful approach for protein footprinting. Laser-induced hydrogen peroxide photolysis generates hydroxyl radicals that react with solvent-accessible side chains (14 out of 20 amino acid side chains) to fulfill the footprinting. The reaction takes place at sub-milliseconds, faster than most of labeling-induced protein conformational changes, thus enabling a 'snapshot' of protein HOS in solution. As a result, FPOP has been employed in solving several important problems, including mapping epitopes, following protein aggregation, locating small molecule binding, measuring ligand-binding affinity, monitoring protein folding and unfolding and determining hidden conformational changes invisible to other methods. Broader adoption will be promoted by dissemination of the technical details for assembling the FPOP platform and for dealing with the complexities of analyzing FPOP data. In this protocol, we describe the FPOP platform, the conditions for successful footprinting and its examination by mass measurements of the intact protein, the post-labeling sample handling and digestion, the liquid chromatography-tandem MS analysis of the digested sample and the data analysis with Protein Metrics Suite. This protocol is intended not only as a guide for investigators trying to establish an FPOP platform in their own lab but also for those willing to incorporate FPOP as an additional tool in addressing their questions of interest.
Collapse
Affiliation(s)
- Xiaoran Roger Liu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Don L Rempel
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
18
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
19
|
Cornwell O, Bond NJ, Radford SE, Ashcroft AE. Long-Range Conformational Changes in Monoclonal Antibodies Revealed Using FPOP-LC-MS/MS. Anal Chem 2019; 91:15163-15170. [DOI: 10.1021/acs.analchem.9b03958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Owen Cornwell
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, U.K
| | - Nicholas J. Bond
- Analytical Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Granta Park, Cambridge, CB21 6GH, U.K
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, U.K
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, U.K
| |
Collapse
|
20
|
Liu XR, Rempel DL, Gross ML. Composite Conformational Changes of Signaling Proteins upon Ligand Binding Revealed by a Single Approach: Calcium-Calmodulin Study. Anal Chem 2019; 91:12560-12567. [PMID: 31487155 DOI: 10.1021/acs.analchem.9b03491] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Signaling proteins exemplified by calmodulin usually bind cooperatively to multiple ligands. Intermediate states and allosteric behavior are difficult to characterize. Here we extend a recently reported mass spectrometry (MS)-based method named LITPOMS (ligand titration, fast photochemical oxidation of proteins and mass spectrometry) that characterizes complex binding systems typically found as signaling proteins. As reported previously, calmodulin's response to binding four Ca2+ can be determined by LITPOMS to reveal binding sites, binding order, and most importantly composite binding behavior. Modeling this behavior provides site-specific binding affinities. In this article, we dissect the composite, peptide-level conformational changes at several regions either by digestion with a different protease or by tandem MS of LITPOMS behavior at the amino-acid residue level. Such dissection greatly elevates spatial resolution and increases the confidence of binding-order assignment. These complementary views of complex protein conformational change recapitulate the cumulative understanding via a single approach, providing new insights on poorly understood yet important allostery and underpin an approach applicable for exploring other signaling systems.
Collapse
Affiliation(s)
- Xiaoran Roger Liu
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Don L Rempel
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Michael L Gross
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| |
Collapse
|