1
|
Hemmateenejad B, Rafatmah E, Shojaeifard Z. Microfluidic paper and thread-based separations: Chromatography and electrophoresis. J Chromatogr A 2023; 1704:464117. [PMID: 37300912 DOI: 10.1016/j.chroma.2023.464117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Paper and thread are widely used as the substrates for fabricating low-cost, disposable, and portable microfluidic analytical devices used in clinical, environmental, and food safety monitoring. Concerning separation methods including chromatography and electrophoresis, these substrates provide unique platforms for developing portable devices. This review focuses on summarizing recent research on the miniaturization of the separation techniques using paper and thread. Preconcentration, purification, desalination, and separation of various analytes are achievable using electrophoresis and chromatography methods integrated with modified or unmodified paper/thread wicking channels. A variety of 2D and 3D designs of paper/thread platforms for zone electrophoresis, capillary electrophoresis, and modified/unmodified chromatography are discussed with emphasis on their limitation and improvements. The current progress in the signal amplification strategies such as isoelectric focusing, isotachophoresis, ion concentration polarization, isoelectric focusing, and stacking methods in paper-based devices are reviewed. Different strategies for chromatographic separations based on paper/thread will be explained. The separation of target species from complex samples and their determination by integration with other analytical methods like spectroscopy and electrochemistry are well-listed. Furthermore, the innovations for plasma and cell separation from blood as an important human biofluid are presented, and the related paper/thread modification methods are explored.
Collapse
|
2
|
Kim J, Kim C, Park JS, Lee NE, Lee S, Cho SY, Park C, Yoon DS, Yoo YK, Lee JH. Affordable on-site COVID-19 test using non-powered preconcentrator. Biosens Bioelectron 2023; 222:114965. [PMID: 36493723 PMCID: PMC9715458 DOI: 10.1016/j.bios.2022.114965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
A simple, affordable point of care test (POCT) is necessary for on-site detection of coronavirus disease 2019 (COVID-19). The lateral flow assay (LFA) has great potential for use in POCT mainly because of factors such as low time consumption, low cost, and ease of use. However, it lacks sensitivity and limits of detection (LOD), which are essential for early diagnostics. In this study, we proposed a non-powered preconcentrator (NPP) based on nanoelectrokinetics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Antigen (Ag) lateral flow assay. The non-powered preconcentrator is composed of glass fiber-based composite paper and ion permselective material, and it can be simply operated by force balancing gravitational, capillary, and depletion-induced forces. The proposed approach helps enrich the SARS-CoV-2 viral nucleocapsid (N) proteins based on a 10-min operation, and it improved the LOD by up to 10-fold. The corresponding virus enrichment, which was evaluated using the reverse-transcriptase polymerase chain reaction (RT-PCR), revealed an improvement in ΔCt values > 3. We successfully demonstrated the enhancement of the NPP-assisted LFA, we extended to applying it to clinical samples. Further, we demonstrated an affordable, easy-to-implement form of LFA by simply designing NPP directly on the LFA buffer tube.
Collapse
Affiliation(s)
- Jinhwan Kim
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Cheonjung Kim
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Department of Electronic Engineering, Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | - Jeong Soo Park
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Na Eun Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seungmin Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sung-Yeon Cho
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Infectious Diseases, Department of Internal Medicine, Seoul St. Mary's Hospital, Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chulmin Park
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Yong Kyoung Yoo
- Department of Electronic Engineering, Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea.
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
3
|
Thompson JR, Crooks RM. Electrokinetic separation techniques for studying nano- and microplastics. Chem Sci 2022; 13:12616-12624. [PMID: 36519045 PMCID: PMC9645370 DOI: 10.1039/d2sc04019k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/14/2022] [Indexed: 03/07/2024] Open
Abstract
In recent years, microplastics have been found in seawater, soil, food, and even human blood and tissues. The ubiquity of microplastics is alarming, but the health and environmental impacts of microplastics are just beginning to be understood. Accordingly, sampling, separating, and quantifying exposure to microplastics to devise a total risk assessment is the focus of ongoing research. Unfortunately, traditional separation methods (i.e., size- and density-based methods) unintentionally exclude the smallest microplastics (<10 μm). Limited data about the smallest microplastics is problematic because they are likely the most pervasive and have distinct properties from their larger plastic counterparts. To that end, in this Perspective, we discuss using electrokinetic methods for separating the smallest microplastics. Specifically, we describe three methods for forming electric field gradients, discuss key results within the field for continuously separating microplastics, and lastly discuss research avenues which we deem critical for advancing electrokinetic separation platforms for targeting the smallest microplastics.
Collapse
Affiliation(s)
- Jonathan R Thompson
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin Texas 78712-1224 USA +1-512-475-8674
| | - Richard M Crooks
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin Texas 78712-1224 USA +1-512-475-8674
| |
Collapse
|
4
|
Yu Y, Fan F, Smith ZJ, Wei X. Microfluidic Paper-Based Preconcentration and Retrieval for Rapid Ribonucleic Acid Biomarker Detection and Visualization. Anal Chem 2022; 94:10764-10772. [PMID: 35858837 DOI: 10.1021/acs.analchem.2c01442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microfluidic paper-based analytical devices (μPADs) have attracted significant attention in the field of point-of-care (POC) diagnostics. However, the heterogeneous structure of the paper often impairs the limit of detection (LOD) for low-abundance targets when those targets are directly analyzed. One viable solution to bypass this limitation is to elevate the target concentration above the LOD on-site to reach a valid readout. Here, we developed a 3D μPADs preconcentrator (3D-μP2) to increase sample concentration by electrokinetic trapping and demonstrated its application in increasing the LOD of a downstream colorimetric assay. The three-dimensional (3D) structure of this device was composed of a loading pad, a vertical fluid path formed by stacked absorbent pads, and an ion-selective membrane of PEDOT:PSS. This novel design facilitates fast preconcentration, high capacity in sample processing, and easy target retrieval. The concentration of an exemplary target, a single-stranded DNA sequence, was increased up to 170-fold within 80 s. The LOD of the colorimetric assay to verify the DNA target was increased 3 orders of magnitude with a preconcentrated sample compared to the control. The device and its analysis equipment used in this study were all cheap and portable. Thus, the 3D-μP2 can be a powerful POC tool for sample pretreatment in resource-limited areas.
Collapse
Affiliation(s)
- Yannan Yu
- Key Laboratory of Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 96 JinZhai Road, Hefei 230026, China
| | - Fengya Fan
- School of Computer Science and Technology, University of Science and Technology of China, 96 JinZhai Road, Hefei 230026, China
| | - Zachary J Smith
- Key Laboratory of Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 96 JinZhai Road, Hefei 230026, China
| | - Xi Wei
- Department of Chemistry, University of Science and Technology of China, 96 JinZhai Road, Hefei 230026, China
| |
Collapse
|
5
|
Alahmad W, Sahragard A, Varanusupakul P. Online and offline preconcentration techniques on paper-based analytical devices for ultrasensitive chemical and biochemical analysis: A review. Biosens Bioelectron 2021; 194:113574. [PMID: 34474275 DOI: 10.1016/j.bios.2021.113574] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022]
Abstract
Microfluidic paper-based analytical devices (μPADs) have attracted much attention over the past decade. They embody many advantages, such as abundance, portability, cost-effectiveness, and ease of fabrication, making them superior for clinical diagnostics, environmental monitoring, and food safety assurance. Despite these advantages, μPADs lack the high sensitivity to detect many analytes at trace levels than other commercial analytical instruments such as mass spectrometry. Therefore, a preconcentration step is required to enhance their sensitivity. This review focuses on the techniques used to separate and preconcentrate the analytes onto the μPADs, such as ion concentration polarization, isotachophoresis, and field amplification sample stacking. Other separations and preconcentration techniques, including liquid-solid and liquid-liquid extractions coupled with μPADs, are also reviewed and discussed. In addition, the fabrication methods, advantages, disadvantages, and the performance evaluation of the μPADs concerning their precision and accuracy were highlighted and critically assessed. Finally, the challenges and future perspectives have been discussed.
Collapse
Affiliation(s)
- Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Ali Sahragard
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pakorn Varanusupakul
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
Chen YZ, Niu BS, Ji B, Fang F, Guo XL, Wu ZY. Salty Biofluidic Sample Clean-Up and Preconcentration with a Paper-Based Ion Concentration Polarization Interface. Anal Chem 2021; 93:10236-10242. [PMID: 34269555 DOI: 10.1021/acs.analchem.1c01640] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Charged species from complex media could be separated and enriched taking advantage of ion concentration polarization (ICP) effect; thus, ICP can be used for sample purification and improvement of detection sensitivity. In this paper, a novel and reliable ICP interface was established on a paper-based analytical device (PAD) by using ion exchange membrane, and electrokinetic stacking of target analytes from salty media was successfully demonstrated. Steady ICP effect was well observed in aqueous solution with up to 400 mM NaCl as shown by a fluorescent probe, which makes it possible to directly process salty physiological samples such as blood and urine with this type of PAD. Application of this method was demonstrated by direct online stacking of total protein from urine samples and image-based colorimetric detection by a smartphone camera. The linear response was in the range of 50-350 mg/L (R2 = 0.99), with recovery rate in the range of 94.8-107.6% and relative standard deviation below 7.1%. The obtained results were consistent with that of the clinical method. As an off-line sample pretreatment method, the feasibility for rapid tandem mass spectrometry detection of amino acids from serum samples was also investigated, and promising results were obtained. This PAD method is of low cost, easy to operate, and reliable. As a disposable PAD, it is useful not only for sensitive point-of-care testing but also for direct purification and concentration of complex and highly conductive physiological samples for fast and accurate detection with advanced analytical instruments.
Collapse
Affiliation(s)
- Yu-Zhu Chen
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Bing-Su Niu
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Bin Ji
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Fang Fang
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiao-Lin Guo
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zhi-Yong Wu
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
7
|
Lee WC, Ng HY, Hou CY, Lee CT, Fu LM. Recent advances in lab-on-paper diagnostic devices using blood samples. LAB ON A CHIP 2021; 21:1433-1453. [PMID: 33881033 DOI: 10.1039/d0lc01304h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lab-on-paper, or microfluidic paper-based analytical devices (μPADs), use paper as a substrate material, and are patterned with a system of microchannels, reaction zones and sensing elements to perform analysis and detection. The sample transfer in such devices is performed by capillary action. As a result, external driving forces are not required, and hence the size and cost of the device are significantly reduced. Lab-on-paper devices have thus attracted significant attention for point-of-care medical diagnostic purposes in recent years, particularly in less-developed regions of the world lacking medical resources and infrastructures. This review discusses the major advances in lab-on-paper technology for blood analysis and diagnosis in the past five years. The review focuses particularly on the many clinical applications of lab-on-paper devices, including diabetes diagnosis, acute myocardial infarction (AMI) detection, kidney function diagnosis, liver function diagnosis, cholesterol and triglyceride (TG) analysis, sickle-cell disease (SCD) and phenylketonuria (PKU) analysis, virus analysis, C-reactive protein (CRP) analysis, blood ion analysis, cancer factor analysis, and drug analysis. The review commences by introducing the basic transmission principles, fabrication methods, structural characteristics, detection techniques, and sample pretreatment process of modern lab-on-paper devices. A comprehensive review of the most recent applications of lab-on-paper devices to the diagnosis of common human diseases using blood samples is then presented. The review concludes with a brief summary of the main challenges and opportunities facing the lab-on-paper technology field in the coming years.
Collapse
Affiliation(s)
- Wen-Chin Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Hwee-Yeong Ng
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
8
|
Zhiyue M, Xichen Y, Li R, Yang Y, Huicheng F, Peng S. Recent advances in paper-based preconcentrators by utilizing ion concentration polarization. Electrophoresis 2021; 42:1340-1351. [PMID: 33768593 DOI: 10.1002/elps.202000291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 11/09/2022]
Abstract
One of the most cited limitations of biochemical detection is its poor sensitivity, owing to the relatively high complexity of micro-samples. Moreover, some samples cannot be easily self-replicated and their abundance cannot be increased through traditional technologies. Therefore, the preconcentration of low-abundance samples is a key requirement for microfluidic biological analysis. In recent years, the ion-concentration polarization phenomenon has aroused widespread interest in the application of microfluidic technology. In addition, paper-based materials are readily available, easy to modify, and exhibit good hydrophilicity. The study of the ion-concentration polarization preconcentration of micro-samples in paper-based microfluidic chips is of considerable significance. In this review, we discuss the development and applications of ion-concentration polarization paper-based preconcentrator in the past 5 years, with emphasis on key progresses in chip fabrication and performance optimization under different conditions. The current needs and development prospects in this field have also been discussed.
Collapse
Affiliation(s)
- Meng Zhiyue
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, P. R. China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Yuan Xichen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, P. R. China.,Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, P. R. China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, P. R. China.,Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, P. R. China
| | - Ren Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, P. R. China.,Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, P. R. China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Yang Yang
- Ministry of Education Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing, P. R. China
| | - Feng Huicheng
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, P. R. China.,MOE Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Shang Peng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, P. R. China.,Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, P. R. China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, P. R. China
| |
Collapse
|
9
|
Lee J, Yoo YK, Lee D, Kim C, Kim KH, Lee S, Kwak S, Kang JY, Kim H, Yoon DS, Hur D, Lee JH. Origami paper-based sample preconcentration using sequentially driven ion concentration polarization. LAB ON A CHIP 2021; 21:867-874. [PMID: 33507198 DOI: 10.1039/d0lc01032d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ion concentration polarization (ICP) is one of the preconcentration techniques which can acquire a high preconcentration factor. Still, the main hurdles of ICP are its instability and low efficiency under physiological conditions with high ionic strength and abundant biomolecules. Here, we suggested a sequentially driven ICP process, which enhanced the electrokinetic force required for preconcentration, enabling enrichment of highly ionic raw samples without increasing the electric field. We acquired a 13-fold preconcentration factor (PF) in human serum using a paper-based origami structure consisting of multiple layers for three-dimensional sequential ICP (3D seq-ICP). Moreover, we demonstrated a paper-based enzyme-linked immunosorbent assay (ELISA) by 3D seq-ICP using tau protein, showing a 6-fold increase in ELISA signals.
Collapse
Affiliation(s)
- Junwoo Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul 01897, South Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lee D, Lee JW, Kim C, Lee D, Chung S, Yoon DS, Lee JH. Highly efficient and scalable biomarker preconcentrator based on nanoelectrokinetics. Biosens Bioelectron 2020; 176:112904. [PMID: 33349535 DOI: 10.1016/j.bios.2020.112904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 11/30/2022]
Abstract
Micro/nanofluidics are excellent candidates for biological sample preparation. However, the limited process volume in micro/nanofluidics is the main hurdle limiting their practical applications. To date, most micro/nanofluidics have processed sample volumes of several microliters and have rarely been used to handle large-volume samples. Herein, we propose a microfluidic paper-based large-volume preconcentrator (u-LVP) for enrichment and purification of biomarkers (e.g., miRNA) using ion concentration polarization. A Nafion (ion-selective nanoporous membrane)-functionalized multilayer cellulose paper enables microscale division of milliliter-scale samples, thus electrokinetically separating and preconcentrating the biomarker in different locations within the u-LVP. By inserting collecting discs at optimal positions in the u-LVP, the enriched biomarker is simply recovered with high efficiency. With this approach, as an exemplary biomarker, miRNA-21 in human serum was separated from proteins and preconcentrated with an effective preconcentration factor exceeding 6.63 and a recovery rate above 84%. Thus, our platform offers new opportunities and benefits for biomarker, diagnostic, prognostic, and therapeutic research.
Collapse
Affiliation(s)
- Dohwan Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Jee Won Lee
- CALTH. Inc. Changeop-ro 54, Seongnam, Gyeonggi, 13449, Republic of Korea
| | - Cheonjung Kim
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Dongho Lee
- CALTH. Inc. Changeop-ro 54, Seongnam, Gyeonggi, 13449, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
11
|
Thompson JR, Davies CD, Clausmeyer J, Crooks RM. Cation‐Specific Electrokinetic Separations Using Prussian Blue Intercalation Reactions. ChemElectroChem 2020. [DOI: 10.1002/celc.202001095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jonathan R. Thompson
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin, Texas 78712-1224 United States
| | - Collin D. Davies
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin, Texas 78712-1224 United States
| | - Jan Clausmeyer
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin, Texas 78712-1224 United States
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin, Texas 78712-1224 United States
| |
Collapse
|