1
|
Li M, Zuo J, Yang K, Wang P, Zhou S. Proteomics mining of cancer hallmarks on a single-cell resolution. MASS SPECTROMETRY REVIEWS 2024; 43:1019-1040. [PMID: 37051664 DOI: 10.1002/mas.21842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/25/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Dysregulated proteome is an essential contributor in carcinogenesis. Protein fluctuations fuel the progression of malignant transformation, such as uncontrolled proliferation, metastasis, and chemo/radiotherapy resistance, which severely impair therapeutic effectiveness and cause disease recurrence and eventually mortality among cancer patients. Cellular heterogeneity is widely observed in cancer and numerous cell subtypes have been characterized that greatly influence cancer progression. Population-averaged research may not fully reveal the heterogeneity, leading to inaccurate conclusions. Thus, deep mining of the multiplex proteome at the single-cell resolution will provide new insights into cancer biology, to develop prognostic biomarkers and treatments. Considering the recent advances in single-cell proteomics, herein we review several novel technologies with particular focus on single-cell mass spectrometry analysis, and summarize their advantages and practical applications in the diagnosis and treatment for cancer. Technological development in single-cell proteomics will bring a paradigm shift in cancer detection, intervention, and therapy.
Collapse
Affiliation(s)
- Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wang R, Zhang W, Liang W, Wang X, Li L, Wang Z, Li M, Li J, Ma C. Molecularly Imprinted Heterostructure-Assisted Laser Desorption Ionization Mass Spectrometry Analysis and Imaging of Quinolones. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17377-17392. [PMID: 38551391 DOI: 10.1021/acsami.3c16277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Quinolone residues resulting from body metabolism and waste discharge pose a significant threat to the ecological environment and to human health. Therefore, it is essential to monitor quinolone residues in the environment. Herein, an efficient and sensitive matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) method was devised by using a novel molecularly imprinted heterojunction (MIP-TNs@GCNs) as the matrix. Molecularly imprinted titanium dioxide nanosheets (MIP-TNs) and graphene-like carbon nitrides (GCNs) were associated at the heterojunction interface, allowing for the specific, rapid, and high-throughput ionization of quinolones. The mechanism of MIP-TNs@GCNs was clarified using their adsorption properties and laser desorption/ionization capability. The prepared oxygen-vacancy-rich MIP-TNs@GCNs heterojunction exhibited higher light absorption and ionization efficiencies than TNs and GCNs. The good linearity (in the quinolone concentration range of 0.5-50 pg/μL, R2 > 0.99), low limit of detection (0.1 pg/μL), good reproducibility (n = 8, relative standard deviation [RSD] < 15%), and high salt and protein resistance for quinolones in groundwater samples were achieved using the established MIP-TNs@GCNs-MALDI/MS method. Moreover, the spatial distributions of endogenous compounds (e.g., amino acids, organic acids, and flavonoids) and xenobiotic quinolones from Rhizoma Phragmitis and Rhizoma Nelumbinis were visualized using the MIP-TNs@GCNs film as the MALDI/MS imaging matrix. Because of its superior advantages, the MIP-TNs@GCNs-MALDI/MS method is promising for the analysis and imaging of quinolones and small molecules.
Collapse
Affiliation(s)
- Ruya Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Weidong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Weiqiang Liang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province 250014, P. R. China
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Lili Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Zhenhua Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Miaomiao Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Jun Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 1007002, China
| |
Collapse
|
3
|
Niessink T, Giesen T, Efdé M, Comarniceanu A, Janssen M, Otto C, Jansen TL. Test characteristics of Raman spectroscopy integrated with polarized light microscopy for the diagnosis of acute gouty arthritis. Joint Bone Spine 2023; 90:105611. [PMID: 37442334 DOI: 10.1016/j.jbspin.2023.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVES We studied the performance of Raman spectroscopy integrated with polarized light microscopy (iRPolM) as a next-generation technique for synovial fluid analysis in gout. METHODS This is a prospective study, including consecutive synovial fluid samples drawn from any peripheral swollen joint. Diagnostic accuracy was compared to the 2015 ACR/EULAR Gout classification criteria as a reference test and to polarized light microscopy (PLM) analysis by a rheumatologist. Synovial fluid was analysed with iRPolM after unblinding the PLM results. RESULTS Two hundred unselected consecutive patient samples were included in this study. Validation against clinical criteria: 67 patients were classified as gout according to 2015 ACR/EULAR classification criteria. Compared to the 2015 ACR/EULAR gout classification criteria, iRPolM had a sensitivity of 77.6% (95% CI: 65.8-86.9), specificity of 97.7% (95% CI: 93.5-99.5), positive predictive value (PPV) of 94.5% (95% CI: 84.9-98.2), negative predictive value (NPV) of 89.7% (95% CI: 84.7-93.1), an accuracy of 91.0% (95% CI: 86.2-94.6), a positive likelihood ratio of 34.4 (95% CI: 11.16-106.10) and a negative likelihood ratio of 0.23 (95% CI: 0.15-0.36). Validation against PLM: 55 samples were positive for MSU according to PLM. The interrater agreement between PLM and iRPolM was near perfect (к=0.90). The sensitivity of iRPolM to identify MSU in PLM-positive samples was 91.2% (95% CI: 80.7-97.1), the specificity was 97.6% (95% CI: 93.0-99.5), the PPV was 94.6% (95% CI: 85.0-98.2), NPV was 96.0% (95% CI: 91.2-98.2) and the accuracy was 95.6% (95% CI: 91.4-98.2). The positive likelihood ratio was 37.4 (95% CI: 12.20-114.71), and the negative likelihood ratio was 0.09 (95% CI: 0.04-0.21). CONCLUSION iRPolM is a promising next-generation diagnostic tool for rheumatology by diagnosing gout with high specificity, increased objectivity, and a sensitivity comparable to PLM.
Collapse
Affiliation(s)
- Tom Niessink
- Medical Cell BioPhysics Group, TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands; Department of Rheumatology, VieCuri Medical Centre, Tegelseweg 210, 5912 BL, Venlo, The Netherlands.
| | - Tanja Giesen
- Department of Rheumatology, VieCuri Medical Centre, Tegelseweg 210, 5912 BL, Venlo, The Netherlands
| | - Monique Efdé
- Department of Rheumatology, VieCuri Medical Centre, Tegelseweg 210, 5912 BL, Venlo, The Netherlands
| | - Antoaneta Comarniceanu
- Department of Rheumatology, VieCuri Medical Centre, Tegelseweg 210, 5912 BL, Venlo, The Netherlands
| | - Matthijs Janssen
- Department of Rheumatology, VieCuri Medical Centre, Tegelseweg 210, 5912 BL, Venlo, The Netherlands
| | - Cees Otto
- Medical Cell BioPhysics Group, TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Tim L Jansen
- Department of Rheumatology, VieCuri Medical Centre, Tegelseweg 210, 5912 BL, Venlo, The Netherlands
| |
Collapse
|
4
|
Takeuchi Y, Yoshikawa R, Mitsui Y, Iwasaka M, Matsuda M, Hamasaki A. Differences in the Optical Response of MSU and CPP Crystals During Magnetic Orientation: Possibility of Diagnosing Gout and Pseudogout. Bioelectromagnetics 2023; 44:204-210. [PMID: 37157157 DOI: 10.1002/bem.22444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023]
Abstract
Pseudogout is crystalline arthritis. It has a similar clinical picture to that of gout, and it is difficult to distinguish the two diseases using conventional analysis methods. However, it is important to identify the different crystals responsible for these two cases because the treatment strategies are different. In a previous study, we reported magnetic orientation of monosodium urate (MSU) crystals, which are the causative agent of gout, at the permanent magnet level. In this study, we investigated the effect of an applied magnetic field on calcium pyrophosphate (CPP) crystals, which are the causative agent of pseudogout, and the difference in the magnetic responses of CPP and MSU crystals. We found that the CPP crystals were oriented in a magnetic field on milli-Tesla order because of the anisotropy of the diamagnetic susceptibility. In addition, the CPP crystals exhibited different anisotropic magnetic properties from those of MSU crystals, which led to a characteristic difference between the orientations of the two crystals. That is, we found that the causative agents of gout and pseudogout responded differently to a magnetic field. This report suggests that the discrimination between CPP and MSU by optical measurements is possible by application of magnetic fields appropriately. © 2023 Bioelectromagnetics Society.
Collapse
Affiliation(s)
| | | | - Yoshifuru Mitsui
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | | | | | - Atom Hamasaki
- Faculty of Science, Shinshu University, Matsumoto, Japan
| |
Collapse
|
5
|
Hemstapat R, Duangiad P, Tangketsarawan B, Phuagpan T, Chienwiwattanawong S, Tangsrianugul N, Ojida A, Wongkongkatep J. Improved polarized light microscopic detection of gouty crystals via dissolution with formalin and ethylenediamine tetraacetic acid. Sci Rep 2023; 13:7505. [PMID: 37160946 PMCID: PMC10170089 DOI: 10.1038/s41598-023-34570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
Conventional polarized light microscopy has been widely used to detect gouty crystals, but its limited sensitivity increases the risk of misidentification. In this study, a number of methods were investigated to improve the sensitivity of polarized light microscopy for the detection of monosodium urate monohydrate (MSUM) and calcium pyrophosphate dihydrate (CPPD) crystals. We found that coating glass slides with poly-L-lysine, a positively charged polymer, improved the attachment of crystals to the glass surface, resulting in clearer crystal images compared to non-coated slides. Additionally, the sensitivity of detection was further enhanced by selective dissolution, in which 40% v/v formalin phosphate buffer was employed to dissolve MSUM crystals but not CPPD while 10% ethylenediamine tetraacetic acid (EDTA) was employed to dissolved CPPD but not MSUM. The other possible interferences were dissolved in both EDTA and formalin solution. These methods were successfully applied to detect gouty crystals in biological milieu, including spiked porcine synovial fluid and inflamed rat subcutaneous air pouch tissues.
Collapse
Affiliation(s)
- Ruedee Hemstapat
- Department of Pharmacology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand
| | - Peeradon Duangiad
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand
| | - Borwornporn Tangketsarawan
- Department of Pharmacology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand
| | - Thitiya Phuagpan
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand
| | - Sinthida Chienwiwattanawong
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand
| | - Nuttinee Tangsrianugul
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Jirarut Wongkongkatep
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Tang S, Huang Y, Zhao S, Hu K. Surface molecularly imprinted-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for highly selective and sensitive direct analysis of paraquat in complicated samples. Talanta 2023; 258:124423. [PMID: 36898307 DOI: 10.1016/j.talanta.2023.124423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
Herein, a novel surface molecularly imprinted-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (SMI-MALDI-TOF MS) method for direct target paraquat (PQ) analysis in complicated samples is reported. Notably, a captured analyte-imprinted material can be directly detected via MALDI-TOF MS by using imprinted material as nanomatrix. Using this strategy, the molecular specific affinity performance of surface molecularly imprinted polymers (SMIPs) and the high-sensitivity detection capability of MALDI-TOF MS was integrated. The introduction of SMI endowed the nanomatrix with the capacity for rebinding the target analyte and ensuring specificity, prevented the interfering organic matrix, and enhanced the analyzing sensitivity. By using paraquat (PQ) as a template, dopamine as a monomer, and covalent organic frameworks with a carboxyl group (C-COFs) as a substrate, polydopamine (PDA) was decorated on C-COFs via a simple self-assembly procedure to generate an analyte-based surface molecularly imprinted polymer (C-COF@PDA-SMIP), which served the dual function of SMIP capturing the target analytes and high-efficiency ionization. Thus, a reliable MALDI-TOF MS detection PQ with high selectivity and sensitivity as well as an interference-free background was achieved. The synthesis and enrichment conditions of C-COF@PDA-SMIPs were optimized, and its structure and property were characterized. Under optimal experimental conditions, the proposed method achieved highly selective and ultrasensitive detection of PQ from 5 to 500 pg mL-1, and the limit of detection was as low as 0.8 pg mL-1, which is at least three orders of magnitude lower than that achieved without enrichment. In addition, the specificity of the proposed method was superior to that of C-COFs and nonimprinted polymers. Moreover, this method exhibited reproducibility, stability, and high salt tolerance. Lastly, the practical applicability of the method was successfully verified by analyzing complicated samples, such as grass and orange.
Collapse
Affiliation(s)
- Shuiping Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yong Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Kun Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
7
|
Liu XP, Sun WQ, Zhao MG, Zhang XJ, Liu LH, Chen CP. Fluoro-functionalized ionic covalent organic frameworks (F-iCOFs) for highly selective enrichment and sensitive determination of perfluorinated sulfonates by MALDI-MS. Mikrochim Acta 2022; 189:442. [DOI: 10.1007/s00604-022-05542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
|
8
|
Hu X, Zhang Y, Deng C, Sun N, Wu H. Metabolic Molecular Diagnosis of Inflammatory Bowel Disease by Synergistical Promotion of Layered Titania Nanosheets with Graphitized Carbon. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:261-271. [PMID: 36939785 PMCID: PMC9590550 DOI: 10.1007/s43657-022-00055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
Abstract
Due to inefficient diagnostic methods, inflammatory bowel disease (IBD) normally progresses into severe complications including cancer. Highly efficient extraction and identification of metabolic fingerprints are of significance for disease surveillance. In this work, we synthesized a layered titania nanosheet doped with graphitized carbon (2D-GC-mTNS) through a simple one-step assembly process for assisting laser desorption ionization mass spectrometry (LDI-MS) for metabolite analysis. Based on the synergistic effect of graphitized carbon and mesoporous titania, 2D-GC-mTNS exhibits good extraction ability including high sensitivity (< 1 fmol µL-1) and great repeatability toward metabolites. A total of 996 fingerprint spectra were collected from hundreds of native urine samples (including IBD patients and healthy controls), each of which contained 1220 m/z metabolite features. Diagnostic model was further established for precise discrimination of patients from healthy controls, with high area under the curve value of 0.972 and 0.981 toward discovery cohort and validation cohort, respectively. The 2D-GC-mTNS promotes LDI-MS to be close to clinical application, with rapid speed, minimum sample consumption and free of sample pretreatment. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00055-0.
Collapse
Affiliation(s)
- Xufang Hu
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Institute of Metabolism & Integrate Biology (IMIB), Fudan University, Shanghai, 200433 China
| | - Yang Zhang
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Institute of Metabolism & Integrate Biology (IMIB), Fudan University, Shanghai, 200433 China
| | - Chunhui Deng
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Institute of Metabolism & Integrate Biology (IMIB), Fudan University, Shanghai, 200433 China
- grid.8547.e0000 0001 0125 2443Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Nianrong Sun
- grid.8547.e0000 0001 0125 2443Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Hao Wu
- grid.8547.e0000 0001 0125 2443Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| |
Collapse
|
9
|
Yang C, Miao A, Yang C, Huang C, Chen H, Jiang Y, Deng C, Sun N. Precise Detection of Cataracts with Specific High-Risk Factors by Layered Binary Co-Ionizers Assisted Aqueous Humor Metabolic Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105905. [PMID: 35621284 PMCID: PMC9313487 DOI: 10.1002/advs.202105905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Diabetes and high myopia as well-known high-risk factors can aggravate cataracts, yet clinical coping strategy remains a bottleneck. Metabolic analysis tends to be powerful for precisely detection and mechanism exploration since most of diseases including cataracts are accompanied by metabolic disorder. Herein, a layered binary co-ionizers assisted aqueous humor metabolic analysis tool is proposed for potentially etiological typing and detection of cataracts, including age-related cataracts (ARC), cataracts with diabetes mellitus (CDM), and cataracts with high myopia (CHM). Startlingly, taking advantage of the optimal machine learning algorithm and all metabolic fingerprints, 100% of accuracy, precision, and recall rates are achieved for arbitrary comparison between groups. Moreover, 11, 9, and 7 key metabolites with explicit identities are confirmed as markers of discriminating CDM from ARC, CHM from ARC, and CDM from CHM, and the corresponding area under the curve values of validation cohorts are 0.985, 1.000, and 1.000. Finally, the critical impact of diabetes/high myopia on cataracts is revealed by excavating the change levels and metabolic pathways of key metabolites. This work updates the insights of prevention and treatment about cataracts at metabolic level and throws out huge surprises and progresses metabolic diagnosis toward a reality.
Collapse
Affiliation(s)
- Chenjie Yang
- Department of ChemistryInstitue of Metabolism and Integrate Biology (IMIB)Zhongshan HospitalFudan UniversityShanghai200433China
| | - Aizhu Miao
- Eye Institute and Department of Ophthalmology, Eye & ENT HospitalFudan UniversityShanghai200031China
| | - Chaochao Yang
- Department of ChemistryInstitue of Metabolism and Integrate Biology (IMIB)Zhongshan HospitalFudan UniversityShanghai200433China
| | - Chuwen Huang
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Haolin Chen
- Department of ChemistryInstitue of Metabolism and Integrate Biology (IMIB)Zhongshan HospitalFudan UniversityShanghai200433China
| | - Yongxiang Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT HospitalFudan UniversityShanghai200031China
| | - Chunhui Deng
- Department of ChemistryInstitue of Metabolism and Integrate Biology (IMIB)Zhongshan HospitalFudan UniversityShanghai200433China
| | - Nianrong Sun
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
10
|
Qiu Z, Zheng Z, Song Z, Sun Y, Shan Q, Lin Z, Xie Z. Co 3O 4 nanocrystals as matrices for the detection of amino acids, harmful additives and pesticide residues by MALDI-TOF MS. Talanta 2022; 242:123299. [PMID: 35183982 DOI: 10.1016/j.talanta.2022.123299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 01/04/2023]
Abstract
Research of detection of low molecular weight compounds on human health and biological systems become increasingly important. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), a soft ionization equipment, is a rapid, reliable, high-sensitivity, high-throughput and simple test instrument. However, the application of MALDI-TOF MS in the analysis of small molecules (<500 Da) has become a great challenge because of the interference from the conventional matrices in low mass region when using conventional matrices. In this research, tricobalt tetraoxide (Co3O4) nanocrystals with rich surface hydroxyl groups were synthesized and served as novel matrices for the detection of small molecules by MALDI-TOF MS. In comparison with conventional organic matrices, the use of as-prepared Co3O4 nanocrystal matrices showed little matrix background interference, good reproducibility and high signal intensity in the analyses of amino acids, harmful additives and pesticide residues. For the detection of most amino acids, Co3O4 nanocrystal matrices have good detection performance both in the positive and negative ion modes and have a unique decarboxylation peak in the positive ion mode, which is conducive to the identification of amino acids. In addition, Co3O4 nanocrystals are completely feasible to test triadimefon, pirimicarb and other pesticide residues, as well as additives such as bisphenol A and melamine in the positive ion mode. It is also feasible to detect small molecule compounds in practical samples using Co3O4 nanocrystals as matrices. We believe the work provides an alternative approach for the detection of small molecules and expands the application scope of Co3O4 nanocrystals.
Collapse
Affiliation(s)
- Zufeng Qiu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhiping Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhijia Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yunchao Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qiheng Shan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhiwei Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
11
|
Sun R, Zhang Y, Tang W, Li B. Submicron 3,4-dihydroxybenzoic acid–TiO 2 composite particles for enhanced MALDI MS imaging of secondary metabolites in the root of differently aged baical skullcap. Analyst 2022; 147:3017-3024. [DOI: 10.1039/d2an00710j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work provides a high-efficient organic-inorganic hybrid matrix for MALDI MSI of secondary metabolites in plant tissues.
Collapse
Affiliation(s)
- Ruiyang Sun
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying Zhang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
12
|
Noh JY, Kim MJ, Kim M, Kim JI, Park JM, Yun TG, Kang MJ, Pyun JC. Quantitative analysis of galactose using LDI-TOF MS based on a TiO2 nanowire chip. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractA novel method for quantifying galactose was developed to serve as a newborn screening test for galactosemia using laser desorption/ionization time-of-flight (LDI-TOF) mass spectrometry (MS) with a TiO2 nanowire chip. Herein, phosphate citrate buffer, serum, and dried blood spot (DBS) were employed for the quantitative analysis of galactose. To quantitatively analyze galactose, its reduction potential was used to oxidize o-phenylene diamine (OPD) into 2,3-diaminophenazine (DA), which were both detected using LDI-TOF MS with a TiO2 nanowire chip according to the concentration of galactose. The reproducibility and the interference of glucose were determined to demonstrate the applicability of this method. Moreover, mixtures of galactose, phenylalanine, and 17 α-OHP were analyzed to determine the interference induced by other biomarkers of metabolic disorders. The OPD oxidation of galactose was found to be selectively achieved under high-glucose conditions, similar to human blood, thereby showing good reproducibility. The intensities of the mass peaks of OPD and DA based on LDI-TOF MS with a TiO2 nanowire chip were linearly correlated in the galactose concentration range of 57.2–220.0 μg/mL (r2 = 0.999 and 0.950, respectively) for serum samples and 52.5–220.0 μg/mL (r2 = 0.993 and 0.985, respectively) for DBS after methanol precipitation/extraction. The enzyme immunoassay and LDI-TOF MS analysis results were statistically analyzed, and a mixture of phenylalanine, 17 α-OHP, and galactose was simultaneously investigated quantitatively at the cutoff level.
Collapse
|
13
|
Ma W, Li J, Li X, Bai Y, Liu H. Nanostructured Substrates as Matrices for Surface Assisted Laser Desorption/Ionization Mass Spectrometry: A Progress Report from Material Research to Biomedical Applications. SMALL METHODS 2021; 5:e2100762. [PMID: 34927930 DOI: 10.1002/smtd.202100762] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Indexed: 06/14/2023]
Abstract
Within the past two decades, the escalation of research output in nanotechnology fields has boosted the development of novel nanoparticles and nanostructured substrates for use as matrices in surface assisted laser desorption/ionization mass spectrometry (SALDI-MS). The application of nanomaterials as matrices, rather than organic matrices, offers remarkable characteristics that allow the analysis of small molecules with fewer matrix interfering peaks, and share higher detection sensitivity, specificity, and reproducibility. The technological advancement of SALDI-MS has in turn, propelled the application of the analytical technique in the field of biomedical analysis. In this review, the properties and fabrication methods of nanostructured substrates in SALDI-MS such as metallic-, carbon-, and silicon-based nanostructures, quantum dots, metal-organic frameworks, and covalent-organic frameworks are described. Additionally, the latest progress (most within 5 years) of biomedical applications in small molecule, large biomolecule, and MS imaging analysis including metabolite profiling, drug monitoring, bacteria identification, disease diagnosis, and therapeutic evaluation are demonstrated. Key parameters that govern nanomaterial's SALDI efficiency in biomolecule analysis are also discussed. Finally, perspectives of the future development are given to provide a better advancement and promote practical application in clinical MS.
Collapse
Affiliation(s)
- Wen Ma
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianjiang Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing, 100029, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
Jung J, Bong JH, Lee SJ, Kim MJ, Sung JS, Lee M, Kang MJ, Song J, Jose J, Pyun JC. Screening of Fv Antibodies with Specific Binding Activities to Monosodium Urate and Calcium Pyrophosphate Dihydrate Crystals for the Diagnosis of Gout and Pseudogout. ACS APPLIED BIO MATERIALS 2021; 4:3388-3397. [PMID: 35014423 DOI: 10.1021/acsabm.0c01680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To date, medical diagnosis of gout and pseudogout has been performed by observing the crystals in the joint fluid of patients under a polarized microscope. Conventional diagnostic methods using a polarized microscope have disadvantages, such as time-consuming analysis, a high false negative rate, and difficulty in distinguishing gout with monosodium urate (MSU) crystals and pseudogout with calcium pyrophosphate dihydrate (CPPD) crystals in synovial fluids. In this study, a chromogenic assay for the diagnosis of gout and pseudogout, without the requirement of a polarized microscope and trained experts, was proposed using Fv antibodies with specific binding activities to MSU and CPPD crystals. The IgG VH chain Fv library with randomized complementarity-determining region 3 (CDR3) region was expressed on the outer membrane of Escherichia coli using autodisplay technology. The target Fv antibodies with binding activity to MSU and CPPD crystals were screened from the autodisplayed Fv library on the E. coli outer membrane, and five clones were selected. On the basis of the binding properties of the screened Fv antibodies, peptides with the selected clone of amino acid sequences of the CDR3 region (15 residues) were chemically synthesized. The binding properties of the synthetic peptides with amino acid sequences of CDR3 regions from the selected clones were analyzed using fluorescence imaging and flow cytometry, and the affinity constants (Kd) of each peptide for binding to MSU and CPPD crystals were calculated by fitting based on the isotherm model. A chromogenic assay configuration for gout and pseudogout was developed using synthetic peptides. In this chromogenic assay, synthetic peptides labeled with biotin and streptavidin-horseradish peroxidase (HRP) complex were used, and crystal detection was possible using a chromogenic reaction between HRP and a chromogenic substrate (TMB). Finally, gout and pseudogout were diagnosed by detecting MSU and CPPD crystals in the synovial fluid in the concentration range of 0-300 μg/mL.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Soo Jeong Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Moon-Ju Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Min-Jung Kang
- Medicine Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, PharmaCampus, Westphalian Wilhelms-University Münster, Corrensstr. 48, Münster 48149, Germany
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
15
|
Samarah LZ, Vertes A. Mass spectrometry imaging based on laser desorption ionization from inorganic and nanophotonic platforms. VIEW 2020. [DOI: 10.1002/viw.20200063] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Laith Z. Samarah
- Department of Chemistry George Washington University Washington DC USA
| | - Akos Vertes
- Department of Chemistry George Washington University Washington DC USA
| |
Collapse
|
16
|
Kim MJ, Park JM, Yun TG, Noh JY, Kang MJ, Pyun JC. A TiO2 nanowire photocatalyst for dual-ion production in laser desorption/ionization (LDI) mass spectrometry. Chem Commun (Camb) 2020; 56:4420-4423. [DOI: 10.1039/d0cc00866d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been challenging to detect small analytes in both positive and negative ion modes in MALDI-MS. Herein, TiO2 nanowires are presented as a solid matrix to produce dual-ion of any analytes and to demonstrate the versatile applicability in LDI-MS.
Collapse
Affiliation(s)
- Moon-Ju Kim
- Department of Materials Science and Engineering
- Yonsei University
- Seoul
- Republic of Korea
| | - Jong-Min Park
- Department of Materials Science and Engineering
- Yonsei University
- Seoul
- Republic of Korea
| | - Tae Gyeong Yun
- Department of Materials Science and Engineering
- Yonsei University
- Seoul
- Republic of Korea
| | - Joo-Yoon Noh
- Department of Materials Science and Engineering
- Yonsei University
- Seoul
- Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST)
- Seoul
- Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering
- Yonsei University
- Seoul
- Republic of Korea
| |
Collapse
|