1
|
Priebe A, Michler J. Review of Recent Advances in Gas-Assisted Focused Ion Beam Time-of-Flight Secondary Ion Mass Spectrometry (FIB-TOF-SIMS). MATERIALS (BASEL, SWITZERLAND) 2023; 16:2090. [PMID: 36903205 PMCID: PMC10003971 DOI: 10.3390/ma16052090] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a powerful chemical characterization technique allowing for the distribution of all material components (including light and heavy elements and molecules) to be analyzed in 3D with nanoscale resolution. Furthermore, the sample's surface can be probed over a wide analytical area range (usually between 1 µm2 and 104 µm2) providing insights into local variations in sample composition, as well as giving a general overview of the sample's structure. Finally, as long as the sample's surface is flat and conductive, no additional sample preparation is needed prior to TOF-SIMS measurements. Despite many advantages, TOF-SIMS analysis can be challenging, especially in the case of weakly ionizing elements. Furthermore, mass interference, different component polarity of complex samples, and matrix effect are the main drawbacks of this technique. This implies a strong need for developing new methods, which could help improve TOF-SIMS signal quality and facilitate data interpretation. In this review, we primarily focus on gas-assisted TOF-SIMS, which has proven to have potential for overcoming most of the aforementioned difficulties. In particular, the recently proposed use of XeF2 during sample bombardment with a Ga+ primary ion beam exhibits outstanding properties, which can lead to significant positive secondary ion yield enhancement, separation of mass interference, and inversion of secondary ion charge polarity from negative to positive. The implementation of the presented experimental protocols can be easily achieved by upgrading commonly used focused ion beam/scanning electron microscopes (FIB/SEM) with a high vacuum (HV)-compatible TOF-SIMS detector and a commercial gas injection system (GIS), making it an attractive solution for both academic centers and the industrial sectors.
Collapse
|
2
|
Priebe A, Aribia A, Sastre J, Romanyuk YE, Michler J. 3D High-Resolution Chemical Characterization of Sputtered Li-Rich NMC811 Thin Films Using TOF-SIMS. Anal Chem 2023; 95:1074-1084. [PMID: 36534635 DOI: 10.1021/acs.analchem.2c03780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Massive demand for Li-ion batteries stimulates the research of new materials such as high-capacity cathodes, metal anodes, and solid electrolytes, which should ultimately lead to new generations of batteries such as all-solid-state batteries. Such material discovery often requires knowledge on lithium's content and local distribution in complex Li-containing systems, which is a challenging analytical task. The state-of-the-art time-of-flight secondary-ion mass spectrometry (TOF-SIMS) is one of the few chemical analysis techniques allowing for parallel detection of all sample components and representing their distributions in 3D with nanoscale resolution. In this work, we explore the outstanding potential of TOF-SIMS for comprehensive chemical and nano-/micro-structural characterization of novel Li-rich nickel manganese cobalt oxide thin films, which are potential cathode materials for the future generation batteries. Off-stoichiometric thin films of Li- and Ni-rich layered oxide with the composition of LixNi0.8Mn0.1Co0.1O2 (LR-NMC811, x > 1) were deposited using reactive magnetron sputtering. Such thin films do not contain any conductive additives or binders and therefore serve as model 2D systems to investigate compositional fluctuations, surface and interface phenomena, and their aging. TOF-SIMS revealed the presence of 400 ± 100 nm overlithiated grains and 100 ± 30 nm nanoparticles with an increased 7Li16O+ ion content in the buried part of LR-NMC811. The Li-rich agglomerates could potentially serve as Li reservoirs for compensating Li losses during cathode fabrication and cell operation. Interestingly, these sub-micron structures decomposed in time upon exposure to ambient conditions for 30 days.
Collapse
Affiliation(s)
- Agnieszka Priebe
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Abdessalem Aribia
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Jordi Sastre
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Yaroslav E Romanyuk
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| |
Collapse
|
3
|
Jurczyk J, Pillatsch L, Berger L, Priebe A, Madajska K, Kapusta C, Szymańska IB, Michler J, Utke I. In Situ Time-of-Flight Mass Spectrometry of Ionic Fragments Induced by Focused Electron Beam Irradiation: Investigation of Electron Driven Surface Chemistry inside an SEM under High Vacuum. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2710. [PMID: 35957140 PMCID: PMC9370286 DOI: 10.3390/nano12152710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Recent developments in nanoprinting using focused electron beams have created a need to develop analysis methods for the products of electron-induced fragmentation of different metalorganic compounds. The original approach used here is termed focused-electron-beam-induced mass spectrometry (FEBiMS). FEBiMS enables the investigation of the fragmentation of electron-sensitive materials during irradiation within the typical primary electron beam energy range of a scanning electron microscope (0.5 to 30 keV) and high vacuum range. The method combines a typical scanning electron microscope with an ion-extractor-coupled mass spectrometer setup collecting the charged fragments generated by the focused electron beam when impinging on the substrate material. The FEBiMS of fragments obtained during 10 keV electron irradiation of grains of silver and copper carboxylates and shows that the carboxylate ligand dissociates into many smaller volatile fragments. Furthermore, in situ FEBiMS was performed on carbonyls of ruthenium (solid) and during electron-beam-induced deposition, using tungsten carbonyl (inserted via a gas injection system). Loss of carbonyl ligands was identified as the main channel of dissociation for electron irradiation of these carbonyl compounds. The presented results clearly indicate that FEBiMS analysis can be expanded to organic, inorganic, and metal organic materials used in resist lithography, ice (cryo-)lithography, and focused-electron-beam-induced deposition and becomes, thus, a valuable versatile analysis tool to study both fundamental and process parameters in these nanotechnology fields.
Collapse
Affiliation(s)
- Jakub Jurczyk
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Lex Pillatsch
- TOFWERK AG, Schorenstrasse 39, CH-3645 Thun, Switzerland
| | - Luisa Berger
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Agnieszka Priebe
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Katarzyna Madajska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Czesław Kapusta
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Iwona B. Szymańska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Ivo Utke
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| |
Collapse
|
4
|
Eller MJ, Sandoval JM, Verkhoturov SV, Schweikert EA. Nanoprojectile Secondary Ion Mass Spectrometry for Nanometrology of Nanoparticles and Their Interfaces. Anal Chem 2022; 94:7868-7876. [PMID: 35594187 DOI: 10.1021/acs.analchem.2c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanoscale molecular characterization plays a crucial role in enhancing our insights into fundamental and materials processes occurring at the nanoscale. However, for many traditional techniques, measurements on different ensembles are mixed and the analytical result reflects the average surface composition or arrangement. Advances in nanometrologies that allow for measurements to be differentiated based on the chemical environment examined are critical for accurate analysis. Here, we present a variant of secondary ion mass spectrometry, SIMS, termed nanoprojectile SIMS, NP-SIMS, capable of nanoscale molecular analysis. The technique examines the sample with a suite, 106-107, of individual gold nanoprojectiles (e.g., Au4004+) which stochastically probe the surface. Analysis of coemitted ions from each impact allows for the inspection of colocalized moieties within the ejected volume of a single projectile impact (10-15 nm in diameter). If some of these 106-107 measurements arise from nanodomains of similar composition, data can be grouped based on the detected secondary ions. We applied the method to examine a mixture of three different-sized nanoparticles with identical metal cores (3-5 nm in diameter), differing in the length of the attached ligand (decanetiol, tetradecanethiol, and hexadecanethiol). Using NP-SIMS, we determined the relative abundance of the three particles on the surface and isolated measurements based on the impact parameter between the impacting nanoprojectile and the surface particle, demonstrating that measurements occurring near the center of the particle can be differentiated from those at the particle-particle and particle-substrate interfaces. The results suggest that the described methodology is well-suited for molecular analysis of nanoassemblies and may be applied for tracking defects. Here we demonstrate that, using NP-SIMS, ensemble averaging can be avoided and molecular analysis can be undertaken at a scale below 5 nm, allowing for nanoscale molecular analysis of nano-objects and their interfaces.
Collapse
Affiliation(s)
- Michael J Eller
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jesse M Sandoval
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | - Emile A Schweikert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
An Evaluation of Nanoparticle Distribution in Solution-Derived YBa2Cu3O7−δ Nanocomposite Thin Films by XPS Depth Profiling in Combination with TEM Analysis. CRYSTALS 2022. [DOI: 10.3390/cryst12030410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This work discusses the development of an analysis routine for evaluating the nanoparticle distribution in nanocomposite thin films. YBa2Cu3O7−δ (YBCO) nanocomposite films were synthesized via a chemical solution deposition approach starting from colloidal YBCO solutions with preformed nanoparticles. The distribution of the nanoparticles and interlayer diffusion are evaluated with X-ray photoelectron spectroscopy (XPS) depth profiling and compared with cross-sectional transmission electron microscopy (TEM) images. It is shown that the combination of both techniques deliver valuable information on the film properties as nanoparticle distribution, film thickness and interlayer diffusion.
Collapse
|
6
|
High-Resolution Topographic and Chemical Surface Imaging of Chalk for Oil Recovery Improvement Applications. MINERALS 2022. [DOI: 10.3390/min12030356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chalk is a very fine-grained carbonate and can accommodate high porosity which is a key characteristic for high-quality hydrocarbon reservoirs. A standard procedure within Improved Oil Recovery (IOR) is seawater-injection which repressurizes the reservoir pore pressure. Long-term seawater-injection will influence mineralogical processes as dissolution and precipitation of secondary minerals. These secondary minerals (<1 micrometer) precipitate during flooding experiments mimicking reservoir conditions. Due to their small sizes, analysis from traditional scanning electron microscopy combined with energy dispersive X-ray spectroscopy is not conclusive because of insufficient spatial resolution and detection limit. Therefore, chalk was analyzed with high-resolution imaging by helium ion microscopy (HIM) combined with secondary ion mass spectrometry (SIMS) for the first time. Our aim was to identify mineral phases at sub-micrometer scale and identify locations of brine–rock interactions. In addition, we wanted to test if current understanding of these alteration processes can be improved with the combination of complementary imaging techniques and give new insights to IOR. The HIM-SIMS imaging revealed well-defined crystal boundaries and provided images of excellent lateral resolution, allowing for identification of specific mineral phases. Using this new methodology, we developed chemical identification of clay minerals and could define their exact location on micron-sized coccolith grains. This shows that it is essential to study mineralogical processes at nanometer scale in general, specifically in the research field of applied petroleum geology within IOR.
Collapse
|
7
|
Audinot JN, Philipp P, De Castro O, Biesemeier A, Hoang QH, Wirtz T. Highest resolution chemical imaging based on secondary ion mass spectrometry performed on the helium ion microscope. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:105901. [PMID: 34404033 DOI: 10.1088/1361-6633/ac1e32] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
This paper is a review on the combination between Helium Ion Microscopy (HIM) and Secondary Ion Mass Spectrometry (SIMS), which is a recently developed technique that is of particular relevance in the context of the quest for high-resolution high-sensitivity nano-analytical solutions. We start by giving an overview on the HIM-SIMS concept and the underlying fundamental principles of both HIM and SIMS. We then present and discuss instrumental aspects of the HIM and SIMS techniques, highlighting the advantage of the integrated HIM-SIMS instrument. We give an overview on the performance characteristics of the HIM-SIMS technique, which is capable of producing elemental SIMS maps with lateral resolution below 20 nm, approaching the physical resolution limits, while maintaining a sub-nanometric resolution in the secondary electron microscopy mode. In addition, we showcase different strategies and methods allowing to take profit of both capabilities of the HIM-SIMS instrument (high-resolution imaging using secondary electrons and mass filtered secondary sons) in a correlative approach. Since its development HIM-SIMS has been successfully applied to a large variety of scientific and technological topics. Here, we will present and summarise recent applications of nanoscale imaging in materials research, life sciences and geology.
Collapse
Affiliation(s)
- Jean-Nicolas Audinot
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Patrick Philipp
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Olivier De Castro
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Antje Biesemeier
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Quang Hung Hoang
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Tom Wirtz
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|
8
|
Priebe A, Huszar E, Nowicki M, Pethö L, Michler J. Mechanisms of Fluorine-Induced Separation of Mass Interference during TOF-SIMS Analysis. Anal Chem 2021; 93:10261-10271. [PMID: 34256561 DOI: 10.1021/acs.analchem.1c01661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is one of very few analytical techniques allowing sample chemical structure to be characterized in three-dimensional (3D) with nanometer resolution. Due to the excellent sensitivity in the order of ppm-ppb and capability of detecting all ionized elements and molecules, TOF-SIMS finds many applications for analyzing nanoparticle-containing systems and thin films used in microdevices for new energy applications, microelectronics, and biomedicine. However, one of the main drawbacks of this technique is potential mass interference between ions having the same or similar masses, which can lead to data misinterpretation. In this work, we present that this problem can be easily solved by delivering fluorine gas to a sample surface during TOF-SIMS analysis and we propose mechanisms driving this phenomenon. Our comprehensive studies, conducted on complex thin films made of highly mass-interfering elements, show that fluorine modifies the ionization process, leading to element-specific changes of ion yields (which can vary by several orders of magnitude), and affects the efficiency of metal hydride and oxide formation. In conjunction, these two effects can efficiently induce separation of mass interference, providing more representative TOF-SIMS data with respect to the sample composition and significant enhancement of chemical image resolution. Consequently, this can improve the chemical characterization of complex multilayers in nanoscale.
Collapse
Affiliation(s)
- Agnieszka Priebe
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Emese Huszar
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland.,Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Marek Nowicki
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland.,Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznań, Poland
| | - Laszlo Pethö
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Johann Michler
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| |
Collapse
|
9
|
Verkhoturov DS, Crulhas BP, Eller MJ, Han YD, Verkhoturov SV, Bisrat Y, Revzin A, Schweikert EA. Nanoprojectile Secondary Ion Mass Spectrometry for Analysis of Extracellular Vesicles. Anal Chem 2021; 93:7481-7490. [PMID: 33988360 DOI: 10.1021/acs.analchem.1c00689] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We describe a technique based on secondary ion mass spectrometry with nanoprojectiles (NP-SIMS) for determining the protein content of extracellular vesicles, EVs, via tagged antibodies. The technique uses individual gold nanoprojectiles (e.g., Au4004+ and Au28008+), separated in time and space, to bombard a surface. For each projectile impact (10-20 nm in diameter), the co-emitted molecules are mass analyzed and recorded as an individual mass spectrum. Examining these individual mass spectra for co-localized species allows for nanoscale mass spectrometry to be performed. The high lateral resolution of this technique is well suited for analyzing nano-objects. SIMS is generally limited to analyzing small molecules (below ∼1500 Da); therefore, we evaluated three molecules (eosin, erythrosine, and BHHTEGST) as prospective mass spectrometry tags. We tested these on a model surface comprising a mixture of all three tags conjugated to antibodies and found that NP-SIMS could detect all three tags from a single projectile impact. Applying the method, we tagged two surface proteins common in urinary EVs, CD63 and CD81, with anti-CD63-erythrosine and anti-CD81-BHHTEGST. We found that NP-SIMS could determine the relative abundance of the two proteins and required only a few hundred or thousand EVs in the analysis region to detect the presence of the tagged antibodies.
Collapse
Affiliation(s)
- Dmitriy S Verkhoturov
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Bruno P Crulhas
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street SW St-11-14, Rochester, Minnesota 55905, United States
| | - Michael J Eller
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, California 91330, United States
| | - Yong D Han
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street SW St-11-14, Rochester, Minnesota 55905, United States
| | | | - Yordanos Bisrat
- Materials Characterization Facility, Texas A&M University, College Station, Texas 77843, United States
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street SW St-11-14, Rochester, Minnesota 55905, United States
| | - Emile A Schweikert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
10
|
Priebe A, Pethö L, Huszar E, Xie T, Utke I, Michler J. High Sensitivity of Fluorine Gas-Assisted FIB-TOF-SIMS for Chemical Characterization of Buried Sublayers in Thin Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15890-15900. [PMID: 33769781 DOI: 10.1021/acsami.1c01627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we present the potential of high vacuum-compatible time-of-flight secondary ion mass spectrometry (TOF-SIMS) detectors, which can be integrated within focused ion beam (FIB) instruments for precise and fast chemical characterization of thin films buried deep under the sample surface. This is demonstrated on complex multilayer systems composed of alternating ceramic and metallic layers with thicknesses varying from several nanometers to hundreds of nanometers. The typical problems of the TOF-SIMS technique, that is, low secondary ion signals and mass interference between ions having similar masses, were solved using a novel approach of co-injecting fluorine gas during the sample surface sputtering. In the most extreme case of the Al/Al2O3/Al/Al2O3/.../Al sample, a <10 nm thick Al2O3 thin film buried under a 0.5 μm material was detected and spatially resolved using only 27Al+ signal distribution. This is an impressive achievement taking into account that Al and Al2O3 layers varied only by a small amount of oxygen content. Due to its high sensitivity, fluorine gas-assisted FIB-TOF-SIMS can be used for quality control of nano- and microdevices as well as for the failure analysis of fabrication processes. Therefore, it is expected to play an important role in the development of microelectronics and thin-film-based devices for energy applications.
Collapse
Affiliation(s)
- Agnieszka Priebe
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Laszlo Pethö
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Emese Huszar
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
- Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Tianle Xie
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
- College of Material Science and Engineering, Hunan University, 2 Lushan S Rd, Yuelu, 410082 Changsha, P.R. China
| | - Ivo Utke
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| |
Collapse
|
11
|
Pillatsch L, Kalácska S, Maeder X, Michler J. In Situ Atomic Force Microscopy Depth-Corrected Three-Dimensional Focused Ion Beam Based Time-of-Flight Secondary Ion Mass Spectroscopy: Spatial Resolution, Surface Roughness, Oxidation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:65-73. [PMID: 33222706 DOI: 10.1017/s1431927620024678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atomic force microscopy (AFM) is a well-known tool for studying surface roughness and to collect depth information about features on the top atomic layers of samples. By combining secondary ion mass spectroscopy (SIMS) with focused ion beam (FIB) milling in a scanning electron microscope (SEM), chemical information of sputtered structures can be visualized and located with high lateral and depth resolution. In this paper, a high vacuum (HV) compatible AFM was installed in a TESCAN FIB-SEM instrument that was equipped with a time-of-flight SIMS (ToF-SIMS) detector. To calibrate the sputtering rate and measure the induced roughness caused by the ToF-SIMS analysis, subsequent AFM measurements were performed on an inorganic multilayer vertical cavity surface-emitting laser sample. Normalized sputtering rates were used to aid the accurate three-dimensional reconstruction of the sputtered volume's chemical composition. Achievable resolution, surface roughness during sputtering, and surface oxidation issues were analyzed. The integration of complementary detectors opens up the ability to determine the sample properties as well as to understand the influence of the Ga+ ion sputtering method on the sample surface during the analysis.
Collapse
Affiliation(s)
- Lex Pillatsch
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory of Mechanics of Materials and Nanostructures, Thun CH-3602, Switzerland
- TOFWERK AG., Thun CH-3600, Switzerland
| | - Szilvia Kalácska
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory of Mechanics of Materials and Nanostructures, Thun CH-3602, Switzerland
| | - Xavier Maeder
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory of Mechanics of Materials and Nanostructures, Thun CH-3602, Switzerland
| | - Johann Michler
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory of Mechanics of Materials and Nanostructures, Thun CH-3602, Switzerland
| |
Collapse
|
12
|
Pryshchepa O, Pomastowski P, Buszewski B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv Colloid Interface Sci 2020; 284:102246. [PMID: 32977142 DOI: 10.1016/j.cis.2020.102246] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
The unique silver properties, especially in the form of nanoparticles (NPs), allow to utilize them in numerous applications. For instance, Ag NPs can be utilized for the production of electronic and solar energy harvesting devices, in advanced analytical techniques (NALDI, SERS), catalysis and photocatalysis. Moreover, the Ag NPs can be useful in medicine for bioimaging, biosensing as well as in antibacterial and anticancer therapies. The Ag NPs utilization requires comprehensive knowledge about their features regarding the synthesis approaches as well as exploitation conditions. Unfortunately, a large number of scientific articles provide only restricted information according to the objects under investigation. Additionally, the results could be affected by artifacts introduced with exploited equipment, the utilized technique or sample preparation stages. However, it is rather difficult to get information about problems, which may occur during the studies. Thus, the review provides information about novel trends in the Ag NPs synthesis, among which the physical, chemical, and biological approaches can be found. Basic information about approaches for the control of critical parameters of NPs, i.e. size and shape, was also revealed. It was shown, that the reducing agent, stabilizer, the synthesis environment, including trace ions, have a direct impact on the Ag NPs properties. Further, the capabilities of modern analytical techniques for Ag NPs and nanocomposites investigations were shown, among other microscopic (optical, TEM, SEM, STEM, AFM), spectroscopic (UV-Vis, IR, Raman, NMR, electron spectroscopy, XRD), spectrometric (MALDI-TOF MS, SIMS, ICP-MS), and separation (CE, FFF, gel electrophoresis) techniques were described. The limitations and possible artifacts of the techniques were mentioned. A large number of presented techniques is a distinguishing feature, which makes the review different from others. Finally, the physicochemical and biological properties of Ag NPs were demonstrated. It was shown, that Ag NPs features are dependent on their basic parameters, such as size, shape, chemical composition, etc. At the end of the review, the modern theories of the Ag NPs toxic mechanism were shown in a way that has never been presented before. The review should be helpful for scientists in their own studies, as it can help to prepare experiments more carefully.
Collapse
|
13
|
Priebe A, Barnes JP, Edwards TEJ, Huszár E, Pethö L, Michler J. Elemental Characterization of Al Nanoparticles Buried under a Cu Thin Film: TOF-SIMS vs STEM/EDX. Anal Chem 2020; 92:12518-12527. [DOI: 10.1021/acs.analchem.0c02361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Agnieszka Priebe
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | | | - Thomas Edward James Edwards
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Emese Huszár
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Laszlo Pethö
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Johann Michler
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| |
Collapse
|
14
|
Priebe A, Pethö L, Michler J. Fluorine Gas Coinjection as a Solution for Enhancing Spatial Resolution of Time-of-Flight Secondary Ion Mass Spectrometry and Separating Mass Interference. Anal Chem 2019; 92:2121-2129. [DOI: 10.1021/acs.analchem.9b04647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Agnieszka Priebe
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Laszlo Pethö
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| |
Collapse
|