1
|
Sytu MRC, Hahm JI. Principles and Applications of ZnO Nanomaterials in Optical Biosensors and ZnO Nanomaterial-Enhanced Biodetection. BIOSENSORS 2024; 14:480. [PMID: 39451693 PMCID: PMC11506539 DOI: 10.3390/bios14100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Significant research accomplishments have been made so far for the development and application of ZnO nanomaterials in enhanced optical biodetection. The unparalleled optical properties of ZnO nanomaterials and their reduced dimensionality have been successfully exploited to push the limits of conventional optical biosensors and optical biodetection platforms for a wide range of bioanalytes. ZnO nanomaterial-enabled advancements in optical biosensors have been demonstrated to improve key sensor performance characteristics such as the limit of detection and dynamic range. In addition, all nanomaterial forms of ZnO, ranging from 0-dimensional (0D) and 1D to 2D nanostructures, have been proven to be useful, ensuring their versatile fabrication into functional biosensors. The employment of ZnO as an essential biosensing element has been assessed not only for ensembles but also for individual nanomaterials, which is advantageous for the realization of high miniaturization and minimal invasiveness in biosensors and biodevices. Moreover, the nanomaterials' incorporations into biosensors have been shown to be useful and functional for a variety of optical detection modes, such as absorption, colorimetry, fluorescence, near-band-edge emission, deep-level emission, chemiluminescence, surface evanescent wave, whispering gallery mode, lossy-mode resonance, surface plasmon resonance, and surface-enhanced Raman scattering. The detection capabilities of these ZnO nanomaterial-based optical biosensors demonstrated so far are highly encouraging and, in some cases, permit quantitative analyses of ultra-trace level bioanalytes that cannot be measured by other means. Hence, steady research endeavors are expected in this burgeoning field, whose scientific and technological impacts will grow immensely in the future. This review provides a timely and much needed review of the research efforts made in the field of ZnO nanomaterial-based optical biosensors in a comprehensive and systematic manner. The topical discussions in this review are organized by the different modes of optical detection listed above and further grouped by the dimensionality of the ZnO nanostructures used in biosensors. Following an overview of a given optical detection mode, the unique properties of ZnO nanomaterials critical to enhanced biodetection are presented in detail. Subsequently, specific biosensing applications of ZnO nanomaterials are discussed for ~40 different bioanalytes, and the important roles that the ZnO nanomaterials play in bioanalyte detection are also identified.
Collapse
Affiliation(s)
| | - Jong-In Hahm
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| |
Collapse
|
2
|
Wu Y, Zhang L, Zhang D, Yu R. A surface molecularly imprinted microfluidic paper based device with smartphone assisted colorimetric detection for butachlor in mung bean. Food Chem 2024; 435:137659. [PMID: 37816277 DOI: 10.1016/j.foodchem.2023.137659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
A microfluidic paper chip colorimetric detection system based on surface molecular imprinting of zinc ferrite nanoparticles was established, and the detection images were obtained by smartphone for gray value analysis and determination of butachlor. The best functional monomers and addition ratio were selected by quantum chemical simulation calculation, the properties of the prepared molecularly imprinted polymers were analyzed, and the detection conditions were optimized. The linear range, sensitivity, and selectivity of the method were evaluated. The results showed that under the optimum conditions, the concentration of 2-80 ng/g had a good linear relationship (R2 is 0.9953), the detection limit was 1.43 ng/g, the specificity was good, and the whole detection process did not exceed 20 min. The microfluidic paper chip was applied to detect butachlor in mung bean samples. The results showed that the recovery was 93.4-106.4 %, and the relative standard deviation was less than 5.6 %.
Collapse
Affiliation(s)
- Yi Wu
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China
| | - Liyuan Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China; Chinese National Engineering Research Center, Daqing 163319, PR China; Key Laboratory of Agro-products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, PR China.
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China; Chinese National Engineering Research Center, Daqing 163319, PR China; Key Laboratory of Agro-products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, PR China.
| | - Runzhong Yu
- College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China.
| |
Collapse
|
3
|
Colom G, Hernandez-Albors A, Barallat J, Galan A, Bayes-Genis A, Salvador JP, Marco MP. A multiplexed immunochemical microarray for the determination of cardiovascular disease biomarkers. Mikrochim Acta 2023; 191:53. [PMID: 38151630 PMCID: PMC10752916 DOI: 10.1007/s00604-023-06119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023]
Abstract
A fluorescence antibody microarray has been developed for the determination of relevant cardiovascular disease biomarkers for the analysis of human plasma samples. Recording characteristic protein molecular fingerprints to assess individual's states of health could allow diagnosis to go beyond the simple identification of the disease, providing information on its stage or prognosis. Precisely, cardiovascular diseases (CVDs) are complex disorders which involve different degenerative processes encompassing a collection of biomarkers related to disease progression or stage. The novel approach that we propose is a fluorescent microarray chip has been developed accomplishing simultaneous determination of the most significant cardiac biomarkers in plasma aiming to determine the CVD status stage of the patient. As proof of concept, we have chosen five relevant biomarkers, C-reactive protein (CRP) as biomarker of inflammation, cystatin C (CysC) as biomarker of renal failure that is directly related with heart failure, cardiac troponin I (cTnI) as already established biomarker for cardiac damage, heart fatty acid binding protein as biomarker of ischemia (H-FABP), and finally, NT-proBNP (N-terminal pro-brain natriuretic peptide), a well-established heart failure biomarker. After the optimization of the multiplexed microarray, the assay allowed the simultaneous determination of 5 biomarkers in a buffer solution reaching LODs of 15 ± 5, 3 ± 1, 24 ± 3, 25 ± 3, and 3 ± 1 ng mL-1, for CRP, CysC, H-FABP, cTnI, and NT-proBNP, respectively. After solving the matrix effect, and demonstrating the accuracy for each biomarker, the chip was able to determine 24 samples per microarray chip. Then, the microarray has been used on a small pilot clinical study with 29 plasma samples from clinical patients which suffered different CVD and other related disorders. Results show the superior capability of the chip to provide clinical information related to the disease in terms of turnaround time (1 h 30 min total assay and measurement) and amount of information delivered in respect to reference technologies used in hospital laboratories (clinical analyzers). Despite the failure to detect c-TnI at the reported threshold, the microarray technology could be a powerful approach to diagnose the cardiovascular disease at early stage, monitor its progress, and eventually providing information about an eminent potential risk of suffering a myocardial infarction. The microarray chip here reported could be the starting point for achieving powerful multiplexed diagnostic technologies for the diagnosis of CVDs or any other pathology for which biomarkers have been identified at different stages of the disease.
Collapse
Affiliation(s)
- Gloria Colom
- Nanobiotechnology for Diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Alejandro Hernandez-Albors
- Nanobiotechnology for Diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Jaume Barallat
- Biochemistry Department, Metropolitan North Clinical Laboratory (LCMN), Germans Trias i Pujol Universitary Hospital, Ctra. de Canyet, s/n, Badalona, Barcelona, Spain
| | - Amparo Galan
- Institut del Cor Germans Trias I Pujol, Ctra. de Canyet, 1-3, 08916, Badalona, Spain
| | - Antoni Bayes-Genis
- Institut del Cor Germans Trias I Pujol, Ctra. de Canyet, 1-3, 08916, Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Juan-Pablo Salvador
- Nanobiotechnology for Diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Maria-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| |
Collapse
|
4
|
Goncharov A, Joung HA, Ghosh R, Han GR, Ballard ZS, Maloney Q, Bell A, Aung CTZ, Garner OB, Carlo DD, Ozcan A. Deep Learning-Enabled Multiplexed Point-of-Care Sensor using a Paper-Based Fluorescence Vertical Flow Assay. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300617. [PMID: 37104829 DOI: 10.1002/smll.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Multiplexed computational sensing with a point-of-care serodiagnosis assay to simultaneously quantify three biomarkers of acute cardiac injury is demonstrated. This point-of-care sensor includes a paper-based fluorescence vertical flow assay (fxVFA) processed by a low-cost mobile reader, which quantifies the target biomarkers through trained neural networks, all within <15 min of test time using 50 µL of serum sample per patient. This fxVFA platform is validated using human serum samples to quantify three cardiac biomarkers, i.e., myoglobin, creatine kinase-MB, and heart-type fatty acid binding protein, achieving less than 0.52 ng mL-1 limit-of-detection for all three biomarkers with minimal cross-reactivity. Biomarker concentration quantification using the fxVFA that is coupled to neural network-based inference is blindly tested using 46 individually activated cartridges, which shows a high correlation with the ground truth concentrations for all three biomarkers achieving >0.9 linearity and <15% coefficient of variation. The competitive performance of this multiplexed computational fxVFA along with its inexpensive paper-based design and handheld footprint makes it a promising point-of-care sensor platform that can expand access to diagnostics in resource-limited settings.
Collapse
Affiliation(s)
- Artem Goncharov
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Hyou-Arm Joung
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Rajesh Ghosh
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Gyeo-Re Han
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Zachary S Ballard
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Quinn Maloney
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Alexandra Bell
- Chemistry & Biochemistry Department, University of California, Los Angeles, CA, 90095, USA
| | - Chew Tin Zar Aung
- Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Dino Di Carlo
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Aydogan Ozcan
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Jena S, Gaur D, Dubey NC, Tripathi BP. Advances in paper based isothermal nucleic acid amplification tests for water-related infectious diseases. Int J Biol Macromol 2023:125089. [PMID: 37245760 DOI: 10.1016/j.ijbiomac.2023.125089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Water-associated or water-related infectious disease outbreaks are caused by pathogens such as bacteria, viruses, and protozoa, which can be transmitted through contaminated water sources, poor sanitation practices, or insect vectors. Low- and middle-income countries bear the major burden of these infections due to inadequate hygiene and subpar laboratory facilities, making it challenging to monitor and detect infections in a timely manner. However, even developed countries are not immune to these diseases, as inadequate wastewater management and contaminated drinking water supplies can also contribute to disease outbreaks. Nucleic acid amplification tests have proven to be effective for early disease intervention and surveillance of both new and existing diseases. In recent years, paper-based diagnostic devices have made significant progress and become an essential tool in detecting and managing water-associated diseases. In this review, we highlight the importance of paper and its variants as a diagnostic tool and discuss the properties, design modifications, and various paper-based device formats developed and used for detecting water-associated pathogens.
Collapse
Affiliation(s)
- Saikrushna Jena
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Divya Gaur
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Nidhi C Dubey
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
6
|
Ma W, Pang L, Liu J, Wen L, Ma H, Li Y, Xu Z, Zhang C, Yu HD. MnO 4--Triggered Immediate-Stable Real-Time Fluorescence Immunosensor with High Response Speed and Low Steady-State Error. Anal Chem 2023; 95:6323-6331. [PMID: 37018486 DOI: 10.1021/acs.analchem.2c05149] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Real-time chemical and biological sensing in vitro is important for application in health and environmental monitoring. Thus, a more rapid and stable detection method is urgently needed. Herein, an immediate-stable real-time fluorescent immunosensor with a high response speed (∼100%, <1 s) and approximately zero steady-state error is constructed. The developed sensor is based on the MnO4--triggered in situ immediate-stable fluorogenic reaction between dopamine and orcinol monohydrate to produce azamonardine (DMTM). The obtained DMTM is identified and characterized by high-resolution mass spectrometry, 1H NMR spectroscopy, 13C NMR spectroscopy, and theoretical calculations. The present sensor achieves a highly sensitive detection of dopamine (DA) with a limit of detection (LOD) of 10 nM as well as alkaline phosphates (ALP) with an LOD of 0.1 mU/mL by using orcinol monohydrate phosphate sodium salt as a substrate. As a proof of concept, ALP-triggered fluorescence ELISA using cardiac troponin I (cTnI) as a model antigen target is further constructed. The developed real-time sensor achieves the detection of cTnI with an LOD of 0.05 ng/mL. Moreover, the sensor proposed by us is successfully applied to assess the cTnI level in clinical serum specimens and yields results consistent with those obtained by the commercial ELISA method. The immediate-stable real-time fluorescence immunosensor provides a promising and powerful platform for the trace detection of biomolecules in clinical diagnosis.
Collapse
Affiliation(s)
- Wenlin Ma
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lihua Pang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lei Wen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry, Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yinhui Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry, Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Zhihui Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian Road, Taiyuan 310003, China
| | - Hai-Dong Yu
- Xi'an Institute of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics (KLoFE) & Xi'an Key Laboratory of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
7
|
Harshita, Park TJ, Kailasa SK. Microwave-assisted synthesis of blue fluorescent molybdenum nanoclusters with maltose-cysteine Schiff base for detection of myoglobin and γ-aminobutyric acid in biofluids. LUMINESCENCE 2023. [PMID: 36758217 DOI: 10.1002/bio.4454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
The fabrication of stable fluorescent MoNCs (molybdenum nanoclusters) in aqueous media is quite challenging as it is not much explored yet. Herein, we report a facile and efficient strategy for fabricating MoNCs using 2,3 dialdehyde maltose-cysteine Schiff base (DAM-cysteine) as a ligand for detecting myoglobin and γ-aminobutyric acid (GABA) in biofluids with high selectivity and sensitivity. The DAM-cysteine-MoNCs displayed fluorescence of bright blue color under a UV light at 365 nm with an emission peak at 444 nm after excitation at 370 nm. The synthesized DAM-cysteine-MoNCs were homogeneously distributed with a mean size of 2.01 ± 0.98 nm as confirmed by the high-resolution transmission electron microscopy (HR-TEM). Further, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) techniques were utilized to confirm the elemental oxidation states and surface functional groups of the DAM-cysteine-MoNCs. After the addition of myoglobin and GABA, the emission peak of DAM-cysteine-MoNCs at 444 nm was significantly quenched. This resulted in the development of a quantitative assay for the detection of myoglobin (0.1-0.5 μM) and GABA (0.125-2.5 μM) with the lower limit of detection as 56.48 and 112.75 nM for myoglobin and GABA, respectively.
Collapse
Affiliation(s)
- Harshita
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Tae-Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, Seoul, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
8
|
Mei W, Zhou Y, Xia L, Liu X, Huang W, Wang H, Zou L, Wang Q, Yang X, Wang K. DNA Tetrahedron-Based Valency Controlled Signal Probes for Tunable Protein Detection. ACS Sens 2023; 8:381-387. [PMID: 36600539 DOI: 10.1021/acssensors.2c02476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Combined detection of multiple markers related to the same disease could improve the accuracy of disease diagnosis. However, the abundance levels of multiple markers of the same disease varied widely in real samples, making it difficult for the traditional detection method to meet the requirements of a wide detection range. Herein, three kinds of cardiac biomarkers, cardiac troponin I (cTnI), myoglobin (Myo), and C-reaction protein (CRP), which were from the pM level to the μM level in real samples, were selected as model targets. Valency-controlled signal probes based on DNA tetrahedron nanostructures (DTNs) and platinum nanoparticles (PtNPs) were constructed for tunable cardiac biomarker detection. PtNPs with high horseradish peroxidase-like activity and stability served as signal molecules, and DTNs with unique spatial structure and sequence specificity were used for precisely controlling the number of connected PtNPs. By controlling the number of PtNPs connected to DTNs, monovalent, bivalent, and trivalent signal probes were obtained and were used for the detection of cardiac markers in different concentration ranges. The limit of detection of cTnI, Myo, and CRP was 3.0 pM, 0.4 nM, and 6.7 nM, respectively. Furthermore, it performed satisfactorily for the detection of cardiac markers in 10% human serum. It was anticipated that the design of valency-controlled signal probes based on DTNs and nanozymes could be extended to the construction of other multi-target detection platforms, thus providing a basis for the development of a new precision medical detection platform.
Collapse
Affiliation(s)
- Wenjing Mei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Ling Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Weixuanzi Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Hongqiang Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Lomae A, Preechakasedkit P, Teekayupak K, Panraksa Y, Yukird J, Chailapakul O, Ruecha N. Microfluidic Paper-Based Device for Medicinal Diagnosis. Curr Top Med Chem 2022; 22:CTMC-EPUB-127355. [PMID: 36330618 DOI: 10.2174/1568026623666221103103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The demand for point-of-care testing (POCT) devices has rapidly grown since they offer immediate test results with ease of use, makingthem suitable for home self-testing patients and caretakers. However, the POCT development has faced the challenges of increased cost and limited resources. Therefore, the paper substrate as a low-cost material has been employed to develop a cost-effective POCT device, known as "Microfluidic paper-based analytical devices (μPADs)". This device is gaining attention as a promising tool for medicinal diagnostic applications owing to its unique features of simple fabrication, low cost, enabling manipulation flow (capillarydriven flow), the ability to store reagents, and accommodating multistep assay requirements. OBJECTIVE This review comprehensively examines the fabrication methods and device designs (2D/3D configuration) and their advantages and disadvantages, focusing on updated μPADs applications for motif identification. METHODS The evolution of paper-based devices, starting from the traditional devices of dipstick and lateral flow assay (LFA) with μPADs, has been described. Patterned structure fabrication of each technique has been compared among the equipment used, benefits, and drawbacks. Microfluidic device designs, including 2D and 3D configurations, have been introduced as well as their modifications. Various designs of μPADs have been integrated with many powerful detection methods such as colorimetry, electrochemistry, fluorescence, chemiluminescence, electrochemiluminescence, and SER-based sensors for medicinal diagnosis applications. CONCLUSION The μPADs potential to deal with commercialization in terms of the state-of-the-art of μPADs in medicinal diagnosis has been discussed. A great prototype, which is currently in a reallife application breakthrough, has been updated.
Collapse
Affiliation(s)
- Atchara Lomae
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand
| | - Pattarachaya Preechakasedkit
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand
| | - Kanyapat Teekayupak
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Yosita Panraksa
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Jutiporn Yukird
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Nipapan Ruecha
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Multiplexed sensing techniques for cardiovascular disease biomarkers - A review. Biosens Bioelectron 2022; 216:114680. [DOI: 10.1016/j.bios.2022.114680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 01/02/2023]
|
11
|
Liang Y, Zhou A, Yoon JY. Machine Learning-Based Quantification of (-)- trans-Δ-Tetrahydrocannabinol from Human Saliva Samples on a Smartphone-Based Paper Microfluidic Platform. ACS OMEGA 2022; 7:30064-30073. [PMID: 36061666 PMCID: PMC9434788 DOI: 10.1021/acsomega.2c03099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
(-)-trans-Δ-Tetrahydrocannabinol (THC) is a major psychoactive component in cannabis. Despite the recent trends of THC legalization for medical or recreational use in some areas, many THC-driven impairments have been verified. Therefore, convenient, sensitive, quantitative detection of THC is highly needed to improve its regulation and legalization. We demonstrated a biosensor platform to detect and quantify THC with a paper microfluidic chip and a handheld smartphone-based fluorescence microscope. Microfluidic competitive immunoassay was applied with anti-THC-conjugated fluorescent nanoparticles. The smartphone-based fluorescence microscope counted the fluorescent nanoparticles in the test zone, achieving a 1 pg/mL limit of detection from human saliva samples. Specificity experiments were conducted with cannabidiol (CBD) and various mixtures of THC and CBD. No cross-reactivity to CBD was found. Machine learning techniques were also used to quantify the THC concentrations from multiple saliva samples. Multidimensional data were collected by diluting the saliva samples with saline at four different dilutions. A training database was established to estimate the THC concentration from multiple saliva samples, eliminating the sample-to-sample variations. The classification algorithms included k-nearest neighbor (k-NN), decision tree, and support vector machine (SVM), and the SVM showed the best accuracy of 88% in estimating six different THC concentrations. Additional validation experiments were conducted using independent validation sample sets, successfully identifying positive samples at 100% accuracy and quantifying the THC concentration at 80% accuracy. The platform provided a quick, low-cost, sensitive, and quantitative point-of-care saliva test for cannabis.
Collapse
Affiliation(s)
- Yan Liang
- Department
of Chemistry and Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Avory Zhou
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United
States
| | - Jeong-Yeol Yoon
- Department
of Chemistry and Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United States
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United
States
| |
Collapse
|
12
|
Yue X, Xu F, Zhang L, Ren G, Sheng H, Wang J, Wang K, Yu L, Wang J, Li G, Lu G, Yu HD. Simple, Skin-Attachable, and Multifunctional Colorimetric Sweat Sensor. ACS Sens 2022; 7:2198-2208. [PMID: 35903889 DOI: 10.1021/acssensors.2c00581] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In situ analysis of sweat provides a simple, convenient, cost-effective, and noninvasive approach for the early diagnosis of physical illness in humans and is particularly useful in family care. In this study, a flexible and skin-attachable colorimetric sweat sensor for multiplexed analysis is developed using a simple, cost-effective, and convenient method. The obtained sweat sensor can be used to simultaneously detect glucose, lactate, urea, and pH value in sweat, as well as sweat loss and skin temperature. Only 2.5 μL of sweat is enough for the whole test, and the sweat loss and chemical-sensing results can be read out conveniently by naked eyes or a smartphone. In addition, body temperature can also be detected with an additional electrical circuit. Our sweat sensor provides a new, cost-effective, and convenient approach for in vitro diagnosis of multiple components in sweat, and the easy fabrication and cost-effectiveness make our sensor commercializable in the near future.
Collapse
Affiliation(s)
- Xiaoping Yue
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Feiyang Xu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Linrong Zhang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Guozhang Ren
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Huixiang Sheng
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jin Wang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Kaili Wang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Liuyingzi Yu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Junjie Wang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Gongqiang Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Gang Lu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Hai-Dong Yu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China.,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| |
Collapse
|
13
|
Wang M, Cui J, Wang Y, Yang L, Jia Z, Gao C, Zhang H. Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8188-8206. [PMID: 35786878 DOI: 10.1021/acs.jafc.2c02366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food safety is an issue that cannot be ignored at any time because of the great impact of food contaminants on people's daily life, social production, and the economy. Because of the extensive demand for high-quality food, it is necessary to develop rapid, reliable, and efficient devices for food contaminant detection. Microfluidic paper-based analytical devices (μPADs) have been applied in a variety of detection fields owing to the advantages of low-cost, ease of handling, and portability. This review systematically discusses the latest progress of μPADs, including the fundamentals of fabrication as well as applications in the detection of chemical and biological hazards in foods, hoping to provide suitable screening strategies for contaminants in foods and accelerating the technology transformation of μPADs from the lab into the field.
Collapse
Affiliation(s)
- Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Jiarui Cui
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Ying Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China
| | - Liu Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Chuanjie Gao
- Shandong Province Institute for the Control of Agrochemicals, Jinan, 250131, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
14
|
Sun Y, Wen L, Ma H, Ma W, Fu Z, Li Y, Zhang C, Li L, Liu J. Engineering trienzyme cascade-triggered fluorescent immunosensor platform by sequentially integrating alkaline phosphatase, tyrosinase and horseradish peroxidase. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Xu C, Zhou G, Cai H, Chen Y, Huang L, Cai L, Gong J, Yan Z. Modification of Microfluidic Paper-Based Devices with an Oxidant Layer for Distance Readout of Reducing Substances. ACS OMEGA 2022; 7:20383-20389. [PMID: 35721922 PMCID: PMC9202063 DOI: 10.1021/acsomega.2c02537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/19/2022] [Indexed: 05/20/2023]
Abstract
We developed a novel strategy for modification of paper cellulose with water-insoluble oxidants for distance readout of reducing substances on microfluidic paper-based analytical devices (μPADs). Water-insoluble oxidants were formed and modified onto paper cellulose through the redox reaction that occurred between paper cellulose and potassium permanganate deposited on the paper channel, developing a yellowish-brown color on the channel. As aqueous solutions containing reducing substances flowed along the channel, reducing substances were consumed owing to the redox reaction that occurred between oxidants and reducing substances until the reducing substances were depleted, forming a discolored zone on the yellowish-brown channel. The redox reaction between insoluble oxidants and reducing substances on the paper cellulose could be used for distance-based detection of a wide variety of reducing substances, which is similar to the classical potassium permanganate titration that employs the redox reaction that occurred between potassium permanganate and reducing substances. We believe that this method will broaden the analytical applications of distance-based detection on μPADs. This method was applied to ascorbic acid assay and captopril assay in real samples with analytical results comparing well with the labeled values, demonstrating its great potential in real sample analysis.
Collapse
Affiliation(s)
- Chunxiu Xu
- School
of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Guoxing Zhou
- School
of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Huihui Cai
- School
of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Yicong Chen
- School
of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Ling Huang
- School
of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Longfei Cai
- School
of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Jiaye Gong
- School
of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Zankai Yan
- School
of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| |
Collapse
|
16
|
Bhardwaj T, Ramana LN, Sharma TK. Current Advancements and Future Road Map to Develop ASSURED Microfluidic Biosensors for Infectious and Non-Infectious Diseases. BIOSENSORS 2022; 12:357. [PMID: 35624657 PMCID: PMC9139021 DOI: 10.3390/bios12050357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Better diagnostics are always essential for the treatment and prevention of a disease. Existing technologies for detecting infectious and non-infectious diseases are mostly tedious, expensive, and do not meet the World Health Organization's (WHO) ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable to end user) criteria. Hence, more accurate, sensitive, and faster diagnostic technologies that meet the ASSURED criteria are highly required for timely and evidenced-based treatment. Presently, the diagnostics industry is finding interest in microfluidics-based biosensors, as this integration comprises all qualities, such as reduction in the size of the equipment, rapid turnaround time, possibility of parallel multiple analysis or multiplexing, etc. Microfluidics deal with the manipulation/analysis of fluid within micrometer-sized channels. Biosensors comprise biomolecules immobilized on a physicochemical transducer for the detection of a specific analyte. In this review article, we provide an outline of the history of microfluidics, current practices in the selection of materials in microfluidics, and how and where microfluidics-based biosensors have been used for the diagnosis of infectious and non-infectious diseases. Our inclination in this review article is toward the employment of microfluidics-based biosensors for the improvement of already existing/traditional methods in order to reduce efforts without compromising the accuracy of the diagnostic test. This article also suggests the possible improvements required in microfluidic chip-based biosensors in order to meet the ASSURED criteria.
Collapse
Affiliation(s)
- Tanu Bhardwaj
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute, 3rd Milestone, Gurugram Expressway, Faridabad 121001, India;
| | - Lakshmi Narashimhan Ramana
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India;
| | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gujarat International Finance and Tec (GIFT) City, Gandhinagar 382355, India
| |
Collapse
|
17
|
Multilayered Mesoporous Composite Nanostructures for Highly Sensitive Label-Free Quantification of Cardiac Troponin-I. BIOSENSORS 2022; 12:bios12050337. [PMID: 35624638 PMCID: PMC9138364 DOI: 10.3390/bios12050337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022]
Abstract
Cardiac troponin-I (cTnI) is a well-known biomarker for the diagnosis and control of acute myocardial infarction in clinical practice. To improve the accuracy and reliability of cTnI electrochemical immunosensors, we propose a multilayer nanostructure consisting of Fe3O4-COOH labeled anti-cTnI monoclonal antibody (Fe3O4-COOH-Ab1) and anti-cTnI polyclonal antibody (Ab2) conjugated on Au-Ag nanoparticles (NPs) decorated on a metal–organic framework (Au-Ag@ZIF-67-Ab2). In this design, Fe3O4-COOH was used for separation of cTnI in specimens and signal amplification, hierarchical porous ZIF-67 extremely enhanced the specific surface area, and Au-Ag NPs synergically promoted the conductivity and sensitivity. They were additionally employed as an immobilization platform to enhance antibody loading. Electron microscopy images indicated that Ag-Au NPs with an average diameter of 1.9 ± 0.5 nm were uniformly decorated on plate-like ZIF-67 particles (with average size of 690 nm) without any agglomeration. Several electrochemical assays were implemented to precisely evaluate the immunosensor performance. The square wave voltammetry technique exhibited the best performance with a sensitivity of 0.98 mA mL cm−2 ng−1 and a detection limit of 0.047 pg mL−1 in the linear range of 0.04 to 8 ng mL−1.
Collapse
|
18
|
Pereira C, Parolo C, Idili A, Gomis RR, Rodrigues L, Sales G, Merkoçi A. Paper-based biosensors for cancer diagnostics. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Hu Q, Fang Z, Ge J, Li H. Nanotechnology for cardiovascular diseases. Innovation (N Y) 2022; 3:100214. [PMID: 35243468 PMCID: PMC8866095 DOI: 10.1016/j.xinn.2022.100214] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases have become the major killers in today's world, among which coronary artery diseases (CADs) make the greatest contributions to morbidity and mortality. Although state-of-the-art technologies have increased our knowledge of the cardiovascular system, the current diagnosis and treatment modalities for CADs still have limitations. As an emerging cross-disciplinary approach, nanotechnology has shown great potential for clinical use. In this review, recent advances in nanotechnology in the diagnosis of CADs will first be elucidated. Both the sensitivity and specificity of biosensors for biomarker detection and molecular imaging strategies, such as magnetic resonance imaging, optical imaging, nuclear scintigraphy, and multimodal imaging strategies, have been greatly increased with the assistance of nanomaterials. Second, various nanomaterials, such as liposomes, polymers (PLGA), inorganic nanoparticles (AuNPs, MnO2, etc.), natural nanoparticles (HDL, HA), and biomimetic nanoparticles (cell-membrane coating) will be discussed as engineered as drug (chemicals, proteins, peptides, and nucleic acids) carriers targeting pathological sites based on their optimal physicochemical properties and surface modification potential. Finally, some of these nanomaterials themselves are regarded as pharmaceuticals for the treatment of atherosclerosis because of their intrinsic antioxidative/anti-inflammatory and photoelectric/photothermal characteristics in a complex plaque microenvironment. In summary, novel nanotechnology-based research in the process of clinical transformation could continue to expand the horizon of nanoscale technologies in the diagnosis and therapy of CADs in the foreseeable future.
Collapse
Affiliation(s)
- Qinqin Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zheyan Fang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
20
|
Wang Y, Gao Y, Yin Y, Pan Y, Wang Y, Song Y. Nanomaterial-assisted microfluidics for multiplex assays. Mikrochim Acta 2022; 189:139. [PMID: 35275267 DOI: 10.1007/s00604-022-05226-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Simultaneous detection of different biomarkers from a single specimen in a single test, allowing more rapid, efficient, and low-cost analysis, is of great significance for accurate diagnosis of disease and efficient monitoring of therapy. Recently, developments in microfabrication and nanotechnology have advanced the integration of nanomaterials in microfluidic devices toward multiplex assays of biomarkers, combining both the advantages of microfluidics and the unique properties of nanomaterials. In this review, we focus on the state of the art in multiplexed detection of biomarkers based on nanomaterial-assisted microfluidics. Following an overview of the typical microfluidic analytical techniques and the most commonly used nanomaterials for biochemistry analysis, we highlight in detail the nanomaterial-assisted microfluidic strategies for different biomarkers. These highly integrated platforms with minimum sample consumption, high sensitivity and specificity, low detection limit, enhanced signals, and reduced detection time have been extensively applied in various domains and show great potential in future point-of-care testing and clinical diagnostics.
Collapse
Affiliation(s)
- Yanping Wang
- Sino-French Engineer School, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yi Yin
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
21
|
Liu J, Ruan G, Ma W, Sun Y, Yu H, Xu Z, Yu C, Li H, Zhang CW, Li L. Horseradish peroxidase-triggered direct in situ fluorescent immunoassay platform for sensing cardiac troponin I and SARS-CoV-2 nucleocapsid protein in serum. Biosens Bioelectron 2022; 198:113823. [PMID: 34838374 PMCID: PMC8606172 DOI: 10.1016/j.bios.2021.113823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/27/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Direct in situ fluorescent enzyme-linked immunosorbent assay (ELISA) is rarely investigated and reported. Herein, a direct in situ high-performance HRP-labeled fluorescent immunoassay platform was constructed. The platform was developed based on a rapid in situ fluorogenic reaction between Polyethyleneimine (PEI) and p-Phenylenediamine (PPD) analogues to generate fluorescent copolymer nanoparticles (FCNPs). The formation mechanism of FCNPs was found to be the oxidation of •OH radicals, which was further proved by nitrogen protection and scavenger of •OH radicals. Meantime, the fluorescence wavelength of FCNPs could be adjusted from 471 to 512 nm by introducing various substitution groups into the PPD structure. Using cardiac troponin I (cTnI) and SARS-CoV-2 nucleocapsid protein (N-protein) as the model antigens, the proposed fluorescent ELISA exhibited a wide dynamic range of 5-180 ng/mL and a low limit of detection (LOD) of 0.19 ng/mL for cTnI, and dynamic range of 0-120 ng/mL and a LOD of 0.33 ng/mL for SARS-CoV-2 N protein, respectively. Noteworthy, the proposed method was successful applied to evaluate the cTnI and SARS-CoV-2 N protein levels in serum with satisfied results. Therefore, the proposed platform paved ways for developing novel fluorescence-based HRP-labeled ELISA technologies and broadening biomarker related clinical diagnostics.
Collapse
Affiliation(s)
- Jinhua Liu
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
| | - Guotong Ruan
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Wenlin Ma
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Yujie Sun
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Zhihui Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, PR China
| | - Changmin Yu
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Hai Li
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Cheng-Wu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian Road, Taiyuan, 310003, PR China.
| | - Lin Li
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
| |
Collapse
|
22
|
Monitoring of viral myocarditis injury using an energy-confined upconversion nanoparticle and nature-inspired biochip combined CRISPR/Cas12a-powered biosensor. Anal Chim Acta 2022; 1195:339455. [DOI: 10.1016/j.aca.2022.339455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/22/2022]
|
23
|
Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. JOURNAL OF ANALYSIS AND TESTING 2022; 6:247-273. [PMID: 35039787 PMCID: PMC8755517 DOI: 10.1007/s41664-021-00204-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Point-of-care testing (POCT), as a portable and user-friendly technology, can obtain accurate test results immediately at the sampling point. Nowadays, microfluidic paper-based analysis devices (μPads) have attracted the eye of the public and accelerated the development of POCT. A variety of detection methods are combined with μPads to realize precise, rapid and sensitive POCT. This article mainly introduced the development of electrochemistry and optical detection methods on μPads for POCT and their applications on disease analysis, environmental monitoring and food control in the past 5 years. Finally, the challenges and future development prospects of μPads for POCT were discussed.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Cong-Cong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan-Li Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Xiao-Hu Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Bao-Xin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Min Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Shi-Yin Yao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| |
Collapse
|
24
|
Mitchell KR, Esene JE, Woolley AT. Advances in multiplex electrical and optical detection of biomarkers using microfluidic devices. Anal Bioanal Chem 2022; 414:167-180. [PMID: 34345949 PMCID: PMC8331214 DOI: 10.1007/s00216-021-03553-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
Microfluidic devices can provide a versatile, cost-effective platform for disease diagnostics and risk assessment by quantifying biomarkers. In particular, simultaneous testing of several biomarkers can be powerful. Here, we critically review work from the previous 4 years up to February 2021 on developing microfluidic devices for multiplexed detection of biomarkers from samples. We focus on two principal approaches: electrical and optical detection methods that can distinguish and quantify biomarkers. Both electrical and spectroscopic multiplexed detection strategies are being employed to reach limits of detection below clinical sample levels. Some of the most promising strategies for point-of-care assays involve inexpensive materials such as paper-based microfluidic devices, or portable and accessible detectors such as smartphones. This review does not comprehensively cover all multiplexed microfluidic biomarker studies, but rather provides a critical evaluation of key work and suggests promising prospects for future advancement in this field. Electrical and optical multiplexing are powerful approaches for microfluidic biomarker analysis.
Collapse
Affiliation(s)
- Kaitlynn R Mitchell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Joule E Esene
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
25
|
Wang X, Zhang W, Wang S, Liu W, Liu N, Zhang D. A visual cardiovascular biomarker detection strategy based on distance as readout by the coffee-ring effect on microfluidic paper. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Du X, Su X, Zhang W, Yi S, Zhang G, Jiang S, Li H, Li S, Xia F. Progress, Opportunities, and Challenges of Troponin Analysis in the Early Diagnosis of Cardiovascular Diseases. Anal Chem 2021; 94:442-463. [PMID: 34843218 DOI: 10.1021/acs.analchem.1c04476] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuewei Du
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xujie Su
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wanxue Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Suyan Yi
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ge Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shan Jiang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shaoguang Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
27
|
Rapid synthesis of microwave-assisted zinc oxide nanorods on a paper-based analytical device for fluorometric detection of l-dopa. Colloids Surf B Biointerfaces 2021; 207:111995. [PMID: 34303994 DOI: 10.1016/j.colsurfb.2021.111995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 12/17/2022]
Abstract
l-dopa is a catecholamine neurotransmitter used to treat Parkinson's disease. This paper presents a low-cost paper-based biosensor aimed at enhancing the convenience of monitoring l-dopa concentrations. ZnO nanorods (ZnO-NRs) were synthesized on papers in less than 90 min using a microwave-assisted hydrothermal method. The ZnO-NRs amplify green fluorescence signals to enhance the detection sensitivity of l-dopa, best measured at excitation/emission wavelengths of 475/537 nm. We systematically characterized the effect of reaction conditions on the corresponding fluorescence enhancements. The proposed ZnO NRs-paper biosensor presented a ∼3-fold increase in green fluorescence compared to unmodified papers. The linear range of detection for l-dopa was 25-2000 nM, with a limit of detection of 24 nM, which meets the clinical requirements for the monitoring of l-dopa in Parkinson's patients.
Collapse
|
28
|
Zhao D, Wu Z, Zhang W, Yu J, Li H, Di W, Duan Y. Substrate-Induced Growth of Micro/Nanostructured Zn(OH)F Arrays for Highly Sensitive Microfluidic Fluorescence Assays. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28462-28471. [PMID: 34124881 DOI: 10.1021/acsami.1c04752] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To date, ZnO array-based microfluidic fluorescence assays have been widely investigated and have exhibited excellent performance in the detection of cancer biomarkers. However, the requirements of highly sensitive detection necessitate further improvement of current Zn-based fluorescence detection devices. Here, a rhombus-like Zn(OH)F array-based microfluidic fluorescence detection device is proposed. Construction of Zn(OH)F arrays on the inner wall of a microchannel is carried out via a microfluidic chemical method. A substrate-induced growth strategy for Zn(OH)F arrays is proposed, and various micro/nanostructured Zn(OH)F arrays are successfully obtained. Zn(OH)F nanorod arrays with a high aspect ratio can be constructed on the columnar ZnO nanorod arrays, and the results indicate that the fluorescence enhancement factor (EF) of the Zn(OH)F arrays toward Cy3 is approximately 4-fold that of the ZnO nanorod arrays, which can be attributed to the higher excitation light absorption and evanescent electric field. In human epididymis-specific protein 4 (HE4) detection, the limit of detection (LOD) reaches 9.3 fM, and the dynamic linear range is 10 fM to 100 pM. It has been demonstrated that Zn(OH)F nanorod array-based microfluidic devices are excellent fluorescence assay platforms that also provide a new design and construction strategy for fluorescence enhancement substrates for the detection of biomarkers.
Collapse
Affiliation(s)
- De Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhihua Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Wei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - He Li
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wen Di
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| |
Collapse
|
29
|
Multistory Stairs-based, Fast and Point-of-care Testing for Disease Biomarker Using One-step Capillary Microfluidic Fluoroimmunoassay Chip via Continuous On-chip Labelling. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00025-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Feng LX, Tang C, Han XX, Zhang HC, Guo FN, Yang T, Wang JH. Simultaneous and sensitive detection of multiple small biological molecules by microfluidic paper-based analytical device integrated with zinc oxide nanorods. Talanta 2021; 232:122499. [PMID: 34074451 DOI: 10.1016/j.talanta.2021.122499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 11/25/2022]
Abstract
In this work, ZnO nanorods (ZnO NRs) with different sizes were hydrothermally grown on the surface of Whatman filter paper for the fabrication of a microfluidic paper-based device (μPAD) for the simultaneous detection of glucose and uric acid. As dual enzymatic reaction was employed for the colorimetric detection in this μPAD, the presence of ZnO NRs promoted the enzyme immobilization thus significantly enhancing the colorimetric signal. The coffee ring effect was effectively conquered by the uniform distribution of ZnO NR as well as a specialized double-layered μPAD design. Meanwhile, two color indicators with distinct colors were used to provide complementary results to better quantify the concentration of the analytes by naked eye. As a result, two linear calibration curves were obtained for the detection of glucose (0.01-10 mmol L-1) and uric acid (0.01-5 mmol L-1), along with a LOD of 3 μmol L-1 for glucose and 4 μmol L-1 for uric acid, respectively. The practical usefulness of the proposed μPAD was further validated by the simultaneous analysis of glucose and uric acid in serum samples and urine samples.
Collapse
Affiliation(s)
- Li-Xia Feng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Chao Tang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Xiao-Xuan Han
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Hui-Chao Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Feng-Na Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| |
Collapse
|
31
|
Lee WC, Ng HY, Hou CY, Lee CT, Fu LM. Recent advances in lab-on-paper diagnostic devices using blood samples. LAB ON A CHIP 2021; 21:1433-1453. [PMID: 33881033 DOI: 10.1039/d0lc01304h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lab-on-paper, or microfluidic paper-based analytical devices (μPADs), use paper as a substrate material, and are patterned with a system of microchannels, reaction zones and sensing elements to perform analysis and detection. The sample transfer in such devices is performed by capillary action. As a result, external driving forces are not required, and hence the size and cost of the device are significantly reduced. Lab-on-paper devices have thus attracted significant attention for point-of-care medical diagnostic purposes in recent years, particularly in less-developed regions of the world lacking medical resources and infrastructures. This review discusses the major advances in lab-on-paper technology for blood analysis and diagnosis in the past five years. The review focuses particularly on the many clinical applications of lab-on-paper devices, including diabetes diagnosis, acute myocardial infarction (AMI) detection, kidney function diagnosis, liver function diagnosis, cholesterol and triglyceride (TG) analysis, sickle-cell disease (SCD) and phenylketonuria (PKU) analysis, virus analysis, C-reactive protein (CRP) analysis, blood ion analysis, cancer factor analysis, and drug analysis. The review commences by introducing the basic transmission principles, fabrication methods, structural characteristics, detection techniques, and sample pretreatment process of modern lab-on-paper devices. A comprehensive review of the most recent applications of lab-on-paper devices to the diagnosis of common human diseases using blood samples is then presented. The review concludes with a brief summary of the main challenges and opportunities facing the lab-on-paper technology field in the coming years.
Collapse
Affiliation(s)
- Wen-Chin Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Hwee-Yeong Ng
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
32
|
Khachornsakkul K, Dungchai W. Rapid Distance-Based Cardiac Troponin Quantification Using Paper Analytical Devices for the Screening and the Follow-Up of Acute Myocardial Infarction, Using a Single Drop of Human Whole Blood. ACS Sens 2021; 6:1339-1347. [PMID: 33555179 DOI: 10.1021/acssensors.0c02676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This work introduces the procedure of using non-immunoassay distance-based paper analytical devices (dPADs) to accurately measure any traces of the cardiac troponin I (TnI) in whole blood samples without the use of any external blood separation. This enables a rapid clinical diagnosis and the subsequent follow-up in regard to identifying acute myocardial infarction. These dPADs are designed and constructed to accommodate three parts: (1) a blood separation zone that is immobilized with a hemostatic agent, this no longer requires a blood separation membrane for the isolation of the plasma from the blood element, (2) a pretreatment zone, and (3) a detection zone coated with thymol blue. The quantitative TnI level in the whole blood was determined by measuring the blue color length found in the detection zone, which is proportional to the concentration, owing to the dry protein binding principle. Correspondingly, a mere single drop of human whole blood performs adequately within our proposed method. This reduces both the size of the collection process and the sample volumes needed in the respective medical fields. As we cover all of the optimization studies, our dPADs provide an evaluation of the linearity range from 0.025 to 2.5 ng/mL (R2 = 0.9989) of TnI, with a detection limit as low as 0.025 ng/mL by use of an observation just using the naked eye. To validate the clinical utilities of our proposed method, our dPADs were then applied for the detection of TnI in humans using the whole blood sample of 15 volunteers. A great amount of accuracy was required in this assay because there was no significant difference between both methods, with the confidence level being as high as 95%. This technique also showed that the recoveries ranged from 99.40 to 104.27%, with the highest relative standard deviation being at 3.77%. Thus, our proposed dPADs offer more benefits for a rapid TnI determination.
Collapse
Affiliation(s)
- Kawin Khachornsakkul
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| | - Wijitar Dungchai
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| |
Collapse
|
33
|
Fang H, Wu M, Ji W, Wang L, Chen Y, Chen D, Yang N, Wu Q, Yu C, Liu J, Liu J, Bai H, Peng B, Huang X, Yu HD, Li L. Simultaneously Detecting Monoamine Oxidase A and B in Disease Cell/Tissue Samples Using Paper-Based Devices. ACS APPLIED BIO MATERIALS 2021; 4:1395-1402. [PMID: 35014490 DOI: 10.1021/acsabm.0c01288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As enzymes in the outer membrane of the mitochondrion, monoamine oxidases (MAOs) can catalyze the oxidative deamination of monoamines in the human body. According to different substrates, MAOs can be divided into MAO-A and MAO-B. The imbalance of the MAO-A is associated with neurological degeneration, while excess MAO-B activity is closely connected with Parkinson's disease (PD) and Alzheimer's disease (AD); therefore, detection of MAOs is of great significance for the diagnosis and treatment of these diseases. This work reports the multiplexed detection of MAO-A and MAO-B using paper-based devices based on chemiluminescence (CL). The detection limits were 5.01 pg/mL for MAO-A and 8.50 pg/mL for MAO-B in human serum. In addition, we used paper-based devices to detect MAOs in human cells and tissue samples and found that the results of paper-based detection and Western blotting (WB) showed the same trend. While only one antibody can be incubated on the same membrane by WB, multiple antibodies incubated on the same paper enabled simultaneous detection of MAO-A and MAO-B by paper-based devices. The paper-based assay could be used for preliminary early screening of clinical samples for MAOs and can be extended as an alternative to WB for multiplexed detection of various proteins in disease cell or tissue samples.
Collapse
Affiliation(s)
- Haixiao Fang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Meirong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Yipei Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Ding Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jie Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Hai-Dong Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
34
|
Li W, Zhang X, Li T, Ji Y, Li R. Molecularly imprinted polymer-enhanced biomimetic paper-based analytical devices: A review. Anal Chim Acta 2021; 1148:238196. [PMID: 33516379 DOI: 10.1016/j.aca.2020.12.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
The popularization of paper-based analytical devices (PADs) in analytical science has fostered research on enhancing their analytical performance for accurate and sensitive assays. With their superb recognition capability and structural stability, molecularly imprinted polymers (MIPs) have been extensively employed as biomimetic receptors for capturing target analytes in various complex matrices. The integration of MIPs as recognition elements with PADs (MIP-PADs) has opened new opportunities for advanced analytical devices with elevated selectivity and sensitivity, as well as a shorter assay time and a lower cost. This review covers recent advances in MIP-PAD fabrication and engineering based on multifarious signal transduction systems such as colorimetry, fluorescence, electrochemistry, photoelectrochemistry, and chemiluminescence. The application of MIP-PADs in the fields of biomedical diagnostics, environmental analysis, and food safety monitoring is also reviewed. Further, the advantages, challenges, and perspectives of MIP-PADs are discussed.
Collapse
Affiliation(s)
- Wang Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Xiaoyue Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Tingting Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| |
Collapse
|
35
|
Savonnet M, Rolland T, Cubizolles M, Roupioz Y, Buhot A. Recent advances in cardiac biomarkers detection: From commercial devices to emerging technologies. J Pharm Biomed Anal 2020; 194:113777. [PMID: 33293175 DOI: 10.1016/j.jpba.2020.113777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 01/09/2023]
Abstract
Although cardiac pathologies are the major cause of death in the world, it remains difficult to provide a reliable diagnosis to prevent heart attacks. Rapid patient care and management in emergencies are critical to prevent dramatic consequences. Thus, relevant biomarkers such as cardiac troponin and natriuretic peptides are currently targeted by commercialized Point-Of-Care immunoassays. Key points still to be addressed concern cost, lack of standardization, and poor specificity, which could limit the reliability of the assays. Consequently, alternatives are emerging to address these issues. New probe molecules such as aptamers or molecularly imprinted polymers should allow a reduction in cost of the assays and an increase in reproducibility. In addition, the assay specificity and reliability could be improved by enabling multiplexing through the detection of several molecular targets in a single device.
Collapse
Affiliation(s)
- Maud Savonnet
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France; Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000, Grenoble, France
| | - Tristan Rolland
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000, Grenoble, France
| | - Myriam Cubizolles
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000, Grenoble, France
| | - Yoann Roupioz
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France.
| |
Collapse
|
36
|
Xin Y, Yang R, Qu Y, Liu H, Feng Y, Li L, Shi W, Liu Q. Novel, Highly Sensitive, and Specific Assay to Monitor Acute Myocardial Infarction (AMI) by the Determination of Cardiac Troponin I (cTnI) and Heart-Type Fatty Acid Binding Protein (H-FABP) by a Colloidal Gold-Based Immunochromatographic Test Strip. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1802594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yuanrong Xin
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- Jiangsu Sunan Pharmaceutical Industrial Co., Ltd, Zhenjiang, Jiangsu, China
| | - Renlong Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yang Qu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- Chia Tai Qingjiang Pharmaceutical Industry Co., Ltd, Huaian, China
| | - Hongfei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- School of Medical Technology, Zhenjiang college, Zhenjiang, Jiangsu, China
| | - Yingshu Feng
- School of Medical Technology, Zhenjiang college, Zhenjiang, Jiangsu, China
| | - Lin Li
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Wenjing Shi
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Qiang Liu
- Department of Medical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
37
|
Cai L, Ouyang Z, Song J, Yang L. Indicator-Free Argentometric Titration for Distance-Based Detection of Chloride Using Microfluidic Paper-Based Analytical Devices. ACS OMEGA 2020; 5:18935-18940. [PMID: 32775894 PMCID: PMC7408202 DOI: 10.1021/acsomega.0c02143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
We described an indicator-free argentometric titration strategy using a microfluidic paper-based analytical device. This strategy was based on the formation of insoluble silver salts by reactions occurring between analytes and titrant (Ag+) on a paper channel. After the insoluble silver salts were formed and precipitated on the channel, the paper substrate modified with the surplus titrant on the channel turned reddish-brown by exposure of the devices to a simple and cheap UV light source for 5 min, generating a colored band on the channel. Distance-based detection of chloride was achieved by measuring the length of the colored band with a detection limit of 1.7 mg L-1 Cl-. This method was used to detect chlorides in tap water, with an analytical result (10.1 ± 1.2 mg L-1) agreeing well with that obtained by a classical conventional precipitation titration (9.8 mg L-1), which was based on the measurement of the consumed volume of titrant. This paper-based precipitation titration method is free of skilled personnel and has advantages of low reagent/sample consumption, disposability, portability, and simple operation over the conventional precipitation titration. More importantly, being free of any indicator, this method may be used to detect more species than the conventional precipitation titrations, which are limited by the indicator, for example, CO3 2- and SO4 2-, which could form insoluble silver salts in aqueous liquids. Additionally, comparing with most of those paper-based titrimetry reported previously, this presented precipitation titration is free of any indicator or ion selective electrode to detect the end point of titration.
Collapse
Affiliation(s)
- Longfei Cai
- School
of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Zhuang Ouyang
- School
of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Jiahong Song
- School
of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Liye Yang
- Chaozhou
Central Hospital, Chaozhou, Guangdong 521000, China
| |
Collapse
|
38
|
A microfabricated thickness shear mode electroacoustic resonator for the label-free detection of cardiac troponin in serum. Talanta 2020; 215:120890. [DOI: 10.1016/j.talanta.2020.120890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
|
39
|
Shi C, Xie H, Ma Y, Yang Z, Zhang J. Nanoscale Technologies in Highly Sensitive Diagnosis of Cardiovascular Diseases. Front Bioeng Biotechnol 2020; 8:531. [PMID: 32582663 PMCID: PMC7289988 DOI: 10.3389/fbioe.2020.00531] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death and morbidity in the world and are a major contributor to healthcare costs. Although enormous progress has been made in diagnosing CVD, there is an urgent need for more efficient early detection and the development of novel diagnostic tools. Currently, CVD diagnosis relies primarily on clinical symptoms based on molecular imaging (MOI) or biomarkers associated with CVDs. However, sensitivity, specificity, and accuracy of the assay are still challenging for early-stage CVDs. Nanomaterial platform has been identified as a promising candidate for improving the practical usage of diagnostic tools because of their unique physicochemical properties. In this review article, we introduced cardiac biomarkers and imaging techniques that are currently used for CVD diagnosis. We presented the applications of various nanotechnologies on diagnosis within cardiac immunoassays (CIAs) and molecular imaging. We also summarized and compared different cardiac immunoassays based on their sensitivities and working ranges of biomarkers.
Collapse
Affiliation(s)
- Chaohong Shi
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, China
| | - Haotian Xie
- Department of Mathematics, The Ohio State University, Columbus, OH, United States
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
40
|
Chen FZ, Han DM, Chen HY. Liposome-Assisted Enzymatic Modulation of Plasmonic Photoelectrochemistry for Immunoassay. Anal Chem 2020; 92:8450-8458. [DOI: 10.1021/acs.analchem.0c01162] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Feng-Zao Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - De-Man Han
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Jiaojiang 318000, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
41
|
ZnO micron rods as single dielectric resonator for optical sensing. Anal Chim Acta 2020; 1109:107-113. [DOI: 10.1016/j.aca.2020.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/11/2023]
|
42
|
Zhang X, Ye T, Meng X, Tian Z, Pang L, Han Y, Li H, Lu G, Xiu F, Yu HD, Liu J, Huang W. Sustainable and Transparent Fish Gelatin Films for Flexible Electroluminescent Devices. ACS NANO 2020; 14:3876-3884. [PMID: 32186191 DOI: 10.1021/acsnano.9b09880] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the past decades, various alternating current electroluminescent (ACEL) devices, especially the flexible ones, have been developed and used in flat panel display, large-scale decorating, logo display lighting, optical signaling, etc. Transparent plastics are usually used as substrates in ACEL devices; however, they are undegradable and may cause serious environmental pollution. Herein, we have developed a flexible transient ACEL device based on transparent fish gelatin (FG) films. The FG films were made from fish scales, which are sustainable, cost-efficient, and eco-friendly. These films could dissolve in water within seconds at 60 °C and degrade completely within 24 days in soil. The transmittance of these FG films was up to 91.1% in the visible spectrum, comparable to that of polyethylene terephthalate (PET) (90.4%). After forming a composite with silver nanowires (Ag NWs), the Ag NWs-FG film showed a transmittance up to 82.3% and a sheet resistance down to 22.4 Ω sq-1. The fabricated ACEL device based on the Ag NWs-FG film exhibited high flexibility and luminance up to 56.0 cd m-2. The device could be dissolved in water within 3 min. Our work demonstrates that the sustainable, flexible, and transparent FG films are a promising alternative for green and degradable substrates in the field of flexible electronics, including foldable displays, wearable devices, and health monitoring.
Collapse
Affiliation(s)
- Xiaopan Zhang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Tengyang Ye
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Xianghao Meng
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Zhihui Tian
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Lihua Pang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Yaojie Han
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Hai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Gang Lu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Fei Xiu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Hai-Dong Yu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Juqing Liu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Wei Huang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
- Xi'an Institute of Flexible Electronics, MIIT Key Laboratory of Flexible Electronics, Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics (KLoFE), and Xi'an Key Laboratory of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P.R. China
| |
Collapse
|
43
|
Xia L, Yang J, Su R, Zhou W, Zhang Y, Zhong Y, Huang S, Chen Y, Li G. Recent Progress in Fast Sample Preparation Techniques. Anal Chem 2019; 92:34-48. [DOI: 10.1021/acs.analchem.9b04735] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiani Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Rihui Su
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Wanjun Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanshu Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanhui Zhong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Simin Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanlong Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|