1
|
Kalaninová Z, Portašiková J, Jirečková B, Polák M, Nováková J, Kavan D, Novák P, Man P. Postproline Cleaving Enzymes also Show Specificity to Reduced Cysteine. Anal Chem 2024; 96:19084-19092. [PMID: 39560312 PMCID: PMC11618732 DOI: 10.1021/acs.analchem.4c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
In proteomics, postproline cleaving enzymes (PPCEs), such as Aspergillus niger prolyl endopeptidase (AnPEP) and neprosin, complement proteolytic tools because proline is a stop site for many proteases. But while aiming at using AnPEP in online proteolysis, we found that this enzyme also displayed specificity to reduced cysteine. By LC-MS/MS, we systematically analyzed AnPEP sources and conditions that could affect this cleavage preference. Postcysteine cleavage was blocked by cysteine modifications, including disulfide bond formation, oxidation, and alkylation. The last modification explains why this activity has remained undetected so far. In the same experimental paradigm, neprosin mimicked this cleavage specificity. Based on these findings, PPCEs cleavage preferences should be redefined from post-Pro/Ala to post-Pro/Ala/Cys. Moreover, this evidence demands reconsidering PPCEs applications, whether cleaving Cys-rich proteins or assessing Cys status in proteins, and calls for revisiting the proposed enzymatic mechanism of these proteases.
Collapse
Affiliation(s)
- Zuzana Kalaninová
- Department
of Biochemistry, Faculty of Science, Charles
University, Hlavova 6, Prague 2 12843, Czechia
- Institute
of Microbiology of the Czech Academy of Sciences, BioCeV, Videnska 1083, Prague
4 14220, Czechia
| | - Jasmína
Mária Portašiková
- Department
of Biochemistry, Faculty of Science, Charles
University, Hlavova 6, Prague 2 12843, Czechia
- Institute
of Microbiology of the Czech Academy of Sciences, BioCeV, Videnska 1083, Prague
4 14220, Czechia
| | - Barbora Jirečková
- Department
of Biochemistry, Faculty of Science, Charles
University, Hlavova 6, Prague 2 12843, Czechia
- Institute
of Microbiology of the Czech Academy of Sciences, BioCeV, Videnska 1083, Prague
4 14220, Czechia
| | - Marek Polák
- Department
of Biochemistry, Faculty of Science, Charles
University, Hlavova 6, Prague 2 12843, Czechia
- Institute
of Microbiology of the Czech Academy of Sciences, BioCeV, Videnska 1083, Prague
4 14220, Czechia
| | - Jana Nováková
- AffiPro
s.r.o., Nad Safinou II
366, Vestec 252 00, Czechia
| | - Daniel Kavan
- Institute
of Microbiology of the Czech Academy of Sciences, BioCeV, Videnska 1083, Prague
4 14220, Czechia
| | - Petr Novák
- Department
of Biochemistry, Faculty of Science, Charles
University, Hlavova 6, Prague 2 12843, Czechia
- Institute
of Microbiology of the Czech Academy of Sciences, BioCeV, Videnska 1083, Prague
4 14220, Czechia
| | - Petr Man
- Institute
of Microbiology of the Czech Academy of Sciences, BioCeV, Videnska 1083, Prague
4 14220, Czechia
| |
Collapse
|
2
|
Stockert F, Baeta H, Huesgen PF. Analysis of mitochondrial targeting signal cleavage and protein processing by mass spectrometry. Methods Enzymol 2024; 706:215-242. [PMID: 39455217 DOI: 10.1016/bs.mie.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The majority of mitochondrial proteins are encoded in the nucleus, synthesized in the cytosol and imported into mitochondria mediated by an N-terminal mitochondrial targeting sequences (MTS). After import, the MTS is cleaved off by the mitochondrial processing peptidase (MPP) and subsets of the imported proteins are further processed by the aminopeptidase intermediate cleaving peptidase 55 (ICP55), the mitochondrial intermediate peptidase (MIP), octapeptidyl aminopeptidase 1 (Oct1) or other proteolytic enzymes. Mutations that impair the mitochondrial processing machinery or mitochondrial protein degradation result in rare but severe human diseases. In addition, aging and various stress conditions are associated with altered proteolysis of mitochondrial proteins. Enrichment of protein terminal peptides in combination with mass spectrometry-based identification and quantification has become the method of choice to study proteolytic processing. Here, we describe an updated step-by-step protocol for the enrichment of N-terminal peptides by Hypersensitive Undecanal-mediated Enrichment of N-Terminal peptides (HUNTER). We describe analysis of mass spectrometry data acquired for HUNTER samples and present a suite of dedicated Python and R scripts for HUNTER quality control, classification of the enriched peptides, annotation of mitochondrial processing sites and quantitative evaluation. The scripts are freely available at https://github.com/FabianStockert/mito_annotation.
Collapse
Affiliation(s)
- Fabian Stockert
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Henrique Baeta
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Pitter F Huesgen
- Faculty of Biology, University of Freiburg, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
van Midden KP, Mantz M, Fonovič M, Gazvoda M, Svete J, Huesgen PF, van der Hoorn RAL, Klemenčič M. Mechanistic insights into CrCEP1: A dual-function cysteine protease with endo- and transpeptidase activity. Int J Biol Macromol 2024; 271:132505. [PMID: 38768911 DOI: 10.1016/j.ijbiomac.2024.132505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Proteases, essential regulators of plant stress responses, remain enigmatic in their precise functional roles. By employing activity-based probes for real-time monitoring, this study aimed to delve into protease activities in Chlamydomonas reinhardtii exposed to oxidative stress induced by hydrogen peroxide. However, our work revealed that the activity-based probes strongly labelled three non-proteolytic proteins-PsbO, PsbP, and PsbQ-integral components of photosystem II's oxygen-evolving complex. Subsequent biochemical assays and mass spectrometry experiments revealed the involvement of CrCEP1, a previously uncharacterized papain-like cysteine protease, as the catalyst of this labelling reaction. Further experiments with recombinant CrCEP1 and PsbO proteins replicated the reaction in vitro. Our data unveiled that endopeptidase CrCEP1 also has transpeptidase activity, ligating probes and peptides to the N-termini of Psb proteins, thereby expanding the repertoire of its enzymatic activities. The hitherto unknown transpeptidase activity of CrCEP1, working in conjunction with its proteolytic activity, unveils putative complex and versatile roles for proteases in cellular processes during stress responses.
Collapse
Affiliation(s)
- Katarina P van Midden
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany; CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
| | - Marko Fonovič
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Martin Gazvoda
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Jurij Svete
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany; CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | | | - Marina Klemenčič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Ziegler AR, Dufour A, Scott NE, Edgington-Mitchell LE. Ion Mobility-Based Enrichment-Free N-Terminomics Analysis Reveals Novel Legumain Substrates in Murine Spleen. Mol Cell Proteomics 2024; 23:100714. [PMID: 38199506 PMCID: PMC10862022 DOI: 10.1016/j.mcpro.2024.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Aberrant levels of the asparaginyl endopeptidase legumain have been linked to inflammation, neurodegeneration, and cancer, yet our understanding of this protease is incomplete. Systematic attempts to identify legumain substrates have been previously confined to in vitro studies, which fail to mirror physiological conditions and obscure biologically relevant cleavage events. Using high-field asymmetric waveform ion mobility spectrometry (FAIMS), we developed a streamlined approach for proteome and N-terminome analyses without the need for N-termini enrichment. Compared to unfractionated proteomic analysis, we demonstrate FAIMS fractionation improves N-termini identification by >2.5 fold, resulting in the identification of >2882 unique N-termini from limited sample amounts. In murine spleens, this approach identifies 6366 proteins and 2528 unique N-termini, with 235 cleavage events enriched in WT compared to legumain-deficient spleens. Among these, 119 neo-N-termini arose from asparaginyl endopeptidase activities, representing novel putative physiological legumain substrates. The direct cleavage of selected substrates by legumain was confirmed using in vitro assays, providing support for the existence of physiologically relevant extra-lysosomal legumain activity. Combined, these data shed critical light on the functions of legumain and demonstrate the utility of FAIMS as an accessible method to improve depth and quality of N-terminomics studies.
Collapse
Affiliation(s)
- Alexander R Ziegler
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Nichollas E Scott
- Department of Microbiology and Immunology, Peter Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia.
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Santos NP, Soh WT, Demir F, Tenhaken R, Briza P, Huesgen PF, Brandstetter H, Dall E. Phytocystatin 6 is a context-dependent, tight-binding inhibitor of Arabidopsis thaliana legumain isoform β. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1681-1695. [PMID: 37688791 PMCID: PMC10952133 DOI: 10.1111/tpj.16458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
Plant legumains are crucial for processing seed storage proteins and are critical regulators of plant programmed cell death. Although research on legumains boosted recently, little is known about their activity regulation. In our study, we used pull-down experiments to identify AtCYT6 as a natural inhibitor of legumain isoform β (AtLEGβ) in Arabidopsis thaliana. Biochemical analysis revealed that AtCYT6 inhibits both AtLEGβ and papain-like cysteine proteases through two separate cystatin domains. The N-terminal domain inhibits papain-like proteases, while the C-terminal domain inhibits AtLEGβ. Furthermore, we showed that AtCYT6 interacts with legumain in a substrate-like manner, facilitated by a conserved asparagine residue in its reactive center loop. Complex formation was additionally stabilized by charged exosite interactions, contributing to pH-dependent inhibition. Processing of AtCYT6 by AtLEGβ suggests a context-specific regulatory mechanism with implications for plant physiology, development, and programmed cell death. These findings enhance our understanding of AtLEGβ regulation and its broader physiological significance.
Collapse
Affiliation(s)
- Naiá P. Santos
- Department of Biosciences and Medical BiologyUniversity of Salzburg5020SalzburgAustria
| | - Wai Tuck Soh
- Department of Biosciences and Medical BiologyUniversity of Salzburg5020SalzburgAustria
- Present address:
Max Planck Institute for Multidisciplinary SciencesD‐37077GöttingenGermany
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics52428JülichZEA‐3, Forschungszentrum JülichGermany
- Present address:
Department of BiomedicineAarhus University8000Aarhus CDenmark
| | - Raimund Tenhaken
- Department of Environment and BiodiversityUniversity of Salzburg5020SalzburgAustria
| | - Peter Briza
- Department of Biosciences and Medical BiologyUniversity of Salzburg5020SalzburgAustria
| | - Pitter F. Huesgen
- Central Institute for Engineering, Electronics and Analytics52428JülichZEA‐3, Forschungszentrum JülichGermany
- CECADMedical Faculty and University Hospital, University of Cologne50931CologneGermany
- Institute for Biochemistry, Faculty of Mathematics and Natural SciencesUniversity of Cologne50674CologneGermany
| | - Hans Brandstetter
- Department of Biosciences and Medical BiologyUniversity of Salzburg5020SalzburgAustria
| | - Elfriede Dall
- Department of Biosciences and Medical BiologyUniversity of Salzburg5020SalzburgAustria
| |
Collapse
|
6
|
Puliasis SS, Lewandowska D, Hemsley PA, Zhang R. ProtView: A Versatile Tool for In Silico Protease Evaluation and Selection in a Proteomic and Proteogenomic Context. J Proteome Res 2023. [PMID: 37248202 DOI: 10.1021/acs.jproteome.3c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Many tools have been created to generate in silico proteome digests with different protease enzymes and provide useful information for selecting optimal digest schemes for specific needs. This can save on time and resources and generate insights on the observable proteome. However, there remains a need for a tool that evaluates digest schemes beyond protein and amino acid coverages in the proteomic domain. Here, we present ProtView, a versatile in silico protease combination digest evaluation workflow that maps in silico-digested peptides to both protein and genome references, so that the potential observable portions of the proteome, transcriptome, and genome can be identified. The proteomic identification and quantification of evidence for transcriptional, co-transcriptional, post-transcriptional, translational, and post-translational regulation can all be examined in silico with ProtView prior to an experiment. Benchmarking against biological data comparing multiple proteases shows that ProtView can correctly estimate performances among the digest schemes. ProtView provides this information in a way that is easy to interpret, allowing for digest schemes to be evaluated before carrying out an experiment, in context that can optimize both proteomic and proteogenomic experiments. ProtView is available at https://github.com/SSPuliasis/ProtView.
Collapse
Affiliation(s)
- Sophia S Puliasis
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Dominika Lewandowska
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Piers A Hemsley
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| |
Collapse
|
7
|
Sun B, Liu Z, Liu J, Zhao S, Wang L, Wang F. The utility of proteases in proteomics, from sequence profiling to structure and function analysis. Proteomics 2023; 23:e2200132. [PMID: 36382392 DOI: 10.1002/pmic.202200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
In mass spectrometry (MS)-based bottom-up proteomics, protease digestion plays an essential role in profiling both proteome sequences and post-translational modifications (PTMs). Trypsin is the gold standard in digesting intact proteins into small-size peptides, which are more suitable for high-performance liquid chromatography (HPLC) separation and tandem MS (MS/MS) characterization. However, protein sequences lacking Lys and Arg cannot be cleaved by trypsin and may be missed in conventional proteomic analysis. Proteases with cleavage sites complementary to trypsin are widely applied in proteomic analysis to greatly improve the coverage of proteome sequences and PTM sites. In this review, we survey the common and newly emerging proteases used in proteomics analysis mainly in the last 5 years, focusing on their unique cleavage features and specific proteomics applications such as missing protein characterization, new PTM discovery, and de novo sequencing. In addition, we summarize the applications of proteases in structural proteomics and protein function analysis in recent years. Finally, we discuss the future development directions of new proteases and applications in proteomics.
Collapse
Affiliation(s)
- Binwen Sun
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 463 Zhongshan Road, Dalian, 116023, China
- Engineering Technology Research Center for Translational Medicine, Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 463 Zhongshan Road, Dalian, 116023, China
| | - Jin Liu
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
- Engineering Technology Research Center for Translational Medicine, Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Shan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 463 Zhongshan Road, Dalian, 116023, China
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
- Engineering Technology Research Center for Translational Medicine, Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 463 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| |
Collapse
|
8
|
Chu H, Zhao Q, Shan Y, Zhang S, Sui Z, Li X, Fang F, Zhao B, Zhong S, Liang Z, Zhang L, Zhang Y. All-Ion Monitoring-Directed Low-Abundance Protein Quantification Reveals CALB2 as a Key Promoter in Hepatocellular Carcinoma Metastasis. Anal Chem 2022; 94:6102-6111. [PMID: 35333527 DOI: 10.1021/acs.analchem.1c03562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because of the wide abundance range of the proteome, achieving high-coverage quantification of low-abundance proteins is always a major challenge. In this study, a complete pipeline focused on all-ion monitoring (AIM) is first constructed with the concept of untargeted parallel-reaction monitoring, including the seamless connection of protein sample preparation, liquid chromatography mass spectrometry (LC-MS) acquisition, and algorithm development to enable the in-depth quantitative analysis of low-abundance proteins. This pipeline significantly improves the reproducibility and sensitivity of sample preparation and LC-MS acquisition for low-abundance proteins, enabling all the precursors ions fragmented and collected. Contributed by the advantages of the AIM method with all the target precursor acquisition by the data-dependent acquisition (DDA) approach, together with the ability of data-independent acquisition to fragment all precursor ions, the quantitative accuracy and precision of low-abundance proteins are greatly enhanced. As a proof of concept, this pipeline is employed to discover the key differential proteins in the mechanism of hepatocellular carcinoma (HCC) metastasis. On the basis of the superiority of AIM, an extremely low-abundance protein, CALB2, is proposed to promote HCC metastasis in vitro and in vivo. We also reveal that CALB2 activates the TRPV2-Ca2+-ERK1/2 signaling pathway to induce HCC cell metastasis. In summary, we provide a universal AIM pipeline for the high-coverage quantification of low-abundance functional proteins to seek novel insights into the mechanisms of cancer metastasis.
Collapse
Affiliation(s)
- Hongwei Chu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Yichu Shan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Shen Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Xiao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Fei Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Shijun Zhong
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Yukui Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| |
Collapse
|
9
|
Uzozie AC, Smith TG, Chen S, Lange PF. Sensitive Identification of Known and Unknown Protease Activities by Unsupervised Linear Motif Deconvolution. Anal Chem 2022; 94:2244-2254. [PMID: 35029975 DOI: 10.1021/acs.analchem.1c04937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The cleavage-site specificities for many proteases are not well understood, restricting the utility of supervised classification methods. We present an algorithm and web interface to overcome this limitation through the unsupervised detection of overrepresented patterns in protein sequence data, providing insight into the mixture of protease activities contributing to a complex system. Here, we apply the RObust LInear Motif Deconvolution (RoLiM) algorithm to confidently detect substrate cleavage patterns for SARS-CoV-2 MPro protease in the N-terminome data of an infected human cell line. Using mass spectrometry-based peptide data from a case-control comparison of 341 primary urothelial bladder cancer cases and 110 controls, we identified distinct sequence motifs indicative of increased matrix metallopeptidase activity in urine from cancer patients. The evaluation of N-terminal peptides from patient plasma post-chemotherapy detected novel granzyme B/corin activity. RoLiM will enhance the unbiased investigation of peptide sequences to establish the composition of known and uncharacterized protease activities in biological systems. RoLiM is available at http://langelab.org/rolim/.
Collapse
Affiliation(s)
- Anuli C Uzozie
- Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 1Z7, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Theodore G Smith
- Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 1Z7, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Siyuan Chen
- Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 1Z7, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Philipp F Lange
- Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 1Z7, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada
| |
Collapse
|
10
|
Willems P, Ndah E, Jonckheere V, Van Breusegem F, Van Damme P. To New Beginnings: Riboproteogenomics Discovery of N-Terminal Proteoforms in Arabidopsis Thaliana. FRONTIERS IN PLANT SCIENCE 2022; 12:778804. [PMID: 35069635 PMCID: PMC8770321 DOI: 10.3389/fpls.2021.778804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Alternative translation initiation is a widespread event in biology that can shape multiple protein forms or proteoforms from a single gene. However, the respective contribution of alternative translation to protein complexity remains largely enigmatic. By complementary ribosome profiling and N-terminal proteomics (i.e., riboproteogenomics), we provide clear-cut evidence for ~90 N-terminal proteoform pairs shaped by (alternative) translation initiation in Arabidopsis thaliana. Next to several cases additionally confirmed by directed mutagenesis, identified alternative protein N-termini follow the enzymatic rules of co-translational N-terminal protein acetylation and initiator methionine removal. In contrast to other eukaryotic models, N-terminal acetylation in plants cannot generally be considered as a proxy of translation initiation because of its posttranslational occurrence on mature proteolytic neo-termini (N-termini) localized in the chloroplast stroma. Quantification of N-terminal acetylation revealed differing co- vs. posttranslational N-terminal acetylation patterns. Intriguingly, our data additionally hints to alternative translation initiation serving as a common mechanism to supply protein copies in multiple cellular compartments, as alternative translation sites are often in close proximity to cleavage sites of N-terminal transit sequences of nuclear-encoded chloroplastic and mitochondrial proteins. Overall, riboproteogenomics screening enables the identification of (differential localized) N-terminal proteoforms raised upon alternative translation.
Collapse
Affiliation(s)
- Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Elvis Ndah
- integrative Riboproteogenomics, Interactomics and Proteomics Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Veronique Jonckheere
- integrative Riboproteogenomics, Interactomics and Proteomics Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Petra Van Damme
- integrative Riboproteogenomics, Interactomics and Proteomics Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Abstract
Protein N-termini provide unique and distinguishing information on proteolytically processed or N-terminally modified proteoforms. Also splicing, use of alternative translation initiation sites, and a variety of co- and post-translational N-terminal modifications generate distinct proteoforms that are unambiguously identified by their N-termini. However, N-terminal peptides are only a small fraction among all peptides generated in a shotgun proteome digest, are often of low stoichiometric abundance, and therefore require enrichment. Various protocols for enrichment of N-terminal peptides have been established and successfully been used for protease substrate discovery and profiling of N-terminal modification, but often require large amounts of proteome. We have recently established the High-efficiency Undecanal-based N-Termini EnRichment (HUNTER) as a fast and sensitive method to enable enrichment of protein N-termini from limited sample sources with as little as a few microgram proteome. Here we present our current HUNTER protocol for sensitive plant N-terminome profiling, including sample preparation, enrichment of N-terminal peptides, and mass spectrometry data analysis.
Collapse
Affiliation(s)
- Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Andreas Perrar
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich, Germany
- Cologne Cluster of Excellence on Aging-related Disorders, CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich, Germany
- Cologne Cluster of Excellence on Aging-related Disorders, CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich, Germany.
- Cologne Cluster of Excellence on Aging-related Disorders, CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.
- Institute of Biochemistry, Department for Chemistry , University of Cologne, Cologne, Germany.
| |
Collapse
|
12
|
Demir F, Kuppusamy M, Perrar A, Huesgen PF. Profiling Sequence Specificity of Proteolytic Activities Using Proteome-Derived Peptide Libraries. Methods Mol Biol 2022; 2447:159-174. [PMID: 35583780 DOI: 10.1007/978-1-0716-2079-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Substrate sequence specificity is a fundamental characteristic of proteolytic enzymes. Hundreds of proteases are encoded in plant genomes, but the vast majority of them have not been characterized and their distinct specificity remains largely unknown. Here we present our current protocol for profiling sequence specificity of plant proteases using Proteomic Identification of Cleavage Sites (PICS). This simple, cost-effective protocol is suited for detailed, time-resolved specificity profiling of purified or enriched proteases. The isolated active protease or fraction with enriched protease activity together with a suitable control are incubated with split aliquots of proteome-derived peptide libraries, followed by identification of specifically cleaved peptides using quantitative mass spectrometry. Detailed specificity profiles are obtained by alignment of many individual cleavage sites. The chapter covers preparation of complementary peptide libraries from heterologous sources, the cleavage assay itself, as well as mass spectrometry data analysis.
Collapse
Affiliation(s)
- Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Maithreyan Kuppusamy
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Perrar
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Cluster of Excellence on Aging-related Disorders, CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany.
- Cologne Cluster of Excellence on Aging-related Disorders, CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.
- Department for Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Dall E, Stanojlovic V, Demir F, Briza P, Dahms SO, Huesgen PF, Cabrele C, Brandstetter H. The Peptide Ligase Activity of Human Legumain Depends on Fold Stabilization and Balanced Substrate Affinities. ACS Catal 2021; 11:11885-11896. [PMID: 34621593 PMCID: PMC8491156 DOI: 10.1021/acscatal.1c02057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Protein modification by enzymatic breaking and forming of peptide bonds significantly expands the repertoire of genetically encoded protein sequences. The dual protease-ligase legumain exerts the two opposing activities within a single protein scaffold. Primarily localized to the endolysosomal system, legumain represents a key enzyme in the generation of antigenic peptides for subsequent presentation on the MHCII complex. Here we show that human legumain catalyzes the ligation and cyclization of linear peptides at near-neutral pH conditions, where legumain is intrinsically unstable. Conformational stabilization significantly enhanced legumain's ligase activity, which further benefited from engineering the prime substrate recognition sites for improved affinity. Additionally, we provide evidence that specific legumain activation states allow for differential regulation of its activities. Together these results set the basis for engineering legumain proteases and ligases with applications in biotechnology and drug development.
Collapse
Affiliation(s)
- Elfriede Dall
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Vesna Stanojlovic
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Peter Briza
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Sven O. Dahms
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Pitter F. Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52428 Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
- Institute for Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, 50674 Cologne, Germany
| | - Chiara Cabrele
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
14
|
Demir F, Kizhakkedathu JN, Rinschen MM, Huesgen PF. MANTI: Automated Annotation of Protein N-Termini for Rapid Interpretation of N-Terminome Data Sets. Anal Chem 2021; 93:5596-5605. [PMID: 33729755 PMCID: PMC8027985 DOI: 10.1021/acs.analchem.1c00310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 12/23/2022]
Abstract
Site-specific proteolytic processing is an important, irreversible post-translational protein modification with implications in many diseases. Enrichment of protein N-terminal peptides followed by mass spectrometry-based identification and quantification enables proteome-wide characterization of proteolytic processes and protease substrates but is challenged by the lack of specific annotation tools. A common problem is, for example, ambiguous matches of identified peptides to multiple protein entries in the databases used for identification. We developed MaxQuant Advanced N-termini Interpreter (MANTI), a standalone Perl software with an optional graphical user interface that validates and annotates N-terminal peptides identified by database searches with the popular MaxQuant software package by integrating information from multiple data sources. MANTI utilizes diverse annotation information in a multistep decision process to assign a conservative preferred protein entry for each N-terminal peptide, enabling automated classification according to the likely origin and determines significant changes in N-terminal peptide abundance. Auxiliary R scripts included in the software package summarize and visualize key aspects of the data. To showcase the utility of MANTI, we generated two large-scale TAILS N-terminome data sets from two different animal models of chemically and genetically induced kidney disease, puromycin adenonucleoside-treated rats (PAN), and heterozygous Wilms Tumor protein 1 mice (WT1). MANTI enabled rapid validation and autonomous annotation of >10 000 identified terminal peptides, revealing novel proteolytic proteoforms in 905 and 644 proteins, respectively. Quantitative analysis indicated that proteolytic activities with similar sequence specificity are involved in the pathogenesis of kidney injury and proteinuria in both models, whereas coagulation processes and complement activation were specifically induced after chemical injury.
Collapse
Affiliation(s)
- Fatih Demir
- Department
of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
- Central
Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| | - Jayachandran N. Kizhakkedathu
- Centre
for Blood Research, Department of Pathology & Laboratory Medicine,
School of Biomedical Engineering, Department of Chemistry, University of British Columbia, 251-2222 Health Sciences Mall, Vancouver V6T 1Z3, British Columbia, Canada
| | - Markus M. Rinschen
- Department
of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
- III.
Department of Medicine, University Medical
Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Pitter F. Huesgen
- Central
Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Cologne
Excellence Cluster Cellular Stress Response in Aging-Associated Diseases
(CECAD), Medical Faculty and University Hospital, Institute of Biochemistry,
Department of Chemistry, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
15
|
Giglione C, Meinnel T. Evolution-Driven Versatility of N Terminal Acetylation in Photoautotrophs. TRENDS IN PLANT SCIENCE 2021; 26:375-391. [PMID: 33384262 DOI: 10.1016/j.tplants.2020.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
N terminal protein α-acetylation (NTA) is a pervasive protein modification that has recently attracted renewed interest. Early studies on NTA were mostly conducted in yeast and metazoans, providing a detailed portrait of the modification, which was indirectly applied to all eukaryotes. However, new findings originating from photosynthetic organisms have expanded our knowledge of this modification, revealing strong similarities as well as idiosyncratic features. Here, we review the most recent advances on NTA and its dedicated machinery in photosynthetic organisms. We discuss the cytosolic and unique plastid NTA machineries and their critical biological roles in development, stress responses, protein translocation, and stability. These new findings suggest that the multitasking plastid and cytosolic machineries evolved to support the specific needs of photoautotrophs.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|