1
|
Wang S, Zhou X, Wang X, Cheng S, Li XL, Nan J, Min JZ. Simultaneous determination of free DL-amino acids in human hair with a novel DBD-M-Pro derivatization by UHPLC-HRMS: An application in diabetes patients. J Pharm Biomed Anal 2024; 251:116425. [PMID: 39197201 DOI: 10.1016/j.jpba.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024]
Abstract
Human hair is a non-invasive biological sample that is easy to collect and store and can reflect long-term body health. However, the correlation between DL-amino acids and metabolic diseases in hair samples has not been studied. Therefore, we propose a novel UHPLC-HRMS method for analyzing seven free chiral amino acids (DL-Thr, DL-Glu, DL-Ala, DL-Val, DL-Pro, DL-Leu, and DL-Phe) simultaneously in hair samples by derivatization of chiral probe 4-(N,N-dmethylaminosulfonyl)-2,1,3-benzoxadiazole-trans-2-methyl-L-proline (DBD-M-Pro) labeled with targeted amino functional groups. Gradient elution was carried out using an ACQUITYTM BEH C18 (100×2.1 mm,1.7 μm) column with a mobile phase of 0.15 % formic acid (FA) in 10 mM ammonium acetate (CH3-COONH4) and 0.2 % FA in acetonitrile. The labelled DL-amino acid diastereoisomers could be completely separated, with a resolution (Rs) of 1.59-11.44. These amino acids show a strong linear correlation within the range of 3.1-99.2 pmol (R2 ≥ 0.9990). Intraday and interday precision was 1.87 %-14.87 %. The average recovery was 96.12 %-105.33 %. The limit of detection (LOD) ranged from 0.29 to 2.11 pmol. We then employed the method to determine the concentration of free chiral amino acids in hair samples from 30 healthy volunteers (HVs) and 30 diabetes patients (DPs). Male diabetes patients had significantly higher levels of L-Thr, L-Val, L-Leu (p < 0.05), and D-Ala (p < 0.01) in their hair samples than male healthy volunteers and female diabetes patients had significantly higher levels of D-Ala (p < 0.05) in their hair samples than female healthy volunteers. This is the first study to confirm the feasibility of using free DL-amino acids in human hair as potential biomarkers for diabetes.
Collapse
Affiliation(s)
- Songze Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Department of Orthopaedics, Yanbian University Hospital, Yanji, Jilin Province 133002, China
| | - Xin Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Department of Orthopaedics, Yanbian University Hospital, Yanji, Jilin Province 133002, China; Yanbian Institute for Food and Drug Control, Yanji, Jilin Province 133002, China
| | - Xin Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Department of Orthopaedics, Yanbian University Hospital, Yanji, Jilin Province 133002, China
| | - Shengyu Cheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Department of Orthopaedics, Yanbian University Hospital, Yanji, Jilin Province 133002, China
| | - Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Department of Orthopaedics, Yanbian University Hospital, Yanji, Jilin Province 133002, China.
| | - Jun Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Department of Orthopaedics, Yanbian University Hospital, Yanji, Jilin Province 133002, China.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Department of Orthopaedics, Yanbian University Hospital, Yanji, Jilin Province 133002, China.
| |
Collapse
|
2
|
Rodiouchkina K, Rodushkin I, Goderis S, Vanhaecke F. Longitudinal isotope ratio variations in human hair and nails. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152059. [PMID: 34863743 DOI: 10.1016/j.scitotenv.2021.152059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Due to the straightforward and non-invasive sampling, ease of transport and long-term storage and access to time-resolved information, determination of element concentrations and isotope ratios in hair and nails finds increasing use. Multi-isotopic information preserved in keratinous tissues allows one to reveal dietary, physiological and environmental influences, but progress in this area is still limited by complicated and time-consuming analytical procedures and challenges in accuracy assessment. In this study, longitudinal distributions of δ34S, 87Sr/86Sr, 207,208Pb/206Pb, δ66Zn, δ56Fe, δ65Cu, δ26Mg, and δ114Cd were obtained for hair and nails collected from nine subjects with different age, biological sex, diet and/or place of residence. For S and Zn, the distribution along hair strands revealed a trend towards a heavier isotopic signature from the proximal to the distal end, with a maximum difference within the hair of a single subject of 1.2‰ (Δ34S) and 0.4‰ (Δ66Zn). For Fe, Cu, Mg and Cd, a shift towards either a lighter (Cu) or heavier (Fe, Mg and Cd) isotopic composition is accompanied by increasing concentration towards the distal hair end, indicating possible isotope fractionation during deposition or external contamination with a different isotopic composition. Pb and Sr isotope ratios are relatively stable throughout the hair strands despite notable concentration increases towards the distal end, likely reflecting external contamination. The isotopic composition of Sr points to tap water as a probable main source, explaining the relative stability of the ratio for individuals from the same geographical location. For Pb, isotopic compositions suggest tap water and/or indoor dust as possible sources. Similar δ34S, 87Sr/86Sr, 207,208Pb/206Pb, δ66Zn, δ56Fe, and δ65Cu observed for hair, fingernails and toenails sampled from the same individual suggest that keratinous tissues are conservative receivers of internal and external inputs and can be used complementary. Seasonal variation in δ34S, 207,208Pb/206Pb, and δ65Cu was observed for fingernails.
Collapse
Affiliation(s)
- Katerina Rodiouchkina
- Ghent University, Department of Chemistry, Atomic and Mass Spectrometry (A&MS) research group, Campus Sterre, Krijgslaan 281 - S12, 9000 Ghent, Belgium
| | - Ilia Rodushkin
- ALS Scandinavia AB, ALS Laboratory Group, Aurorum 10, S-977 75 Luleå, Sweden
| | - Steven Goderis
- Vrije Universiteit Brussel, Department of Chemistry, Analytical, Environmental and Geo-Chemistry (AMGC) research group, Pleinlaan 2, 1050 Brussels, Belgium
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic and Mass Spectrometry (A&MS) research group, Campus Sterre, Krijgslaan 281 - S12, 9000 Ghent, Belgium.
| |
Collapse
|
4
|
Abstract
Stable isotope analysis of teeth and bones is regularly applied by archeologists and paleoanthropologists seeking to reconstruct diets, ecologies, and environments of past hominin populations. Moving beyond the now prevalent study of stable isotope ratios from bulk materials, researchers are increasingly turning to stable isotope ratios of individual amino acids to obtain more detailed and robust insights into trophic level and resource use. In the present article, we provide a guide on how to best use amino acid stable isotope ratios to determine hominin dietary behaviors and ecologies, past and present. We highlight existing uncertainties of interpretation and the methodological developments required to ensure good practice. In doing so, we hope to make this promising approach more broadly accessible to researchers at a variety of career stages and from a variety of methodological and academic backgrounds who seek to delve into new depths in the study of dietary composition.
Collapse
Affiliation(s)
| | - Ricardo Fernandes
- University of Oxford, Oxford, England, United Kingdom, and with the Faculty of Arts at Masaryk University, Czech Republic
| | - Yiming V Wang
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Patrick Roberts
- School of Social Sciences, University of Queensland, in St Lucia, Queensland, Australia
| |
Collapse
|
5
|
Matos MPV, Engel ME, Mangrum JB, Jackson GP. Origin determination of the Eastern oyster ( Crassostrea virginica) using a combination of whole-body compound-specific isotope analysis and heavy metal analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3493-3503. [PMID: 34259690 DOI: 10.1039/d1ay00755f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Various samples of the Eastern oyster, Crassostrea virginica, were collected from five harvest bay areas in the Gulf of Mexico coastal waters of Florida (FL), Louisiana (LA) and Texas (TX). Cadmium and lead concentrations from the extracted whole-body soft tissues were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), and bulk δ13C and δ15N isotope ratios and amino-acid-specific δ13C values were analyzed via isotope ratio mass-spectrometry (IRMS). The combined data was subjected to multivariate statistical analysis to assess whether oysters could be linked to their harvest area. Results indicate that discriminant analysis using the δ13C values of five amino acids-serine, glycine, valine, lysine and phenylalanine-could discriminate oysters from two adjacent harvesting in Florida with 90% success rate, using leave-one-out cross validation. The combination of trace elements and isotope ratios could also predict geographic provenance of oysters with a success rate superior to the isolated use of each technique. The combinatory approach proposed in this study is a proof-of-concept that compound specific stable isotope analysis is a potential tool for oyster fisheries managers, wildlife, and food safety enforcement officers, as well as to forensics and ecology research areas, although significantly more work would need to be completed to fully validate the approach and achieve more reliable statistical results.
Collapse
Affiliation(s)
- Mayara P V Matos
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, Maryland, USA and Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Maryland, USA
| | - Marc E Engel
- Department of Chemistry, Vancouver Island University, Nanaimo, Canada
| | - John B Mangrum
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Maryland, USA
| | - Glen P Jackson
- Department of Forensic and Investigative Science, West Virginia University, West Virginia, USA. and C. Eugene Bennett Department of Chemistry, West Virginia University, West Virginia, USA
| |
Collapse
|