1
|
Grazioli C, Lanza E, Abate M, Bontempelli G, Dossi N. Lab-on kit: A 3D printed portable device for optical and electrochemical dual-mode detection. Talanta 2024; 275:126185. [PMID: 38705019 DOI: 10.1016/j.talanta.2024.126185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
The hyphenation of electrochemical methods and optical methods in a single portable device is expected to be a challenging combination to enhance the information which can be gained on complex chemical systems. In this paper, a low-cost spectrophotometric device based on low-cost electronics integrated with an electroanalytical cell equipped with a screen printed electrode (SPE) and assembled exploiting a DIY approach, is presented. This easy to use device allowed spectrophotometric and electroanalytical measurements to be performed simultaneously providing simultaneous information and enabling concomitant comparison and autovalidation of the results collected. The analytical robustness and precision of the proposed system was successfully tested on solutions containing mixtures of Patent Blue (E-131) and Brilliant Blue (Erioglaucine E-133), two food dyes displaying optical and redox properties very similar to each other.
Collapse
Affiliation(s)
- Cristian Grazioli
- Sustainable Analytical Instrumentation Laboratory (Sustain Lab), Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Elisa Lanza
- Sustainable Analytical Instrumentation Laboratory (Sustain Lab), Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Michele Abate
- Sustainable Analytical Instrumentation Laboratory (Sustain Lab), Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Gino Bontempelli
- Sustainable Analytical Instrumentation Laboratory (Sustain Lab), Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Nicolò Dossi
- Sustainable Analytical Instrumentation Laboratory (Sustain Lab), Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, I-33100 Udine, Italy.
| |
Collapse
|
2
|
Karthika P, Shanmuganathan S, Subramanian V, Delerue-Matos C. Selective detection of salivary cortisol using screen-printed electrode coated with molecularly imprinted polymer. Talanta 2024; 272:125823. [PMID: 38422908 DOI: 10.1016/j.talanta.2024.125823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
A novel electrochemical sensor was developed for the detection of salivary cortisol levels. The sensor employs a combination of a molecularly imprinted polymer (MIP) and gold nanoparticles (AuNPs) that are electrodeposited onto a screen-printed electrode (SPE). The study utilised density functional theory and molecular docking techniques to determine the geometry of molecular orbitals, electrostatic potential energies, and binding energy of cortisol and the polymers. The thin film of cortisol-imprinted polymer on the SPE was created by electro-polymerizing pyrrole and thiophene-3-carboxylic acid on the electrode surface along with cortisol as the template molecule. The MIP film was characterised using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and electrochemical techniques. The sensor exhibited a linear response in the concentration range of 0.05 nmol L-1 to 2.5 μmol L-1, with a limit of detection of 0.01 nmol L-1, as determined by differential pulse voltammetry. This method offers a simple yet efficient and sensitive approach to detecting cortisol levels in human saliva samples.
Collapse
Affiliation(s)
- Palanisamy Karthika
- Department of Industrial Chemistry, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | | | - Viswanathan Subramanian
- Department of Industrial Chemistry, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| |
Collapse
|
3
|
Svigelj R, Toniolo R, Bertoni C, Fraleoni-Morgera A. Synergistic Applications of Graphene-Based Materials and Deep Eutectic Solvents in Sustainable Sensing: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2403. [PMID: 38676019 PMCID: PMC11054382 DOI: 10.3390/s24082403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
The recently explored synergistic combination of graphene-based materials and deep eutectic solvents (DESs) is opening novel and effective avenues for developing sensing devices with optimized features. In more detail, remarkable potential in terms of simplicity, sustainability, and cost-effectiveness of this combination have been demonstrated for sensors, resulting in the creation of hybrid devices with enhanced signal-to-noise ratios, linearities, and selectivity. Therefore, this review aims to provide a comprehensive overview of the currently available scientific literature discussing investigations and applications of sensors that integrate graphene-based materials and deep eutectic solvents, with an outlook for the most promising developments of this approach.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | | | | |
Collapse
|
4
|
Svigelj R, Dassi N, Gorassini A, Toniolo R. A smartphone aptasensor for fipronil detection in honey samples. Anal Bioanal Chem 2024; 416:397-405. [PMID: 37946035 PMCID: PMC10761377 DOI: 10.1007/s00216-023-05026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
In this study, an electrochemical smartphone-based aptasensor for the determination of fipronil was developed by modifying a screen-printed carbon electrode (SPCE). Fipronil is a broad-spectrum insecticide that has been widely used in various applications such as agriculture, veterinary, and household pest control. Recently, its use has raised concerns over the potential impact on the environment and human health. The absence of effective methods for this purpose poses a significant obstacle. To tackle this problem, we have developed a cutting-edge aptamer-based portable sensor capable of rapidly and conveniently detecting fipronil in situ. Considering that the detection of small molecules, such as fipronil, can be a challenging task, a competitive replacement assay was set up based on the aptamer's preference for the free form of fipronil over the immobilized one on the electrode. The analytical performance provided by the sensor on standard solutions of a known fipronil content made it possible to estimate a limit of detection (LOD) equal to 1.07 μg kg-1 and a limit of quantification (LOQ) of 3.21 μg kg-1. Selectivity tests were conducted using atrazine as a possible interferent. The use and performance of the developed portable aptasensor was assessed on honey samples, which were simultaneously analyzed using an HPLC-MS method. This aptasensor could be an affordable and effective tool for accurately quantifying fipronil not only in honey samples but also in other food products.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - Noemi Dassi
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Andrea Gorassini
- Department of Humanities and Cultural Heritage, University of Udine, Udine, Italy
| | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| |
Collapse
|
5
|
Svigelj R, Zanette F, Toniolo R. Electrochemical Evaluation of Tyrosinase Enzymatic Activity in Deep Eutectic Solvent and Aqueous Deep Eutectic Solvent. SENSORS (BASEL, SWITZERLAND) 2023; 23:3915. [PMID: 37112256 PMCID: PMC10143261 DOI: 10.3390/s23083915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
The use of green, inexpensive, and biodegradable deep eutectic solvents as nonaqueous solvents and electrolytes could be a useful way to potentially improve the enzyme biosensor performance as well as a profitable strategy to extend their use in the gas phase. However, enzyme activity in these media, although fundamental for their implementation in electrochemical analysis, is still almost unexplored. In this study, an electrochemical approach was employed to monitor tyrosinase enzyme activity in a deep eutectic solvent. This study was performed in a DES consisting of choline chloride (ChCl) as a hydrogen bond acceptor (HBA) and glycerol as a hydrogen bond donor (HBD), while phenol was chosen as the prototype analyte. The tyrosinase enzyme was immobilized on a gold-nanoparticle-modified screen-printed carbon electrode, and its activity was monitored following the reduction current of orthoquinone produced by the tyrosinase biocatalysis of phenol. This work represents a first step toward the realization of green electrochemical biosensors capable of operating in both nonaqueous and gaseous media for the chemical analysis of phenols.
Collapse
|
6
|
Wu JD, Ding Y, Zhu F, Gu Y, Wang WW, Sun L, Mao BW, Yan JW. The Role of Water Content of Deep Eutectic Solvent Ethaline in the Anodic Process of Gold Electrode. Molecules 2023; 28:molecules28052300. [PMID: 36903545 PMCID: PMC10005209 DOI: 10.3390/molecules28052300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Traditional coupling of ligands for gold wet etching makes large-scale applications problematic. Deep eutectic solvents (DESs) are a new class of environment-friendly solvents, which could possibly overcome the shortcomings. In this work, the effect of water content on the Au anodic process in DES ethaline was investigated by combining linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Meanwhile, we employed atomic force microscopy (AFM) to image the evolution of the surface morphology of the Au electrode during its dissolution and passivation process. The obtained AFM data help to explain the observations about the effect of water content on the Au anodic process from the microscopic perspective. High water contents make the occurrence of anodic dissolution of gold at higher potential, but enhances the rate of the electron transfer and gold dissolution. AFM results reveal the occurrence of massive exfoliation, which confirms that the gold dissolution reaction is more violent in ethaline with higher water contents. In addition, AFM results illustrate that the passive film and its average roughness could be tailored by changing the water content of ethaline.
Collapse
Affiliation(s)
- Jie-Du Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Feng Zhu
- College of Chemistry and Bioengineering, Yichun University, Yichun 336000, China
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei-Wei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (B.-W.M.); (J.-W.Y.)
| | - Jia-Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (B.-W.M.); (J.-W.Y.)
| |
Collapse
|
7
|
Grazioli C, Dossi N, Cesaro F, Svigelj R, Toniolo R, Bontempelli G. A 3D printed Do-It-Yourself miniaturized device with a sensor responsive at six different wavelengths for reflectance measurements on paper-based supports. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Zuliani I, Fattori A, Svigelj R, Dossi N, Grazioli C, Bontempelli G, Toniolo R. AMPEROMETRIC DETECTION OF ETHANOL VAPORS BY SCREEN PRINTED ELECTRODES MODIFIED BY PAPER CROWNS SOAKED WITH ROOM TEMPERATURE IONIC LIQUIDS. ELECTROANAL 2022. [DOI: 10.1002/elan.202200150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Liu J, Liu X, Zhang L, Zhu L, Mei X, Wei J, Li Y. Hand-Held and Integrated Tubular Tip-like Sensing Platform Series: Point-of-care Device for Semi-automated Multiplexed Assay. Anal Chem 2021; 93:15534-15542. [PMID: 34747608 DOI: 10.1021/acs.analchem.1c03717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, most of the electrochemical sensors were prepared based on the planar electrode (PE) and utilized in open circumstance. The accompanying issues include fixed and limited sensing area of PE, insufficient usage of the testing sample, tedious operation, and susceptibility to external environment. Herein, a novel tubular tip-like sensor (TTLS) platform was proposed, where a small tip accommodates all electrodes with a curved surface and also acts as a closed detection chamber. Teaming up with a commercial pipette and potentiostat, the TTLS is able to accomplish the whole assay procedure including sampling, detection, rinsing, and regeneration with a single hand. The electrochemical interface area can be easily tuned to adapting for different scenarios with varied sensitivity request. Moreover, two TTLS-based array systems were derived: one integrates multiple working electrodes in one tip for multicomponent quantification and the other assembles eight independent TTLSs for high-throughput analysis. The admirable sensing performance of the TTLS was fully proved by detecting several liver-related biomarkers in 5 μL of the serum sample. The proposed tubular sensor platform is superior to the traditional electrochemical sensor in the aspects of unique sensing surface, fast and simple operation, good portability, and great compatibility. The TTLS could be used as an ideal analytical tool in point-of-care testing and other fields.
Collapse
Affiliation(s)
- Jiang Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China.,Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Xiaoxue Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Lu Zhang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Liang Zhu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Xuecui Mei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Yingchun Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong, P.R. China
| |
Collapse
|
10
|
Svigelj R, Dossi N, Grazioli C, Toniolo R. Paper-based aptamer-antibody biosensor for gluten detection in a deep eutectic solvent (DES). Anal Bioanal Chem 2021; 414:3341-3348. [PMID: 34617152 PMCID: PMC8494473 DOI: 10.1007/s00216-021-03653-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Paper has been widely employed as cheap material for the development of a great number of sensors such as pregnancy tests, strips to measure blood sugar, and COVID-19 rapid tests. The need for new low-cost analytical devices is growing, and consequently the use of these platforms will be extended to different assays, both for the final consumer and within laboratories. This work describes a paper-based electrochemical sensing platform that uses a paper disc conveniently modified with recognition molecules and a screen-printed carbon electrode (SPCE) to achieve the detection of gluten in a deep eutectic solvent (DES). This is the first method coupling a paper biosensor based on aptamers and antibodies with the DES ethaline. Ethaline proved to be an excellent extraction medium allowing the determination of very low gluten concentrations. The biosensor is appropriate for the determination of gluten with a limit of detection (LOD) of 0.2 mg L−1 of sample; it can detect gluten extracted in DES with a dynamic range between 0.2 and 20 mg L−1 and an intra-assay coefficient of 10.69%. This approach can be of great interest for highly gluten-sensitive people, who suffer from ingestion of gluten quantities well below the legal limit, which is 20 parts per million in foods labeled gluten-free and for which highly sensitive devices are essential.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100, Udine, Italy.
| | - Nicolò Dossi
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100, Udine, Italy
| | - Cristian Grazioli
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100, Udine, Italy
| | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100, Udine, Italy.
| |
Collapse
|
11
|
Chen X, Lu K, Lin D, Li Y, Yin S, Zhang Z, Tang M, Chen G. Hierarchical Porous Tubular Biochar Based Sensor for Detection of Trace Lead (II). ELECTROANAL 2020. [DOI: 10.1002/elan.202060148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xue Chen
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 210009 China
| | - Kunchao Lu
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 210009 China
| | - Donghai Lin
- School of Environmental and Materials Engineering College of Engineering Shanghai Polytechnic University Shanghai 201209 China
- School of Food Science and Engineering Foshan University Foshan 528000 China (D. Lin)
| | - Yan Li
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 210009 China
| | - Shiyu Yin
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 210009 China
| | - Zhiyi Zhang
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 210009 China
| | - Meihua Tang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 210009 China
| | - Guosong Chen
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 210009 China
| |
Collapse
|