1
|
Li H, Xu L, Bo S, Wang Y, Xu H, Chen C, Miao R, Chen D, Zhang K, Liu Q, Shen J, Shao H, Jia J, Wang S. Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst. Nat Commun 2024; 15:8858. [PMID: 39402058 PMCID: PMC11473519 DOI: 10.1038/s41467-024-52832-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/23/2024] [Indexed: 10/17/2024] Open
Abstract
Electrocatalytic C-N coupling from carbon dioxide and nitrate provides a sustainable alternative to the conventional energy-intensive urea synthetic protocol, enabling wastes upgrading and value-added products synthesis. The design of efficient and stable electrocatalysts is vital to promote the development of electrocatalytic urea synthesis. In this work, copper phthalocyanine (CuPc) is adopted as a modeling catalyst toward urea synthesis owing to its accurate and adjustable active configurations. Combining experimental and theoretical studies, it can be observed that the intramolecular Cu-N coordination can be strengthened with optimization in electronic structure by amino substitution (CuPc-Amino) and the electrochemically induced demetallation is efficiently suppressed, serving as the origination of its excellent activity and stability. Compared to that of CuPc (the maximum urea yield rate of 39.9 ± 1.9 mmol h-1 g-1 with 67.4% of decay in 10 test cycles), a high rate of 103.1 ± 5.3 mmol h-1 g-1 and remarkable catalytic durability have been achieved on CuPc-Amino. Isotope-labelling operando electrochemical spectroscopy measurements are performed to disclose reaction mechanisms and validate the C-N coupling processes. This work proposes a unique scheme for the rational design of molecular electrocatalysts for urea synthesis.
Collapse
Grants
- 22250006 National Natural Science Foundation of China (National Science Foundation of China)
- 22202065 National Natural Science Foundation of China (National Science Foundation of China)
- BX20200116 China Postdoctoral Science Foundation
- The National Key R&D Program of China (2020YFA0710000), the National Natural Science Foundation of China (Nos. 22425021, 22250006, 22261160640, 22202065, 22102054), the Hunan Provincial Science Fund for Distinguished Young Scholars (2023JJ10002), the China Postdoctoral Science Foundation (Nos. BX20200116, 2020M682540), the Natural Science Foundation of Shandong Province (ZR2020QB120), the Joint Scientific Research Project Funding by the National Natural Science Foundation of China and the Macao Science and Technology Development Fund (0090/2022/AFJ), the Multi-Year Research Grant (MYRG) from University of Macau (MYRG2022-00105-IAPME).
Collapse
Affiliation(s)
- Han Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China
| | - Leitao Xu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China
| | - Shuowen Bo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Yujie Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China
| | - Han Xu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China
| | - Chen Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China.
| | - Ruping Miao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China
| | - Dawei Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China.
| | - Kefan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Jingjun Shen
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, P. R. China
| | - Huaiyu Shao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, P. R. China
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China.
| |
Collapse
|
2
|
Kottaichamy AR, Deebansok S, Deng J, Nazrulla MA, Zhu Y, Bhat ZM, Devendrachari MC, Vinod CP, Nimbegondi Kotresh HM, Fontaine O, Thotiyl MO. Unprecedented energy storage in metal-organic complexes via constitutional isomerism. Chem Sci 2023; 14:6383-6392. [PMID: 37325136 PMCID: PMC10266471 DOI: 10.1039/d3sc01692g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
The essence of any electrochemical system is engraved in its electrical double layer (EDL), and we report its unprecedented reorganization by the structural isomerism of molecules, with a direct consequence on their energy storage capability. Electrochemical and spectroscopic analyses in combination with computational and modelling studies demonstrate that an attractive field-effect due to the molecule's structural-isomerism, in contrast to a repulsive field-effect, spatially screens the ion-ion coulombic repulsions in the EDL and reconfigures the local density of anions. In a laboratory-level prototype supercapacitor, those with β-structural isomerism exhibit nearly 6-times elevated energy storage compared to the state-of-the-art electrodes, by delivering ∼535 F g-1 at 1 A g-1 while maintaining high performance metrics even at a rate as high as 50 A g-1. The elucidation of the decisive role of structural isomerism in reconfiguring the electrified interface represents a major step forward in understanding the electrodics of molecular platforms.
Collapse
Affiliation(s)
- Alagar Raja Kottaichamy
- Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhabha Road Pashan Pune 411008 India
| | | | - Jie Deng
- Institute for Advanced Study, College of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | | | - Yachao Zhu
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier France
| | - Zahid Manzoor Bhat
- Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhabha Road Pashan Pune 411008 India
| | | | | | | | - Olivier Fontaine
- Molecular Electrochemistry for Energy Laboratory, VISTEC Rayong 21210 Thailand
- Institut Universitaire de France 75005 Paris France
| | - Musthafa Ottakam Thotiyl
- Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhabha Road Pashan Pune 411008 India
| |
Collapse
|
3
|
Yuan B, Sun P, Fernandez C, Wang H, Guan P, Xu H, Niu Y. Molecular fluorinated cobalt phthalocyanine immobilized on ordered mesoporous carbon as an electrochemical sensing platform for sensitive detection of hydrogen peroxide and hydrazine in alkaline medium. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Begum S, Yuhana NY, Md Saleh N, Kamarudin NHN, Sulong AB. Review of chitosan composite as a heavy metal adsorbent: Material preparation and properties. Carbohydr Polym 2021; 259:117613. [PMID: 33673980 DOI: 10.1016/j.carbpol.2021.117613] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 01/04/2023]
Abstract
A large amount of wastewater is typically discharged into water bodies and has extremely harmful effects to aquatic environments. The removal of heavy metals from water bodies is necessary for the safe consumption of water and human activities. The demand for seafood has considerably increased, and millions of tons of crustacean waste are discarded every year. These waste products are rich in a natural biopolymer known as chitin. The deacetylated form of chitin, chitosan, has attracted attention as an adsorbent. It is a biocompatible and biodegradable polymer that can be modified and converted to various derivatives. This review paper focuses on relevant literature on strategies for chemically modifying the biopolymer and its use in the removal of heavy metals from water and wastewater. The different aspects of chitosan-based derivatives and their preparation and application are elucidated. A list of chitosan-based composites, along with their adsorptivity and experimental conditions, are compiled.
Collapse
Affiliation(s)
- Shabbah Begum
- Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nor Yuliana Yuhana
- Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Noorashikin Md Saleh
- Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nur Hidayatul Nazirah Kamarudin
- Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Abu Bakar Sulong
- Department of Mechanical & Materials Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
5
|
Mukhopadhyay S, Kottaichamy AR, Bhat ZM, Dargily NC, Thotiyl MO. Isomerism‐Activity Relation in Molecular Electrocatalysis: A Perspective. ELECTROANAL 2020. [DOI: 10.1002/elan.202060244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sanchayita Mukhopadhyay
- Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Alagar Raja Kottaichamy
- Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Zahid Manzoor Bhat
- Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Neethu Christudas Dargily
- Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Musthafa Ottakam Thotiyl
- Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
| |
Collapse
|