1
|
Habeck T, Brown KA, Des Soye B, Lantz C, Zhou M, Alam N, Hossain MA, Jung W, Keener JE, Volny M, Wilson JW, Ying Y, Agar JN, Danis PO, Ge Y, Kelleher NL, Li H, Loo JA, Marty MT, Paša-Tolić L, Sandoval W, Lermyte F. Top-down mass spectrometry of native proteoforms and their complexes: a community study. Nat Methods 2024; 21:2388-2396. [PMID: 38744918 PMCID: PMC11561160 DOI: 10.1038/s41592-024-02279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
The combination of native electrospray ionization with top-down fragmentation in mass spectrometry (MS) allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and cofactors. Although this approach is powerful, both native MS and top-down MS are not yet well standardized, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics initiated a study to develop and test protocols for native MS combined with top-down fragmentation of proteins and protein complexes across 11 instruments in nine laboratories. Here we report the summary of the outcomes to provide robust benchmarks and a valuable entry point for the scientific community.
Collapse
Affiliation(s)
- Tanja Habeck
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Kyle A Brown
- University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Mowei Zhou
- Pacific Northwest National Laboratory, Richland, WA, USA
- Zhejiang University, Zhejiang, China
| | | | | | | | | | | | - Jesse W Wilson
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yujia Ying
- Sun Yat-sen University, Guangzhou, China
| | - Jeffrey N Agar
- Northeastern University, Boston, MA, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Paul O Danis
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Ying Ge
- University of Wisconsin-Madison, Madison, WI, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Neil L Kelleher
- Northwestern University, Evanston, IL, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Huilin Li
- Sun Yat-sen University, Guangzhou, China
| | - Joseph A Loo
- University of California, Los Angeles, CA, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | | | - Ljiljana Paša-Tolić
- Pacific Northwest National Laboratory, Richland, WA, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | | | | |
Collapse
|
2
|
Ross DH, Bhotika H, Zheng X, Smith RD, Burnum-Johnson KE, Bilbao A. Computational tools and algorithms for ion mobility spectrometry-mass spectrometry. Proteomics 2024; 24:e2200436. [PMID: 38438732 PMCID: PMC11632599 DOI: 10.1002/pmic.202200436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS or IM-MS) is a powerful analytical technique that combines the gas-phase separation capabilities of IM with the identification and quantification capabilities of MS. IM-MS can differentiate molecules with indistinguishable masses but different structures (e.g., isomers, isobars, molecular classes, and contaminant ions). The importance of this analytical technique is reflected by a staged increase in the number of applications for molecular characterization across a variety of fields, from different MS-based omics (proteomics, metabolomics, lipidomics, etc.) to the structural characterization of glycans, organic matter, proteins, and macromolecular complexes. With the increasing application of IM-MS there is a pressing need for effective and accessible computational tools. This article presents an overview of the most recent free and open-source software tools specifically tailored for the analysis and interpretation of data derived from IM-MS instrumentation. This review enumerates these tools and outlines their main algorithmic approaches, while highlighting representative applications across different fields. Finally, a discussion of current limitations and expectable improvements is presented.
Collapse
Affiliation(s)
- Dylan H. Ross
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA 99354, USA
| | - Harsh Bhotika
- Environmental Molecular Sciences Laboratory, Pacific
Northwest National Laboratory, Richland, WA 99354, USA
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA 99354, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA 99354, USA
| | - Kristin E. Burnum-Johnson
- Environmental Molecular Sciences Laboratory, Pacific
Northwest National Laboratory, Richland, WA 99354, USA
| | - Aivett Bilbao
- Environmental Molecular Sciences Laboratory, Pacific
Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
3
|
Pade LR, Stepler KE, Portero EP, DeLaney K, Nemes P. Biological mass spectrometry enables spatiotemporal 'omics: From tissues to cells to organelles. MASS SPECTROMETRY REVIEWS 2024; 43:106-138. [PMID: 36647247 PMCID: PMC10668589 DOI: 10.1002/mas.21824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 06/17/2023]
Abstract
Biological processes unfold across broad spatial and temporal dimensions, and measurement of the underlying molecular world is essential to their understanding. Interdisciplinary efforts advanced mass spectrometry (MS) into a tour de force for assessing virtually all levels of the molecular architecture, some in exquisite detection sensitivity and scalability in space-time. In this review, we offer vignettes of milestones in technology innovations that ushered sample collection and processing, chemical separation, ionization, and 'omics analyses to progressively finer resolutions in the realms of tissue biopsies and limited cell populations, single cells, and subcellular organelles. Also highlighted are methodologies that empowered the acquisition and analysis of multidimensional MS data sets to reveal proteomes, peptidomes, and metabolomes in ever-deepening coverage in these limited and dynamic specimens. In pursuit of richer knowledge of biological processes, we discuss efforts pioneering the integration of orthogonal approaches from molecular and functional studies, both within and beyond MS. With established and emerging community-wide efforts ensuring scientific rigor and reproducibility, spatiotemporal MS emerged as an exciting and powerful resource to study biological systems in space-time.
Collapse
Affiliation(s)
- Leena R. Pade
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Kaitlyn E. Stepler
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Erika P. Portero
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Kellen DeLaney
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| |
Collapse
|
4
|
Hale O, Cooper HJ, Marty MT. High-Throughput Deconvolution of Native Protein Mass Spectrometry Imaging Data Sets for Mass Domain Analysis. Anal Chem 2023; 95:14009-14015. [PMID: 37672655 PMCID: PMC10515104 DOI: 10.1021/acs.analchem.3c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
Protein mass spectrometry imaging (MSI) with electrospray-based ambient ionization techniques, such as nanospray desorption electrospray ionization (nano-DESI), generates data sets in which each pixel corresponds to a mass spectrum populated by peaks corresponding to multiply charged protein ions. Importantly, the signal associated with each protein is split among multiple charge states. These peaks can be transformed into the mass domain by spectral deconvolution. When proteins are imaged under native/non-denaturing conditions to retain non-covalent interactions, deconvolution is particularly valuable in helping interpret the data. To improve the acquisition speed, signal-to-noise ratio, and sensitivity, native MSI is usually performed using mass resolving powers that do not provide isotopic resolution, and conventional algorithms for deconvolution of lower-resolution data are not suitable for these large data sets. UniDec was originally developed to enable rapid deconvolution of complex protein mass spectra. Here, we developed an updated feature set harnessing the high-throughput module, MetaUniDec, to deconvolve each pixel of native MSI data sets and transform m/z-domain image files to the mass domain. New tools enable the reading, processing, and output of open format .imzML files for downstream analysis. Transformation of data into the mass domain also provides greater accessibility, with mass information readily interpretable by users of established protein biology tools such as sodium dodecyl sulfate polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- Oliver
J. Hale
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Helen J. Cooper
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Michael T. Marty
- Department
of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, 1306 E University Blvd Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Villacob RA, Egbejiogu BC, Feizi N, Hogan C, Murray KK, Solouki T. Native Mass Spectrometry and Collision-Induced Unfolding of Laser-Ablated Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2215-2225. [PMID: 36346890 DOI: 10.1021/jasms.2c00184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Infrared laser ablation sample transfer (LAST) was used to collect samples from solid surfaces for mass spectrometry under native spray conditions. Native mass spectrometry was utilized to probe the charge states and collision-induced unfolding (CIU) characteristics of bovine serum albumin (BSA), bovine hemoglobin (BHb), and jack-bean concanavalin A (ConA) via direct injection electrospray, after liquid extraction surface sampling, and after LAST. Each protein was deposited from solution on solid surfaces and laser-ablated for off-line analysis or sampled for online analysis. It was found that the protein ion gas-phase charge-state distributions were comparable for direct infusion, liquid extraction, and laser ablation experiments. Moreover, calculated average collision cross section (CCS) values from direct injection, liquid extraction, and laser ablation experiments were consistent with previously reported literature values. Additionally, an equivalent number of mobility features and conformational turnovers were identified from unfolding pathways from all three methods for all charge states of each protein analyzed in this work. The presented work suggests that laser ablation yields intact proteins (BSA, BHb, and ConA), is compatible with native mass spectrometry, and could be suitable for spatially resolved interrogation of unfolding pathways of proteins.
Collapse
Affiliation(s)
| | | | - Neda Feizi
- Baylor University, Waco, Texas 76706, United States
| | - Cole Hogan
- Baylor University, Waco, Texas 76706, United States
| | - Kermit K Murray
- Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | |
Collapse
|
6
|
Marty MT. Fundamentals: How Do We Calculate Mass, Error, and Uncertainty in Native Mass Spectrometry? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1807-1812. [PMID: 36130030 DOI: 10.1021/jasms.2c00218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry (MS) is uniquely powerful for measuring the mass of intact proteins and other biomolecules. New applications have expanded intact protein analysis into biopharmaceuticals, native MS, and top-down proteomics, all of which have driven the need for more automated data-processing pipelines. However, key metrics in the field are often not precisely defined. For example, there are different views on how to calculate uncertainty from spectra. This Critical Insight will explore the different definitions of mass, error, and uncertainty. It will discuss situations where different definitions may be more suitable and provide recommendations for best practices. Targeting both beginners and experts, the goal of the discussion is to provide a common foundation of terminology, enhance statistical rigor, and improve automation of data analysis.
Collapse
Affiliation(s)
- Michael T Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Santambrogio C, Ponzini E, Grandori R. Native mass spectrometry for the investigation of protein structural (dis)order. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140828. [PMID: 35926718 DOI: 10.1016/j.bbapap.2022.140828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/24/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
A central challenge in structural biology is represented by dynamic and heterogeneous systems, as typically represented by proteins in solution, with the extreme case of intrinsically disordered proteins (IDPs) [1-3]. These proteins lack a specific three-dimensional structure and have poorly organized secondary structure. For these reasons, they escape structural characterization by conventional biophysical methods. The investigation of these systems requires description of conformational ensembles, rather than of unique, defined structures or bundles of largely superimposable structures. Mass spectrometry (MS) has become a central tool in this field, offering a variety of complementary approaches to generate structural information on either folded or disordered proteins [4-6]. Two main categories of methods can be recognized. On one side, conformation-dependent reactions (such as cross-linking, covalent labeling, H/D exchange) are exploited to label molecules in solution, followed by the characterization of the labeling products by denaturing MS [7-11]. On the other side, non-denaturing ("native") MS can be used to directly explore the different conformational components in terms of geometry and structural compactness [12-16]. All these approaches have in common the capability to conjugate protein structure investigation with the peculiar analytical power of MS measurements, offering the possibility of assessing species distributions for folding and binding equilibria and the combination of both. These methods can be combined with characterization of noncovalent complexes [17, 18] and post-translational modifications [19-23]. This review focuses on the application of native MS to protein structure and dynamics investigation, with a general methodological section, followed by examples on specific proteins from our laboratory.
Collapse
Affiliation(s)
- Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Erika Ponzini
- Materials Science Department, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy; COMiB Research Center, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
8
|
Yang M, Hu H, Su P, Thomas PM, Camarillo JM, Greer JB, Early BP, Fellers RT, Kelleher NL, Laskin J. Proteoform-Selective Imaging of Tissues Using Mass Spectrometry. Angew Chem Int Ed Engl 2022; 61:e202200721. [PMID: 35446460 PMCID: PMC9276647 DOI: 10.1002/anie.202200721] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 01/28/2023]
Abstract
Unraveling the complexity of biological systems relies on the development of new approaches for spatially resolved proteoform‐specific analysis of the proteome. Herein, we employ nanospray desorption electrospray ionization mass spectrometry imaging (nano‐DESI MSI) for the proteoform‐selective imaging of biological tissues. Nano‐DESI generates multiply charged protein ions, which is advantageous for their structural characterization using tandem mass spectrometry (MS/MS) directly on the tissue. Proof‐of‐concept experiments demonstrate that nano‐DESI MSI combined with on‐tissue top‐down proteomics is ideally suited for the proteoform‐selective imaging of tissue sections. Using rat brain tissue as a model system, we provide the first evidence of differential proteoform expression in different regions of the brain.
Collapse
Affiliation(s)
- Manxi Yang
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| | - Hang Hu
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| | - Pei Su
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Paul M. Thomas
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Jeannie M. Camarillo
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Joseph B. Greer
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Bryan P. Early
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Ryan T. Fellers
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Neil L. Kelleher
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Julia Laskin
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| |
Collapse
|
9
|
Opening opportunities for K d determination and screening of MHC peptide complexes. Commun Biol 2022; 5:488. [PMID: 35606511 PMCID: PMC9127112 DOI: 10.1038/s42003-022-03366-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/13/2022] [Indexed: 01/15/2023] Open
Abstract
An essential element of adaptive immunity is selective binding of peptide antigens by major histocompatibility complex (MHC) class I proteins and their presentation to cytotoxic T lymphocytes. Using native mass spectrometry, we analyze the binding of peptides to an empty disulfide-stabilized HLA-A*02:01 molecule and, due to its unique stability, we determine binding affinities of complexes loaded with truncated or charge-reduced peptides. We find that the two anchor positions can be stabilized independently, and we further analyze the contribution of additional amino acid positions to the binding strength. As a complement to computational prediction tools, our method estimates binding strength of even low-affinity peptides to MHC class I complexes quickly and efficiently. It has huge potential to eliminate binding affinity biases and thus accelerate drug discovery in infectious diseases, autoimmunity, vaccine design, and cancer immunotherapy. The authors present a sensitive and rapid method to determine the binding strength of MHC class 1 peptide complexes using native mass spectrometry.
Collapse
|
10
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
11
|
Yang M, Hu H, Su P, Thomas PM, Camarillo JM, Greer JB, Early BP, Fellers RT, Kelleher NL, Laskin J. Proteoform‐Selective Imaging of Tissues Using Mass Spectrometry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manxi Yang
- Purdue University Department of Chemistry chemistry 560 Oval Dr. 47906 West Lafayette UNITED STATES
| | - Hang Hu
- Purdue University Chemistry UNITED STATES
| | - Pei Su
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Paul M. Thomas
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | | | - Joseph B. Greer
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Bryan P. Early
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Ryan T. Fellers
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Neil L. Kelleher
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Julia Laskin
- Purdue University Department of Chemistry 560 Oval Dr. 47907 West Lafayette UNITED STATES
| |
Collapse
|
12
|
Abstract
Intact protein, top-down, and native mass spectrometry (MS) generally requires the deconvolution of electrospray ionization (ESI) mass spectra to assign the mass of components from their charge state distribution. For small, well-resolved proteins, the charge can usually be assigned based on the isotope distribution. However, it can be challenging to determine charge states with larger proteins that lack isotopic resolution, in complex mass spectra with overlapping charge states, and in native spectra that show adduction. To overcome these challenges, UniDec uses Bayesian deconvolution to assign charge states and to create a zero-charge mass distribution. UniDec is fast, user-friendly, and includes a range of advanced tools to assist in intact protein, top-down, and native MS data analysis. This chapter provides a step-by-step protocol and an in-depth explanation of the UniDec algorithm, and highlights the parameters that affect the deconvolution. It also covers advanced data analysis tools, such as macromolecular mass defect analysis and tools for assigning potential PTMs and bound ligands. Overall, this chapter provides users with a deeper understanding of UniDec, which will enhance the quality of deconvolutions and allow for more intricate MS experiments.
Collapse
Affiliation(s)
- Marius M Kostelic
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
- Bio5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
13
|
Yang M, Li J, Zhao C, Xiao H, Fang X, Zheng J. LC-Q-TOF-MS/MS detection of food flavonoids: principle, methodology, and applications. Crit Rev Food Sci Nutr 2021:1-21. [PMID: 34672231 DOI: 10.1080/10408398.2021.1993128] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Flavonoids have been attracting increasing research interest because of their multiple health promoting effects. However, many flavonoids with similar structures are present in foods, often at low concentrations, which increases the difficulty of their separation and identification. Liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-Q-TOF-MS/MS) has become one of the most widely used techniques for flavonoid detection. LC-Q-TOF-MS/MS can achieve highly efficient separation by LC; it also provides structural information regarding flavonoids by Q-TOF-MS/MS. This review presents a comprehensive summary of the scientific principles and detailed methodologies (e.g., qualitative determination, quantitative determination, and data processing) of LC-Q-TOF-MS/MS specifically for food flavonoids. It also discusses the recent applications of LC-Q-TOF-MS/MS in determination of flavonoid types and contents in agricultural products, changes in their structures and contents during food processing, and metabolism in vivo after consumption. Moreover, it proposes necessary technological improvements and potential applications. This review would facilitate the scientific understanding of theory and technique of LC-Q-TOF-MS/MS for flavonoid detection, and promote its applications in food and health industry.
Collapse
Affiliation(s)
- Minke Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Food Science, South China Agricultural University, Guangzhou, China
| | - Juan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Province Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
14
|
Grün JT, Schwalbe H. Folding dynamics of polymorphic G-quadruplex structures. Biopolymers 2021; 113:e23477. [PMID: 34664713 DOI: 10.1002/bip.23477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
G-quadruplexes (G4), found in numerous places within the human genome, are involved in essential processes of cell regulation. Chromosomal DNA G4s are involved for example, in replication and transcription as first steps of gene expression. Hence, they influence a plethora of downstream processes. G4s possess an intricate structure that differs from canonical B-form DNA. Identical DNA G4 sequences can adopt multiple long-lived conformations, a phenomenon known as G4 polymorphism. A detailed understanding of the molecular mechanisms that drive G4 folding is essential to understand their ambivalent regulatory roles. Disentangling the inherent dynamic and polymorphic nature of G4 structures thus is key to unravel their biological functions and make them amenable as molecular targets in novel therapeutic approaches. We here review recent experimental approaches to monitor G4 folding and discuss structural aspects for possible folding pathways. Substantial progress in the understanding of G4 folding within the recent years now allows drawing comprehensive models of the complex folding energy landscape of G4s that we herein evaluate based on computational and experimental evidence.
Collapse
Affiliation(s)
- J Tassilo Grün
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Frankfurt/M, Germany.,Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/M, Germany
| |
Collapse
|
15
|
Britt HM, Cragnolini T, Thalassinos K. Integration of Mass Spectrometry Data for Structural Biology. Chem Rev 2021; 122:7952-7986. [PMID: 34506113 DOI: 10.1021/acs.chemrev.1c00356] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mass spectrometry (MS) is increasingly being used to probe the structure and dynamics of proteins and the complexes they form with other macromolecules. There are now several specialized MS methods, each with unique sample preparation, data acquisition, and data processing protocols. Collectively, these methods are referred to as structural MS and include cross-linking, hydrogen-deuterium exchange, hydroxyl radical footprinting, native, ion mobility, and top-down MS. Each of these provides a unique type of structural information, ranging from composition and stoichiometry through to residue level proximity and solvent accessibility. Structural MS has proved particularly beneficial in studying protein classes for which analysis by classic structural biology techniques proves challenging such as glycosylated or intrinsically disordered proteins. To capture the structural details for a particular system, especially larger multiprotein complexes, more than one structural MS method with other structural and biophysical techniques is often required. Key to integrating these diverse data are computational strategies and software solutions to facilitate this process. We provide a background to the structural MS methods and briefly summarize other structural methods and how these are combined with MS. We then describe current state of the art approaches for the integration of structural MS data for structural biology. We quantify how often these methods are used together and provide examples where such combinations have been fruitful. To illustrate the power of integrative approaches, we discuss progress in solving the structures of the proteasome and the nuclear pore complex. We also discuss how information from structural MS, particularly pertaining to protein dynamics, is not currently utilized in integrative workflows and how such information can provide a more accurate picture of the systems studied. We conclude by discussing new developments in the MS and computational fields that will further enable in-cell structural studies.
Collapse
Affiliation(s)
- Hannah M Britt
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| |
Collapse
|
16
|
Skeene K, Khatri K, Soloviev Z, Lapthorn C. Current status and future prospects for ion-mobility mass spectrometry in the biopharmaceutical industry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140697. [PMID: 34246790 DOI: 10.1016/j.bbapap.2021.140697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Detailed characterization of protein reagents and biopharmaceuticals is key in defining successful drug discovery campaigns, aimed at bringing molecules through different discovery stages up to development and commercialization. There are many challenges in this process, with complex and detailed analyses playing paramount roles in modern industry. Mass spectrometry (MS) has become an essential tool for characterization of proteins ever since the onset of soft ionization techniques and has taken the lead in quality assessment of biopharmaceutical molecules, and protein reagents, used in the drug discovery pipeline. MS use spans from identification of correct sequences, to intact molecule analyses, protein complexes and more recently epitope and paratope identification. MS toolkits could be incredibly diverse and with ever evolving instrumentation, increasingly novel MS-based techniques are becoming indispensable tools in the biopharmaceutical industry. Here we discuss application of Ion Mobility MS (IMMS) in an industrial setting, and what the current applications and outlook are for making IMMS more mainstream.
Collapse
Affiliation(s)
- Kirsty Skeene
- Biopharm Process Research, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Kshitij Khatri
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Collegeville, PA 19406, USA.
| | - Zoja Soloviev
- Protein, Cellular and Structural Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Cris Lapthorn
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
17
|
Eldrid C, Thalassinos K. Developments in tandem ion mobility mass spectrometry. Biochem Soc Trans 2020; 48:2457-2466. [PMID: 33336686 PMCID: PMC7752082 DOI: 10.1042/bst20190788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/14/2020] [Accepted: 11/17/2020] [Indexed: 01/09/2023]
Abstract
Ion Mobility (IM) coupled to mass spectrometry (MS) is a useful tool for separating species of interest out of small quantities of heterogenous mixtures via a combination of m/z and molecular shape. While tandem MS instruments are common, instruments which employ tandem IM are less so with the first commercial IM-MS instrument capable of multiple IM selection rounds being released in 2019. Here we explore the history of tandem IM instruments, recent developments, the applications to biological systems and expected future directions.
Collapse
Affiliation(s)
- Charles Eldrid
- Institute of Structural and Molecular Biology, UCL, Gower St, London WC1E 6BT, U.K
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, UCL, Gower St, London WC1E 6BT, U.K
- Institute of Structural and Molecular Biology, Birkbeck University, Malet Place, London WC1E 7HX, U.K
| |
Collapse
|